Properties

Label 15.15.430...000.1
Degree $15$
Signature $[15, 0]$
Discriminant $4.308\times 10^{26}$
Root discriminant \(59.65\)
Ramified primes $2,5,13$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_5^3:C_{12}$ (as 15T38)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 35*x^13 + 425*x^11 - 76*x^10 - 2350*x^9 + 820*x^8 + 6225*x^7 - 2580*x^6 - 7880*x^5 + 2750*x^4 + 4525*x^3 - 500*x^2 - 1100*x - 200)
 
gp: K = bnfinit(y^15 - 35*y^13 + 425*y^11 - 76*y^10 - 2350*y^9 + 820*y^8 + 6225*y^7 - 2580*y^6 - 7880*y^5 + 2750*y^4 + 4525*y^3 - 500*y^2 - 1100*y - 200, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - 35*x^13 + 425*x^11 - 76*x^10 - 2350*x^9 + 820*x^8 + 6225*x^7 - 2580*x^6 - 7880*x^5 + 2750*x^4 + 4525*x^3 - 500*x^2 - 1100*x - 200);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 35*x^13 + 425*x^11 - 76*x^10 - 2350*x^9 + 820*x^8 + 6225*x^7 - 2580*x^6 - 7880*x^5 + 2750*x^4 + 4525*x^3 - 500*x^2 - 1100*x - 200)
 

\( x^{15} - 35 x^{13} + 425 x^{11} - 76 x^{10} - 2350 x^{9} + 820 x^{8} + 6225 x^{7} - 2580 x^{6} + \cdots - 200 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[15, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(430807787028125000000000000\) \(\medspace = 2^{12}\cdot 5^{17}\cdot 13^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(59.65\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 5^{203/100}13^{2/3}\approx 290.113545079841$
Ramified primes:   \(2\), \(5\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5}a^{9}+\frac{1}{5}a^{8}+\frac{1}{5}a^{7}+\frac{1}{5}a^{6}+\frac{1}{5}a^{5}$, $\frac{1}{5}a^{10}-\frac{1}{5}a^{5}$, $\frac{1}{5}a^{11}-\frac{1}{5}a^{6}$, $\frac{1}{5}a^{12}-\frac{1}{5}a^{7}$, $\frac{1}{10}a^{13}-\frac{1}{10}a^{11}-\frac{1}{10}a^{9}-\frac{1}{5}a^{8}+\frac{2}{5}a^{7}-\frac{1}{10}a^{5}-\frac{1}{2}a$, $\frac{1}{115156273340}a^{14}-\frac{2036013297}{57578136670}a^{13}+\frac{3819253977}{115156273340}a^{12}+\frac{5485357707}{57578136670}a^{11}-\frac{8975645511}{115156273340}a^{10}-\frac{5691941203}{57578136670}a^{9}+\frac{26551994597}{57578136670}a^{8}-\frac{14372765893}{28789068335}a^{7}+\frac{29997959221}{115156273340}a^{6}-\frac{4694555967}{57578136670}a^{5}-\frac{2150380959}{5757813667}a^{4}+\frac{5416477535}{11515627334}a^{3}+\frac{3975439797}{23031254668}a^{2}+\frac{1614369341}{11515627334}a+\frac{1814679710}{5757813667}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{5395040479}{115156273340}a^{14}+\frac{876804649}{11515627334}a^{13}-\frac{172347129181}{115156273340}a^{12}-\frac{138623232591}{57578136670}a^{11}+\frac{1768405584211}{115156273340}a^{10}+\frac{1185803529943}{57578136670}a^{9}-\frac{800910091675}{11515627334}a^{8}-\frac{1947393707046}{28789068335}a^{7}+\frac{16846551806947}{115156273340}a^{6}+\frac{5382505290027}{57578136670}a^{5}-\frac{761349302269}{5757813667}a^{4}-\frac{594570217555}{11515627334}a^{3}+\frac{831920196899}{23031254668}a^{2}+\frac{122326475879}{11515627334}a-\frac{5354674624}{5757813667}$, $\frac{183274617}{28789068335}a^{14}-\frac{390813597}{11515627334}a^{13}-\frac{7729506563}{28789068335}a^{12}+\frac{64023530303}{57578136670}a^{11}+\frac{119821382423}{28789068335}a^{10}-\frac{719306971569}{57578136670}a^{9}-\frac{157020384630}{5757813667}a^{8}+\frac{1838163820043}{28789