Properties

Label 16.0.723...000.21
Degree $16$
Signature $[0, 8]$
Discriminant $7.240\times 10^{33}$
Root discriminant \(130.69\)
Ramified primes $2,3,5,17$
Class number $4737024$ (GRH)
Class group [8, 24, 24672] (GRH)
Galois group $C_8\times C_2$ (as 16T5)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 227*x^14 - 394*x^13 + 23377*x^12 - 34694*x^11 + 1422906*x^10 - 1763952*x^9 + 55896239*x^8 - 55806478*x^7 + 1449580514*x^6 - 1097221888*x^5 + 24220970150*x^4 - 12405931900*x^3 + 238353759596*x^2 - 62226612592*x + 1057852414081)
 
gp: K = bnfinit(y^16 - 2*y^15 + 227*y^14 - 394*y^13 + 23377*y^12 - 34694*y^11 + 1422906*y^10 - 1763952*y^9 + 55896239*y^8 - 55806478*y^7 + 1449580514*y^6 - 1097221888*y^5 + 24220970150*y^4 - 12405931900*y^3 + 238353759596*y^2 - 62226612592*y + 1057852414081, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 + 227*x^14 - 394*x^13 + 23377*x^12 - 34694*x^11 + 1422906*x^10 - 1763952*x^9 + 55896239*x^8 - 55806478*x^7 + 1449580514*x^6 - 1097221888*x^5 + 24220970150*x^4 - 12405931900*x^3 + 238353759596*x^2 - 62226612592*x + 1057852414081);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 2*x^15 + 227*x^14 - 394*x^13 + 23377*x^12 - 34694*x^11 + 1422906*x^10 - 1763952*x^9 + 55896239*x^8 - 55806478*x^7 + 1449580514*x^6 - 1097221888*x^5 + 24220970150*x^4 - 12405931900*x^3 + 238353759596*x^2 - 62226612592*x + 1057852414081)
 

\( x^{16} - 2 x^{15} + 227 x^{14} - 394 x^{13} + 23377 x^{12} - 34694 x^{11} + 1422906 x^{10} + \cdots + 1057852414081 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(7239938343280505619539558400000000\) \(\medspace = 2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 17^{14}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(130.69\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{1/2}5^{1/2}17^{7/8}\approx 130.68731314985814$
Ramified primes:   \(2\), \(3\), \(5\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2040=2^{3}\cdot 3\cdot 5\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{2040}(1,·)$, $\chi_{2040}(389,·)$, $\chi_{2040}(961,·)$, $\chi_{2040}(1801,·)$, $\chi_{2040}(749,·)$, $\chi_{2040}(1681,·)$, $\chi_{2040}(149,·)$, $\chi_{2040}(1441,·)$, $\chi_{2040}(869,·)$, $\chi_{2040}(361,·)$, $\chi_{2040}(1709,·)$, $\chi_{2040}(1589,·)$, $\chi_{2040}(841,·)$, $\chi_{2040}(121,·)$, $\chi_{2040}(509,·)$, $\chi_{2040}(1109,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{101}a^{14}+\frac{33}{101}a^{13}+\frac{15}{101}a^{12}-\frac{35}{101}a^{11}+\frac{31}{101}a^{10}-\frac{5}{101}a^{9}-\frac{13}{101}a^{8}+\frac{30}{101}a^{7}+\frac{46}{101}a^{6}-\frac{49}{101}a^{5}-\frac{26}{101}a^{4}+\frac{14}{101}a^{3}+\frac{40}{101}a^{2}+\frac{47}{101}a-\frac{28}{101}$, $\frac{1}{42\!\cdots\!93}a^{15}+\frac{12\!