Properties

Label 11.3.505...336.1
Degree $11$
Signature $[3, 4]$
Discriminant $5.058\times 10^{27}$
Root discriminant \(330.02\)
Ramified primes $2,3,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $A_{11}$ (as 11T7)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 110*x^9 - 484*x^8 + 5401*x^7 + 22484*x^6 - 116248*x^5 - 453904*x^4 - 2387968*x^3 - 6994944*x^2 - 7118848*x - 2506752)
 
gp: K = bnfinit(y^11 - 110*y^9 - 484*y^8 + 5401*y^7 + 22484*y^6 - 116248*y^5 - 453904*y^4 - 2387968*y^3 - 6994944*y^2 - 7118848*y - 2506752, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^11 - 110*x^9 - 484*x^8 + 5401*x^7 + 22484*x^6 - 116248*x^5 - 453904*x^4 - 2387968*x^3 - 6994944*x^2 - 7118848*x - 2506752);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 110*x^9 - 484*x^8 + 5401*x^7 + 22484*x^6 - 116248*x^5 - 453904*x^4 - 2387968*x^3 - 6994944*x^2 - 7118848*x - 2506752)
 

\( x^{11} - 110 x^{9} - 484 x^{8} + 5401 x^{7} + 22484 x^{6} - 116248 x^{5} - 453904 x^{4} - 2387968 x^{3} + \cdots - 2506752 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $11$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(5057930951035035239722254336\) \(\medspace = 2^{24}\cdot 3^{8}\cdot 11^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(330.02\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{19/6}3^{7/6}11^{84/55}\approx 1260.067363427052$
Ramified primes:   \(2\), \(3\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{5}-\frac{1}{8}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{16}a^{6}-\frac{1}{16}a^{5}+\frac{1}{16}a^{4}+\frac{3}{16}a^{3}$, $\frac{1}{16}a^{7}+\frac{3}{16}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{64}a^{8}-\frac{1}{32}a^{6}+\frac{5}{64}a^{4}+\frac{1}{8}a^{3}+\frac{1}{8}a^{2}-\frac{1}{4}a$, $\frac{1}{1024}a^{9}-\frac{7}{512}a^{7}+\frac{7}{256}a^{6}-\frac{39}{1024}a^{5}+\frac{21}{256}a^{4}-\frac{23}{128}a^{3}-\frac{25}{64}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{83\!\cdots\!40}a^{10}-\frac{17\!\cdots\!19}{10\!\cdots\!80}a^{9}+\frac{51\!\cdots\!37}{41\!\cdots\!20}a^{8}-\frac{25\!\cdots\!91}{69\!\cdots\!20}a^{7}+\frac{19\!\cdots\!49}{16\!\cdots\!08}a^{6}+\frac{54\!\cdots\!31}{20\!\cdots\!60}a^{5}-\frac{21\!\cdots\!87}{10\!\cdots\!80}a^{4}+\frac{48\!\cdots\!03}{52\!\cdots\!40}a^{3}+\frac{91\!\cdots\!37}{65\!\cdots\!80}a^{2}+\frac{87\!\cdots\!17}{16\!\cdots\!20}a-\frac{23\!\cdots\!87}{68\!\cdots\!30}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{26\!\cdots\!53}{83\!\cdots\!40}a^{10}-\frac{81\!\cdots\!29}{13\!\cdots\!60}a^{9}-\frac{14\!\cdots\!59}{41\!\cdots\!20}a^{8}-\frac{61\!\cdots\!03}{69\!\cdots\!20}a^{7}+\frac{31\!\cdots\!09}{16\!\cdots\!08}a^{6}+\frac{71\!\cdots\!73}{20\!\cdots\!60}a^{5}-\frac{45\!\cdots\!91}{10\!\cdots\!80}a^{4}-\frac{29\!\cdots\!81}{52\!\cdots\!40}a^{3}-\frac{21\!\cdots\!47}{32\!\cdots\!40}a^{2}-\frac{15\!\cdots\!59}{16\!\cdots\!20}a-\frac{13\!\cdots\!63}{34\!\cdots\!65}$, $\frac{55\!\cdots\!47}{13\!\cdots\!40}a^{10}+\frac{48\!\cdots\!97}{17\!\cdots\!80}a^{9}-\frac{32\!\cdots\!01}{69\!\cdots\!20}a^{8}-\frac{18\!\cdots\!71}{34\!\cdots\!60}a^{7}+\frac{34\!\cdots\!15}{27\!\cdots\!68}a^{6}+\frac{10\!\cdots\!77}{34\!\cdots\!60}a^{5}+\frac{10\!\cdots\!71}{17\!\cdots\!80}a^{4}-\frac{67\!\cdots\!99}{87\!\cdots\!40}a^{3}-\frac{25\!\cdots\!91}{10\!\cdots\!80}a^{2}-\frac{60\!\cdots\!01}{27\!\cdots\!20}a-\frac{25\!\cdots\!22}{34\!\cdots\!65}$, $\frac{17\!\cdots\!53}{41\!\cdots\!52}a^{10}+\frac{86\!\cdots\!49}{20\!\cdots\!76}a^{9}-\frac{74\!\cdots\!91}{20\!\cdots\!76}a^{8}-\frac{10\!