Properties

Label 6.6.592661.1-13.1-a1
Base field 6.6.592661.1
Conductor norm \( 13 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-4a^{3}+2a\right){x}{y}+\left(a^{2}+a-1\right){y}={x}^{3}+\left(a^{5}-a^{4}-4a^{3}+3a^{2}+a\right){x}^{2}+\left(-2a^{4}-a^{3}+6a^{2}-2\right){x}\)
sage: E = EllipticCurve([K([0,2,0,-4,0,1]),K([0,1,3,-4,-1,1]),K([-1,1,1,0,0,0]),K([-2,0,6,-1,-2,0]),K([0,0,0,0,0,0])])
 
gp: E = ellinit([Polrev([0,2,0,-4,0,1]),Polrev([0,1,3,-4,-1,1]),Polrev([-1,1,1,0,0,0]),Polrev([-2,0,6,-1,-2,0]),Polrev([0,0,0,0,0,0])], K);
 
magma: E := EllipticCurve([K![0,2,0,-4,0,1],K![0,1,3,-4,-1,1],K![-1,1,1,0,0,0],K![-2,0,6,-1,-2,0],K![0,0,0,0,0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+3a)\) = \((-a^3+3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 13 \) = \(13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^5-5a^4-13a^3+21a^2-2a-11)\) = \((-a^3+3a)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -371293 \) = \(-13^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{103100163311}{371293} a^{5} + \frac{182729681141}{371293} a^{4} + \frac{362887267482}{371293} a^{3} - \frac{683775071524}{371293} a^{2} + \frac{70645965670}{371293} a + \frac{102890932488}{371293} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(3 a^{4} + 2 a^{3} - 9 a^{2} - 2 a + 4 : 6 a^{5} + 2 a^{4} - 20 a^{3} + 2 a^{2} + 10 a - 3 : 1\right)$
Height \(0.00037193455780720593314207492680377202807\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.00037193455780720593314207492680377202807 \)
Period: \( 131140.22532021068684506530196800865446 \)
Tamagawa product: \( 5 \)
Torsion order: \(1\)
Leading coefficient: \( 1.90073 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+3a)\) \(13\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 13.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.