\cdots\!46}{42\!\cdots\!93}a^{14}-\frac{35\!\cdots\!23}{42\!\cdots\!93}a^{13}+\frac{18\!\cdots\!71}{42\!\cdots\!93}a^{12}-\frac{72\!\cdots\!25}{42\!\cdots\!93}a^{11}-\frac{93\!\cdots\!36}{42\!\cdots\!93}a^{10}-\frac{87\!\cdots\!65}{42\!\cdots\!93}a^{9}-\frac{27\!\cdots\!08}{42\!\cdots\!93}a^{8}-\frac{84\!\cdots\!70}{42\!\cdots\!93}a^{7}+\frac{19\!\cdots\!45}{42\!\cdots\!93}a^{6}-\frac{17\!\cdots\!98}{42\!\cdots\!93}a^{5}+\frac{16\!\cdots\!70}{42\!\cdots\!93}a^{4}-\frac{55\!\cdots\!41}{42\!\cdots\!93}a^{3}-\frac{16\!\cdots\!95}{42\!\cdots\!93}a^{2}+\frac{11\!\cdots\!33}{42\!\cdots\!93}a-\frac{49\!\cdots\!21}{42\!\cdots\!93}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{8}\times C_{24}\times C_{24672}$, which has order $4737024$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{92\!\cdots\!00}{42\!\cdots\!93}a^{15}-\frac{21\!\cdots\!00}{42\!\cdots\!93}a^{14}+\frac{20\!\cdots\!00}{42\!\cdots\!93}a^{13}-\frac{42\!\cdots\!55}{42\!\cdots\!93}a^{12}+\frac{20\!\cdots\!00}{42\!\cdots\!93}a^{11}-\frac{37\!\cdots\!40}{42\!\cdots\!93}a^{10}+\frac{11\!\cdots\!00}{42\!\cdots\!93}a^{9}-\frac{18\!\cdots\!70}{42\!\cdots\!93}a^{8}+\frac{39\!\cdots\!00}{42\!\cdots\!93}a^{7}-\frac{59\!\cdots\!40}{42\!\cdots\!93}a^{6}+\frac{87\!\cdots\!52}{42\!\cdots\!93}a^{5}-\frac{11\!\cdots\!75}{42\!\cdots\!93}a^{4}+\frac{11\!\cdots\!40}{42\!\cdots\!93}a^{3}-\frac{13\!\cdots\!20}{42\!\cdots\!93}a^{2}+\frac{61\!\cdots\!60}{42\!\cdots\!93}a-\frac{66\!\cdots\!10}{42\!\cdots\!93}$, $\frac{30\!\cdots\!00}{42\!\cdots\!93}a^{15}-\frac{14\!\cdots\!00}{42\!\cdots\!93}a^{14}+\frac{60\!\cdots\!00}{42\!\cdots\!93}a^{13}-\frac{28\!\cdots\!00}{42\!\cdots\!93}a^{12}+\frac{53\!\cdots\!00}{42\!\cdots\!93}a^{11}-\frac{24\!\cdots\!03}{42\!\cdots\!93}a^{10}+\frac{27\!\cdots\!00}{42\!\cdots\!93}a^{9}-\frac{12\!\cdots\!20}{42\!\cdots\!93}a^{8}+\frac{87\!\cdots\!90}{42\!\cdots\!93}a^{7}-\frac{39\!\cdots\!05}{42\!\cdots\!93}a^{6}+\frac{17\!\cdots\!70}{42\!\cdots\!93}a^{5}-\frac{76\!\cdots\!00}{42\!\cdots\!93}a^{4}+\frac{20\!\cdots\!60}{42\!\cdots\!93}a^{3}-\frac{85\!\cdots\!75}{42\!\cdots\!93}a^{2}+\frac{10\!\cdots\!70}{42\!\cdots\!93}a-\frac{42\!\cdots\!44}{42\!\cdots\!93}$, $\frac{68\!\cdots\!20}{42\!\cdots\!93}a^{15}+\frac{89\!\cdots\!20}{42\!\cdots\!93}a^{14}+\frac{13\!\cdots\!00}{42\!\cdots\!93}a^{13}+\frac{19\!\cdots\!20}{42\!\cdots\!93}a^{12}+\frac{11\!\cdots\!74}{42\!\cdots\!93}a^{11}+\frac{18\!\cdots\!20}{42\!\cdots\!93}a^{10}+\frac{57\!\cdots\!86}{42\!\cdots\!93}a^{9}+\frac{10\!\cdots\!00}{42\!\cdots\!93}a^{8}+\frac{17\!\cdots\!16}{42\!\cdots\!93}a^{7}+\frac{35\!\cdots\!61}{42\!\cdots\!93}a^{6}+\frac{34\!\cdots\!62}{42\!\cdots\!93}a^{5}+\frac{74\!\cdots\!44}{42\!\cdots\!93}a^{4}+\frac{38\!\cdots\!10}{42\!\cdots\!93}a^{3}+\frac{90\!