068335}a^{7}+\frac{2271049201556}{28789068335}a^{6}-\frac{8840081636741}{57578136670}a^{5}-\frac{592113349648}{5757813667}a^{4}+\frac{931450315120}{5757813667}a^{3}+\frac{349802358902}{5757813667}a^{2}-\frac{624159190557}{11515627334}a-\frac{97744763498}{5757813667}$, $\frac{4174756833}{57578136670}a^{14}+\frac{237538223}{5757813667}a^{13}-\frac{141024967813}{57578136670}a^{12}-\frac{38227024432}{28789068335}a^{11}+\frac{1606558601433}{57578136670}a^{10}+\frac{237210797043}{28789068335}a^{9}-\frac{4084457108888}{28789068335}a^{8}-\frac{112751173884}{28789068335}a^{7}+\frac{19096561097583}{57578136670}a^{6}-\frac{1425393931307}{28789068335}a^{5}-\frac{1910454070875}{5757813667}a^{4}+\frac{421770106057}{5757813667}a^{3}+\frac{1243754154329}{11515627334}a^{2}-\frac{71328038498}{5757813667}a-\frac{46614821845}{5757813667}$, $\frac{5927032639}{115156273340}a^{14}+\frac{2108922543}{28789068335}a^{13}-\frac{186781937957}{115156273340}a^{12}-\frac{65014097342}{28789068335}a^{11}+\frac{372688488435}{23031254668}a^{10}+\frac{505050440874}{28789068335}a^{9}-\frac{3972171417111}{57578136670}a^{8}-\frac{1326620012182}{28789068335}a^{7}+\frac{14568569184823}{115156273340}a^{6}+\frac{211951407167}{5757813667}a^{5}-\frac{482819038672}{5757813667}a^{4}+\frac{69695051927}{11515627334}a^{3}+\frac{246293995703}{23031254668}a^{2}-\frac{75825127516}{5757813667}a-\frac{28406626694}{5757813667}$, $\frac{3422375939}{23031254668}a^{14}+\frac{14743759719}{57578136670}a^{13}-\frac{540070898889}{115156273340}a^{12}-\frac{92287776585}{11515627334}a^{11}+\frac{5414719673339}{115156273340}a^{10}+\frac{3888586719357}{57578136670}a^{9}-\frac{11920518947577}{57578136670}a^{8}-\frac{6245192915923}{28789068335}a^{7}+\frac{48740843427659}{115156273340}a^{6}+\frac{3371618424253}{11515627334}a^{5}-\frac{2143922621200}{5757813667}a^{4}-\frac{1921680114625}{11515627334}a^{3}+\frac{2164892389179}{23031254668}a^{2}+\frac{524804056477}{11515627334}a+\frac{26854721403}{5757813667}$, $\frac{600275827}{23031254668}a^{14}+\frac{2829841107}{28789068335}a^{13}-\frac{93755801081}{115156273340}a^{12}-\frac{94560877424}{28789068335}a^{11}+\frac{904468364519}{115156273340}a^{10}+\frac{997685597481}{28789068335}a^{9}-\frac{1951756733467}{57578136670}a^{8}-\frac{927494983853}{5757813667}a^{7}+\frac{1708916013867}{23031254668}a^{6}+\frac{2030754578234}{5757813667}a^{5}-\frac{430627542347}{5757813667}a^{4}-\frac{3905113076213}{11515627334}a^{3}+\frac{275751240947}{23031254668}a^{2}+\frac{599082284666}{5757813667}a+\frac{118328295114}{5757813667}$, $\frac{11250180329}{115156273340}a^{14}+\frac{2273451512}{28789068335}a^{13}-\frac{380752161763}{115156273340}a^{12}-\frac{75181654234}{28789068335}a^{11}+\frac{869171976585}{23031254668}a^{10}+\frac{605920805351}{28789068335}a^{9}-\frac{2225977039103}{11515627334}a^{8}-\frac{1655642190281}{28789068335}a^{7}+\frac{52918497689749}{115156273340}a^{6}+\frac{1537145304232}{28789068335}a^{5}-\frac{2681463119016}{5757813667}a^{4}-\frac{196246923783}{11515627334}a^{3}+\frac{3222196566841}{23031254668}a^{2}+\frac{142001151278}{5757813667}a-\frac{11656398400}{5757813667}$, $\frac{9375057301}{115156273340}a^{14}-\frac{6045424631}{57578136670}a^{13}-\frac{67283067995}{23031254668}a^{12}+\frac{199605