Properties

Label 17.1.922...049.1
Degree $17$
Signature $[1, 8]$
Discriminant $9.227\times 10^{25}$
Root discriminant \(33.68\)
Ramified primes $3,17$
Class number $1$
Class group trivial
Galois group $C_{17}:C_{8}$ (as 17T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^17 - 34*x^14 - 68*x^13 + 17*x^12 + 323*x^11 + 884*x^10 + 1241*x^9 + 1394*x^8 + 1003*x^7 + 935*x^6 + 663*x^5 + 901*x^4 + 578*x^3 + 493*x^2 + 136*x + 57)
 
gp: K = bnfinit(y^17 - 34*y^14 - 68*y^13 + 17*y^12 + 323*y^11 + 884*y^10 + 1241*y^9 + 1394*y^8 + 1003*y^7 + 935*y^6 + 663*y^5 + 901*y^4 + 578*y^3 + 493*y^2 + 136*y + 57, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 - 34*x^14 - 68*x^13 + 17*x^12 + 323*x^11 + 884*x^10 + 1241*x^9 + 1394*x^8 + 1003*x^7 + 935*x^6 + 663*x^5 + 901*x^4 + 578*x^3 + 493*x^2 + 136*x + 57);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - 34*x^14 - 68*x^13 + 17*x^12 + 323*x^11 + 884*x^10 + 1241*x^9 + 1394*x^8 + 1003*x^7 + 935*x^6 + 663*x^5 + 901*x^4 + 578*x^3 + 493*x^2 + 136*x + 57)
 

