\\ Pari/GP code for working with number field 21.9.2523828389200110188894232441.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^21 - 9*y^19 + 3*y^17 + 66*y^15 - 75*y^14 - 90*y^13 + 198*y^12 - 21*y^11 + 63*y^9 - 177*y^8 + 54*y^7 + 45*y^6 - 51*y^5 + 18*y^4 - 8*y^3 - 3*y^2 + 3, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^21 - 9*x^19 + 3*x^17 + 66*x^15 - 75*x^14 - 90*x^13 + 198*x^12 - 21*x^11 + 63*x^9 - 177*x^8 + 54*x^7 + 45*x^6 - 51*x^5 + 18*x^4 - 8*x^3 - 3*x^2 + 3, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])