865569}{57578136670}a^{11}+\frac{4234613800617}{115156273340}a^{10}-\frac{2542680127371}{57578136670}a^{9}-\frac{11684303682357}{57578136670}a^{8}+\frac{7219119159441}{28789068335}a^{7}+\frac{56922386971981}{115156273340}a^{6}-\frac{35357584473469}{57578136670}a^{5}-\frac{2842838602356}{5757813667}a^{4}+\frac{6796649413149}{11515627334}a^{3}+\frac{3721756900489}{23031254668}a^{2}-\frac{1589780384803}{11515627334}a-\frac{214219468915}{5757813667}$, $\frac{889401151}{115156273340}a^{14}+\frac{1202805163}{57578136670}a^{13}-\frac{29028192021}{115156273340}a^{12}-\frac{41189411003}{57578136670}a^{11}+\frac{306510393851}{115156273340}a^{10}+\frac{88968094403}{11515627334}a^{9}-\frac{145519525393}{11515627334}a^{8}-\frac{1068743530117}{28789068335}a^{7}+\frac{3397295459107}{115156273340}a^{6}+\frac{983877971605}{11515627334}a^{5}-\frac{196674187408}{5757813667}a^{4}-\frac{988718310423}{11515627334}a^{3}+\frac{372644962223}{23031254668}a^{2}+\frac{308791853743}{11515627334}a+\frac{9608406227}{5757813667}$, $\frac{8653016084}{28789068335}a^{14}+\frac{12416121909}{28789068335}a^{13}-\frac{286637686648}{28789068335}a^{12}-\frac{412322537613}{28789068335}a^{11}+\frac{627975130442}{5757813667}a^{10}+\frac{3882837459426}{28789068335}a^{9}-\frac{15377629531939}{28789068335}a^{8}-\frac{15249289113677}{28789068335}a^{7}+\frac{35099850520558}{28789068335}a^{6}+\frac{5760269733287}{5757813667}a^{5}-\frac{6827356178447}{5757813667}a^{4}-\frac{5202830590986}{5757813667}a^{3}+\frac{1804629149099}{5757813667}a^{2}+\frac{1847488060429}{5757813667}a+\frac{317868974359}{5757813667}$, $\frac{11659478847}{23031254668}a^{14}+\frac{3499419512}{5757813667}a^{13}-\frac{1943329197293}{115156273340}a^{12}-\frac{579937670601}{28789068335}a^{11}+\frac{21554975029319}{115156273340}a^{10}+\frac{5253282906269}{28789068335}a^{9}-\frac{53448386307417}{57578136670}a^{8}-\frac{19224499745774}{28789068335}a^{7}+\frac{49236227525511}{23031254668}a^{6}+\frac{33501461045093}{28789068335}a^{5}-\frac{12085998741732}{5757813667}a^{4}-\frac{11582570921849}{11515627334}a^{3}+\frac{13634829683075}{23031254668}a^{2}+\frac{2213106263189}{5757813667}a+\frac{314847593800}{5757813667}$, $\frac{3143750623}{115156273340}a^{14}-\frac{59838121}{57578136670}a^{13}-\frac{105302575101}{115156273340}a^{12}+\frac{1008559065}{11515627334}a^{11}+\frac{1188089394739}{115156273340}a^{10}-\frac{233632479337}{57578136670}a^{9}-\frac{2957689323217}{57578136670}a^{8}+\frac{205266905620}{5757813667}a^{7}+\frac{13261435466699}{115156273340}a^{6}-\frac{1138648193367}{11515627334}a^{5}-\frac{632327429106}{5757813667}a^{4}+\frac{1048232147025}{11515627334}a^{3}+\frac{709389307795}{23031254668}a^{2}-\frac{142277397657}{11515627334}a+\frac{9715278933}{5757813667}$, $\frac{1117066101}{115156273340}a^{14}-\frac{1825120881}{57578136670}a^{13}-\frac{52175486527}{115156273340}a^{12}+\frac{51715795321}{57578136670}a^{11}+\frac{890135113961}{115156273340}a^{10}-\frac{85332769221}{11515627334}a^{9}-\frac{3267939451451}{57578136670}a^{8}+\frac{591495160847}{28789068335}a^{7}+\frac{22174024221309}{115156273340}a^{6}+\frac{78380599793}{11515627334}a^{5}-\frac{1703475954400}{5757813667}a^{4}-\frac{1206361674339}{11515627334}a^{3}+\frac{3610629895701}{23031254668}a^{