\cdots\!49}{42\!\cdots\!93}a^{2}+\frac{18\!\cdots\!66}{42\!\cdots\!93}a+\frac{48\!\cdots\!68}{42\!\cdots\!93}$, $\frac{30\!\cdots\!00}{42\!\cdots\!93}a^{15}-\frac{14\!\cdots\!00}{42\!\cdots\!93}a^{14}+\frac{60\!\cdots\!00}{42\!\cdots\!93}a^{13}-\frac{28\!\cdots\!00}{42\!\cdots\!93}a^{12}+\frac{53\!\cdots\!00}{42\!\cdots\!93}a^{11}-\frac{24\!\cdots\!03}{42\!\cdots\!93}a^{10}+\frac{27\!\cdots\!00}{42\!\cdots\!93}a^{9}-\frac{12\!\cdots\!20}{42\!\cdots\!93}a^{8}+\frac{87\!\cdots\!90}{42\!\cdots\!93}a^{7}-\frac{39\!\cdots\!05}{42\!\cdots\!93}a^{6}+\frac{17\!\cdots\!70}{42\!\cdots\!93}a^{5}-\frac{76\!\cdots\!00}{42\!\cdots\!93}a^{4}+\frac{20\!\cdots\!60}{42\!\cdots\!93}a^{3}-\frac{85\!\cdots\!75}{42\!\cdots\!93}a^{2}+\frac{10\!\cdots\!70}{42\!\cdots\!93}a-\frac{42\!\cdots\!37}{42\!\cdots\!93}$, $\frac{38\!\cdots\!42}{42\!\cdots\!93}a^{15}-\frac{63\!\cdots\!40}{42\!\cdots\!93}a^{14}+\frac{74\!\cdots\!50}{42\!\cdots\!93}a^{13}-\frac{10\!\cdots\!95}{42\!\cdots\!93}a^{12}+\frac{65\!\cdots\!60}{42\!\cdots\!93}a^{11}-\frac{76\!\cdots\!80}{42\!\cdots\!93}a^{10}+\frac{33\!\cdots\!98}{42\!\cdots\!93}a^{9}-\frac{32\!\cdots\!09}{42\!\cdots\!93}a^{8}+\frac{10\!\cdots\!68}{42\!\cdots\!93}a^{7}-\frac{80\!\cdots\!28}{42\!\cdots\!93}a^{6}+\frac{21\!\cdots\!92}{42\!\cdots\!93}a^{5}-\frac{12\!\cdots\!55}{42\!\cdots\!93}a^{4}+\frac{25\!\cdots\!20}{42\!\cdots\!93}a^{3}-\frac{10\!\cdots\!61}{42\!\cdots\!93}a^{2}+\frac{12\!\cdots\!02}{42\!\cdots\!93}a-\frac{35\!\cdots\!68}{42\!\cdots\!93}$, $\frac{27\!\cdots\!38}{42\!\cdots\!93}a^{15}-\frac{51\!\cdots\!47}{42\!\cdots\!93}a^{14}+\frac{62\!\cdots\!26}{42\!\cdots\!93}a^{13}-\frac{10\!\cdots\!57}{42\!\cdots\!93}a^{12}+\frac{65\!\cdots\!26}{42\!\cdots\!93}a^{11}-\frac{89\!\cdots\!62}{42\!\cdots\!93}a^{10}+\frac{40\!\cdots\!28}{42\!\cdots\!93}a^{9}-\frac{45\!\cdots\!51}{42\!\cdots\!93}a^{8}+\frac{16\!\cdots\!82}{42\!\cdots\!93}a^{7}-\frac{14\!\cdots\!14}{42\!\cdots\!93}a^{6}+\frac{44\!\cdots\!32}{42\!\cdots\!93}a^{5}-\frac{28\!\cdots\!06}{42\!\cdots\!93}a^{4}+\frac{83\!\cdots\!00}{42\!\cdots\!93}a^{3}-\frac{32\!\cdots\!40}{42\!\cdots\!93}a^{2}+\frac{80\!\cdots\!84}{42\!\cdots\!93}a+\frac{26\!\cdots\!62}{42\!\cdots\!93}$, $\frac{33\!\cdots\!62}{42\!\cdots\!93}a^{15}+\frac{58\!\cdots\!60}{42\!\cdots\!93}a^{14}+\frac{64\!\cdots\!74}{42\!\cdots\!93}a^{13}+\frac{13\!\cdots\!60}{42\!\cdots\!93}a^{12}+\frac{56\!\cdots\!48}{42\!\cdots\!93}a^{11}+\frac{14\!\cdots\!60}{42\!\cdots\!93}a^{10}+\frac{28\!\cdots\!10}{42\!\cdots\!93}a^{9}+\frac{94\!\cdots\!00}{42\!\cdots\!93}a^{8}+\frac{87\!\cdots\!76}{42\!\cdots\!93}a^{7}+\frac{37\!\cdots\!40}{42\!\cdots\!93}a^{6}+\frac{16\!\cdots\!32}{42\!\cdots\!93}a^{5}+\frac{94\!\cdots\!77}{42\!\cdots\!93}a^{4}+\frac{18\!\cdots\!36}{42\!