Properties

Label 5.5.24217.1-29.1-b2
Base field 5.5.24217.1
Conductor norm \( 29 \)
CM no
Base change no
Q-curve no
Torsion order \( 7 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-a^{3}-9a^{2}+3a+4\right){x}{y}+\left(2a^{4}-9a^{2}+3\right){y}={x}^{3}+\left(-3a^{4}+a^{3}+14a^{2}-2a-6\right){x}^{2}+\left(-a^{4}+4a^{2}-1\right){x}-a^{2}-a\)
sage: E = EllipticCurve([K([4,3,-9,-1,2]),K([-6,-2,14,1,-3]),K([3,0,-9,0,2]),K([-1,0,4,0,-1]),K([0,-1,-1,0,0])])
 
gp: E = ellinit([Polrev([4,3,-9,-1,2]),Polrev([-6,-2,14,1,-3]),Polrev([3,0,-9,0,2]),Polrev([-1,0,4,0,-1]),Polrev([0,-1,-1,0,0])], K);
 
magma: E := EllipticCurve([K![4,3,-9,-1,2],K![-6,-2,14,1,-3],K![3,0,-9,0,2],K![-1,0,4,0,-1],K![0,-1,-1,0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4+a^3+10a^2-2a-4)\) = \((-2a^4+a^3+10a^2-2a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 29 \) = \(29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-28a^4-a^3+51a^2-22)\) = \((-2a^4+a^3+10a^2-2a-4)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -29 \) = \(-29\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{8427382}{29} a^{4} + \frac{7718790}{29} a^{3} - 1223286 a^{2} - \frac{41118125}{29} a - \frac{10576765}{29} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/7\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a^{4} - a^{3} - 9 a^{2} + 2 a + 4 : -a^{4} + 4 a^{2} + a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 7344.0836017144368089321061593235450130 \)
Tamagawa product: \( 1 \)
Torsion order: \(7\)
Leading coefficient: \( 0.963122128 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^4+a^3+10a^2-2a-4)\) \(29\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 29.1-b consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.