Properties

Label 6.6.592661.1-73.2-b4
Base field 6.6.592661.1
Conductor norm \( 73 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{5}-a^{4}-9a^{3}+4a^{2}+5a-3\right){x}{y}+\left(2a^{5}-a^{4}-9a^{3}+5a^{2}+5a-4\right){y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(-5a^{5}-2a^{4}+26a^{3}+9a^{2}-22a-5\right){x}+2a^{5}-14a^{4}-4a^{3}+56a^{2}-10a-9\)
sage: E = EllipticCurve([K([-3,5,4,-9,-1,2]),K([3,0,-1,0,0,0]),K([-4,5,5,-9,-1,2]),K([-5,-22,9,26,-2,-5]),K([-9,-10,56,-4,-14,2])])
 
gp: E = ellinit([Polrev([-3,5,4,-9,-1,2]),Polrev([3,0,-1,0,0,0]),Polrev([-4,5,5,-9,-1,2]),Polrev([-5,-22,9,26,-2,-5]),Polrev([-9,-10,56,-4,-14,2])], K);
 
magma: E := EllipticCurve([K![-3,5,4,-9,-1,2],K![3,0,-1,0,0,0],K![-4,5,5,-9,-1,2],K![-5,-22,9,26,-2,-5],K![-9,-10,56,-4,-14,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+2a^4+5a^3-8a^2-4a+3)\) = \((-a^5+2a^4+5a^3-8a^2-4a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 73 \) = \(73\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2a^5+20a^4-9a^3-79a^2+49a-46)\) = \((-a^5+2a^4+5a^3-8a^2-4a+3)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 151334226289 \) = \(73^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1750397764286997144}{151334226289} a^{5} + \frac{2384110649186678931}{151334226289} a^{4} + \frac{7888305624092684601}{151334226289} a^{3} - \frac{9728289241621098752}{151334226289} a^{2} - \frac{5474432982410677682}{151334226289} a + \frac{5421863886826175453}{151334226289} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(3 a^{5} + a^{4} - 14 a^{3} - 3 a^{2} + 13 a + 3 : a^{5} - 5 a^{4} - 17 a^{3} + 4 a^{2} + 27 a + 8 : 1\right)$
Height \(0.090860474324345564396764870179007434994\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{5} - 2 a^{4} - 3 a^{3} + 8 a^{2} - 2 a - 2 : -2 a^{5} + 6 a^{4} + 4 a^{3} - 24 a^{2} + 10 a + 6 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.090860474324345564396764870179007434994 \)
Period: \( 22274.091166549739976824916381143308353 \)
Tamagawa product: \( 6 \)
Torsion order: \(6\)
Leading coefficient: \( 2.62889 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5+2a^4+5a^3-8a^2-4a+3)\) \(73\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 73.2-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.