\cdots\!97}{43\!\cdots\!12}a^{7}-\frac{56\!\cdots\!27}{41\!\cdots\!52}a^{6}+\frac{16\!\cdots\!87}{20\!\cdots\!76}a^{5}+\frac{81\!\cdots\!03}{26\!\cdots\!72}a^{4}+\frac{20\!\cdots\!41}{16\!\cdots\!92}a^{3}+\frac{40\!\cdots\!47}{13\!\cdots\!36}a^{2}+\frac{60\!\cdots\!94}{20\!\cdots\!99}a+\frac{13\!\cdots\!85}{13\!\cdots\!66}$, $\frac{58\!\cdots\!87}{41\!\cdots\!20}a^{10}-\frac{11\!\cdots\!61}{10\!\cdots\!80}a^{9}-\frac{21\!\cdots\!41}{20\!\cdots\!60}a^{8}+\frac{24\!\cdots\!73}{34\!\cdots\!60}a^{7}+\frac{19\!\cdots\!99}{83\!\cdots\!04}a^{6}-\frac{53\!\cdots\!19}{52\!\cdots\!40}a^{5}-\frac{20\!\cdots\!59}{52\!\cdots\!40}a^{4}-\frac{62\!\cdots\!49}{26\!\cdots\!20}a^{3}-\frac{46\!\cdots\!47}{65\!\cdots\!80}a^{2}-\frac{58\!\cdots\!61}{81\!\cdots\!60}a-\frac{17\!\cdots\!93}{68\!\cdots\!30}$, $\frac{43\!\cdots\!13}{41\!\cdots\!20}a^{10}-\frac{21\!\cdots\!09}{10\!\cdots\!80}a^{9}-\frac{23\!\cdots\!99}{20\!\cdots\!60}a^{8}-\frac{99\!\cdots\!33}{34\!\cdots\!60}a^{7}+\frac{52\!\cdots\!65}{83\!\cdots\!04}a^{6}+\frac{11\!\cdots\!97}{10\!\cdots\!95}a^{5}-\frac{75\!\cdots\!61}{52\!\cdots\!40}a^{4}-\frac{49\!\cdots\!11}{26\!\cdots\!20}a^{3}-\frac{13\!\cdots\!43}{65\!\cdots\!80}a^{2}-\frac{25\!\cdots\!89}{81\!\cdots\!60}a-\frac{89\!\cdots\!17}{68\!\cdots\!30}$, $\frac{67\!\cdots\!83}{41\!\cdots\!52}a^{10}-\frac{33\!\cdots\!17}{10\!\cdots\!88}a^{9}-\frac{35\!\cdots\!33}{20\!\cdots\!76}a^{8}-\frac{15\!\cdots\!39}{34\!\cdots\!96}a^{7}+\frac{40\!\cdots\!71}{41\!\cdots\!52}a^{6}+\frac{89\!\cdots\!47}{52\!\cdots\!44}a^{5}-\frac{11\!\cdots\!23}{52\!\cdots\!44}a^{4}-\frac{75\!\cdots\!77}{26\!\cdots\!72}a^{3}-\frac{21\!\cdots\!71}{65\!\cdots\!68}a^{2}-\frac{96\!\cdots\!02}{20\!\cdots\!99}a-\frac{13\!\cdots\!70}{68\!\cdots\!33}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 115991956666 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 115991956666 \cdot 1}{2\cdot\sqrt{5057930951035035239722254336}}\cr\approx \mathstrut & 10.1676570966307 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^11 - 110*x^9 - 484*x^8 + 5401*x^7 + 22484*x^6 - 116248*x^5 - 453904*x^4 - 2387968*x^3 - 6994944*x^2 - 7118848*x - 2506752)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^11 - 110*x^9 - 484*x^8 + 5401*x^7 + 22484*x^6 - 116248*x^5 - 453904*x^4 - 2387968*x^3 - 6994944*x^2 - 7118848*x - 2506752, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^11 - 110*x^9 - 484*x^8 + 5401*x^7 + 22484*x^6 - 116248*x^5 - 453904*x^4 - 2387968*x^3 - 6994944*x^2 - 7118848*x - 2506752);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 110*x^9 - 484*x^8 + 5401*x^7 + 22484*x^6 - 116248*x^5 - 453904*x^4 - 2387968*x^3 - 6994944*x^2 - 7118848*x - 2506752);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$A_{11}$ (as 11T7):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 19958400
The 31 conjugacy class representatives for $A_{11}$
Character table for $A_{11}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ R ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.11.0.1}{11} }$ ${\href{/padicField/29.11.0.1}{11} }$ ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.11.0.1}{11} }$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.4.11.12$x^{4} + 26$$4$$1$$11$$D_{4}$$[2, 3, 4]$
2.4.11.5$x^{4} + 2$$4$$1$$11$$D_{4}$$[2, 3, 4]$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.6.6.3$x^{6} + 18 x^{5} + 120 x^{4} + 386 x^{3} + 723 x^{2} + 732 x + 305$$3$$2$$6$$D_{6}$$[3/2]_{2}^{2}$
\(11\) Copy content Toggle raw display 11.11.16.4$x^{11} + 22 x^{6} + 11$$11$$1$$16$$C_{11}:C_5$$[8/5]_{5}$