\cdots\!93}a^{3}+\frac{13\!\cdots\!47}{42\!\cdots\!93}a^{2}+\frac{93\!\cdots\!42}{42\!\cdots\!93}a+\frac{87\!\cdots\!27}{42\!\cdots\!93}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3640.012213375973 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 3640.012213375973 \cdot 4737024}{2\cdot\sqrt{7239938343280505619539558400000000}}\cr\approx \mathstrut & 0.246121721035075 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 227*x^14 - 394*x^13 + 23377*x^12 - 34694*x^11 + 1422906*x^10 - 1763952*x^9 + 55896239*x^8 - 55806478*x^7 + 1449580514*x^6 - 1097221888*x^5 + 24220970150*x^4 - 12405931900*x^3 + 238353759596*x^2 - 62226612592*x + 1057852414081)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 2*x^15 + 227*x^14 - 394*x^13 + 23377*x^12 - 34694*x^11 + 1422906*x^10 - 1763952*x^9 + 55896239*x^8 - 55806478*x^7 + 1449580514*x^6 - 1097221888*x^5 + 24220970150*x^4 - 12405931900*x^3 + 238353759596*x^2 - 62226612592*x + 1057852414081, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 2*x^15 + 227*x^14 - 394*x^13 + 23377*x^12 - 34694*x^11 + 1422906*x^10 - 1763952*x^9 + 55896239*x^8 - 55806478*x^7 + 1449580514*x^6 - 1097221888*x^5 + 24220970150*x^4 - 12405931900*x^3 + 238353759596*x^2 - 62226612592*x + 1057852414081);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 2*x^15 + 227*x^14 - 394*x^13 + 23377*x^12 - 34694*x^11 + 1422906*x^10 - 1763952*x^9 + 55896239*x^8 - 55806478*x^7 + 1449580514*x^6 - 1097221888*x^5 + 24220970150*x^4 - 12405931900*x^3 + 238353759596*x^2 - 62226612592*x + 1057852414081);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_8$ (as 16T5):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_8\times C_2$
Character table for $C_8\times C_2$

Intermediate fields

\(\Q(\sqrt{-510}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{17}, \sqrt{-30})\), 4.4.4913.1, 4.0.70747200.2, 8.0.5005166307840000.133, 8.0.85087827233280000.1, \(\Q(\zeta_{17})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.2.0.1}{2} }^{8}$ R ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.12.1$x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
2.8.12.1$x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
\(3\) Copy content Toggle raw display 3.16.8.1$x^{16} + 24 x^{14} + 4 x^{13} + 254 x^{12} + 24 x^{11} + 1508 x^{10} - 172 x^{9} + 5273 x^{8} - 2344 x^{7} + 11640 x^{6} - 7392 x^{5} + 22724 x^{4} - 10768 x^{3} + 19008 x^{2} - 11056 x + 8596$$2$$8$$8$$C_8\times C_2$$[\ ]_{2}^{8}$
\(5\) Copy content Toggle raw display 5.16.8.1$x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$$2$$8$$8$$C_8\times C_2$$[\ ]_{2}^{8}$
\(17\) Copy content Toggle raw display 17.8.7.3$x^{8} + 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} + 17$$8$$1$$7$$C_8$$[\ ]_{8}$