2}+\frac{1238396753599}{11515627334}a+\frac{102581755149}{5757813667}$, $\frac{130298941}{57578136670}a^{14}-\frac{2672410057}{57578136670}a^{13}-\frac{437546131}{57578136670}a^{12}+\frac{106112333393}{57578136670}a^{11}-\frac{57491953767}{57578136670}a^{10}-\frac{1520214993633}{57578136670}a^{9}+\frac{67754849301}{5757813667}a^{8}+\frac{4682330681137}{28789068335}a^{7}-\frac{544128254361}{11515627334}a^{6}-\frac{5069968937207}{11515627334}a^{5}+\frac{347428745501}{5757813667}a^{4}+\frac{2838576267757}{5757813667}a^{3}+\frac{118961087671}{11515627334}a^{2}-\frac{1951871060065}{11515627334}a-\frac{249273285182}{5757813667}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 633057748.364 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{15}\cdot(2\pi)^{0}\cdot 633057748.364 \cdot 1}{2\cdot\sqrt{430807787028125000000000000}}\cr\approx \mathstrut & 0.499713975657 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^15 - 35*x^13 + 425*x^11 - 76*x^10 - 2350*x^9 + 820*x^8 + 6225*x^7 - 2580*x^6 - 7880*x^5 + 2750*x^4 + 4525*x^3 - 500*x^2 - 1100*x - 200)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^15 - 35*x^13 + 425*x^11 - 76*x^10 - 2350*x^9 + 820*x^8 + 6225*x^7 - 2580*x^6 - 7880*x^5 + 2750*x^4 + 4525*x^3 - 500*x^2 - 1100*x - 200, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^15 - 35*x^13 + 425*x^11 - 76*x^10 - 2350*x^9 + 820*x^8 + 6225*x^7 - 2580*x^6 - 7880*x^5 + 2750*x^4 + 4525*x^3 - 500*x^2 - 1100*x - 200);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 35*x^13 + 425*x^11 - 76*x^10 - 2350*x^9 + 820*x^8 + 6225*x^7 - 2580*x^6 - 7880*x^5 + 2750*x^4 + 4525*x^3 - 500*x^2 - 1100*x - 200);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_5^3:C_{12}$ (as 15T38):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 1500
The 25 conjugacy class representatives for $C_5^3:C_{12}$
Character table for $C_5^3:C_{12}$

Intermediate fields

3.3.169.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 15 siblings: data not computed
Degree 30 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.3.0.1}{3} }$ R ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }$ R ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ $15$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }$ ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{3}$ ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ $15$ ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ ${\href{/padicField/47.4.0.1}{4} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ ${\href{/padicField/53.4.0.1}{4} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ $15$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.0.1$x^{3} + x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.12.12.25$x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$$2$$6$$12$$C_{12}$$[2]^{6}$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.5.9.3$x^{5} + 100 x^{2} + 75 x + 5$$5$$1$$9$$F_5$$[9/4]_{4}$
5.5.5.2$x^{5} + 5 x + 5$$5$$1$$5$$F_5$$[5/4]_{4}$
\(13\) Copy content Toggle raw display 13.3.2.2$x^{3} + 13$$3$$1$$2$$C_3$$[\ ]_{3}$
13.12.8.1$x^{12} + 9 x^{10} + 88 x^{9} + 33 x^{8} + 216 x^{7} - 1299 x^{6} - 78 x^{5} - 1797 x^{4} - 15494 x^{3} + 21687 x^{2} - 41586 x + 201846$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$