\( x^{17} - 34 x^{14} - 68 x^{13} + 17 x^{12} + 323 x^{11} + 884 x^{10} + 1241 x^{9} + 1394 x^{8} + \cdots + 57 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $17$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(92267897090016343666010049\) \(\medspace = 3^{8}\cdot 17^{18}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(33.68\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}17^{151/136}\approx 40.245824295791174$
Ramified primes:   \(3\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{26}a^{15}-\frac{1}{26}a^{14}-\frac{1}{26}a^{13}-\frac{5}{26}a^{12}+\frac{2}{13}a^{11}+\frac{5}{13}a^{10}+\frac{3}{13}a^{9}-\frac{1}{2}a^{8}-\frac{3}{13}a^{7}-\frac{2}{13}a^{6}+\frac{5}{26}a^{5}-\frac{11}{26}a^{4}-\frac{6}{13}a^{3}-\frac{1}{26}a^{2}-\frac{4}{13}a-\frac{2}{13}$, $\frac{1}{29\!\cdots\!78}a^{16}+\frac{40\!\cdots\!43}{22\!\cdots\!06}a^{15}+\frac{22\!\cdots\!59}{14\!\cdots\!89}a^{14}-\frac{11\!\cdots\!85}{14\!\cdots\!89}a^{13}+\frac{47\!\cdots\!65}{29\!\cdots\!78}a^{12}+\frac{21\!\cdots\!35}{14\!\cdots\!89}a^{11}-\frac{65\!\cdots\!70}{14\!\cdots\!89}a^{10}+\frac{10\!\cdots\!11}{29\!\cdots\!78}a^{9}+\frac{10\!\cdots\!83}{29\!\cdots\!78}a^{8}+\frac{26\!\cdots\!67}{14\!\cdots\!89}a^{7}-\frac{56\!\cdots\!59}{29\!\cdots\!78}a^{6}-\frac{65\!\cdots\!63}{14\!\cdots\!89}a^{5}-\frac{78\!\cdots\!11}{29\!\cdots\!78}a^{4}+\frac{97\!\cdots\!75}{22\!\cdots\!06}a^{3}-\frac{98\!\cdots\!35}{29\!\cdots\!78}a^{2}+\frac{13\!\cdots\!91}{14\!\cdots\!89}a+\frac{11\!\cdots\!45}{29\!\cdots\!78}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{43\!\cdots\!63}{29\!\cdots\!78}a^{16}-\frac{32\!\cdots\!57}{14\!\cdots\!89}a^{15}-\frac{61\!\cdots\!01}{29\!\cdots\!78}a^{14}-\frac{14\!\cdots\!13}{29\!\cdots\!78}a^{13}-\frac{82\!\cdots\!69}{29\!\cdots\!78}a^{12}+\frac{51\!\cdots\!81}{29\!\cdots\!78}a^{11}+\frac{53\!\cdots\!15}{14\!\cdots\!89}a^{10}+\frac{74\!\cdots\!49}{14\!\cdots\!89}a^{9}+\frac{19\!\cdots\!42}{14\!\cdots\!89}a^{8}+\frac{16\!\cdots\!03}{29\!\cdots\!78}a^{7}-\frac{62\!\cdots\!04}{14\!\cdots\!89}a^{6}-\frac{11\!\cdots\!25}{14\!\cdots\!89}a^{5}-\frac{84\!\cdots\!79}{29\!\cdots\!78}a^{4}+\frac{86\!\cdots\!27}{29\!\cdots\!78}a^{3}-\frac{17\!\cdots\!19}{14\!\cdots\!89}a^{2}+\frac{40\!\cdots\!90}{14\!\cdots\!89}a-\frac{21\!\cdots\!44}{14\!\cdots\!89}$, $\frac{11\!\cdots\!43}{14\!\cdots\!89}a^{16}-\frac{20\!\cdots\!08}{14\!\cdots\!89}a^{15}-\frac{12\!\cdots\!82}{14\!\cdots\!89}a^{14}-\frac{37\!\cdots\!26}{14\!\cdots\!89}a^{13}-\frac{13\!\cdots\!95}{29\!\cdots\!78}a^{12}+\frac{14\!\cdots\!75}{29\!\cdots\!78}a^{11}+\frac{41\!\cdots\!34}{14\!\cdots\!89}a^{10}+\frac{12\!\cdots\!75}{22\!\cdots\!06}a^{9}+\frac{81\!\cdots\!57}{14\!\cdots\!89}a^{8}+\frac{13\!\cdots\!25}{29\!\cdots\!78}a^{7}+\frac{73\!\cdots\!05}{29\!\cdots\!78}a^{6}+\frac{98\!\cdots\!67}{29\!\cdots\!78}a^{5}+\frac{86\!\cdots\!11}{29\!\cdots\!78}a^{4}+\frac{48\!\cdots\!54}{14\!\cdots\!89}a^{3}+\frac{24\!\cdots\!33}{14\!\cdots\!89}a^{2}+\frac{88\!\cdots\!06}{14\!\cdots\!89}a+\frac{40\!\cdots\!77}{22\!\cdots\!06}$, $\frac{12\!\cdots\!95}{29\!\cdots\!78}a^{16}-\frac{66\!\cdots\!64}{14\!\cdots\!89}a^{15}-\frac{21\!\cdots\!38}{14\!\cdots\!89}a^{14}-\frac{15\!\cdots\!52}{11\!\cdots\!53}a^{13}-\frac{19\!\cdots\!68}{14\!\cdots\!89}a^{12}+\frac{62\!\cdots\!84}{14\!\cdots\!89}a^{11}+\frac{16\!\cdots\!18}{14\!\cdots\!89}a^{10}+\frac{26\!\cdots\!33}{14\!\cdots\!89}a^{9}+\frac{18\!\cdots\!67}{14\!\cdots\!89}a^{8}+\frac{14\!\cdots\!96}{11\!\cdots\!53}a^{7}+\frac{83\!\cdots\!53}{14\!\cdots\!89}a^{6}+\frac{22\!\cdots\!15}{14\!\cdots\!89}a^{5}+\frac{71\!\cdots\!51}{14\!\cdots\!89}a^{4}+\frac{16\!\cdots\!96}{14\!\cdots\!89}a^{3}+\frac{17\!\cdots\!86}{14\!\cdots\!89}a^{2}+\frac{88\!\cdots\!33}{29\!\cdots\!78}a+\frac{55\!\cdots\!12}{14\!\cdots\!89}$, $\frac{50\!\cdots\!87}{29\!\cdots\!78}a^{16}+\frac{15\!\cdots\!65}{14\!\cdots\!89}a^{15}-\frac{54\!\cdots\!91}{29\!\cdots\!78}a^{14}-\frac{66\!\cdots\!89}{11\!\cdots\!53}a^{13}-\frac{22\!\cdots\!62}{14\!\cdots\!89}a^{12}+\frac{26\!\cdots\!37}{14\!\cdots\!89}a^{11}+\frac{20\!\cdots\!73}{29\!\cdots\!78}a^{10}+\frac{26\!\cdots\!52}{14\!\cdots\!89}a^{9}+\frac{35\!\cdots\!98}{14\!\cdots\!89}a^{8}+\frac{46\!\cdots\!79}{22\!\cdots\!06}a^{7}+\frac{34\!\cdots\!53}{29\!\cdots\!78}a^{6}+\frac{12\!\cdots\!15}{14\!\cdots\!89}a^{5}+\frac{33\!\cdots\!69}{29\!\cdots\!78}a^{4}+\frac{18\!\cdots\!36}{14\!\cdots\!89}a^{3}+\frac{26\!\cdots\!41}{29\!\cdots\!78}a^{2}+\frac{38\!\cdots\!50}{14\!\cdots\!89}a+\frac{11\!\cdots\!87}{29\!\cdots\!78}$, $\frac{21\!\cdots\!85}{29\!\cdots\!78}a^{16}+\frac{26\!\cdots\!59}{29\!\cdots\!78}a^{15}-\frac{36\!\cdots\!01}{29\!\cdots\!78}a^{14}-\frac{70\!\cdots\!83}{29\!\cdots\!78}a^{13}-\frac{89\!\cdots\!15}{11\!\cdots\!53}a^{12}-\frac{12\!\cdots\!04}{14\!\cdots\!89}a^{11}+\frac{46\!\cdots\!02}{14\!\cdots\!89}a^{10}+\frac{24\!\cdots\!27}{29\!\cdots\!78}a^{9}+\frac{18\!\cdots\!09}{14\!\cdots\!89}a^{8}+\frac{18\!\cdots\!94}{14\!\cdots\!89}a^{7}+\frac{30\!\cdots\!67}{29\!\cdots\!78}a^{6}+\frac{21\!\cdots\!67}{29\!\cdots\!78}a^{5}+\frac{92\!\cdots\!03}{11\!\cdots\!53}a^{4}+\frac{18\!\cdots\!95}{29\!\cdots\!78}a^{3}+\frac{10\!\cdots\!28}{14\!\cdots\!89}a^{2}+\frac{33\!\cdots\!65}{11\!\cdots\!53}a+\frac{31\!\cdots\!03}{14\!\cdots\!89}$, $\frac{32\!\cdots\!89}{29\!\cdots\!78}a^{16}-\frac{85\!\cdots\!13}{29\!\cdots\!78}a^{15}-\frac{13\!\cdots\!34}{11\!\cdots\!53}a^{14}-\frac{53\!\cdots\!03}{14\!\cdots\!89}a^{13}-\frac{96\!\cdots\!22}{14\!\cdots\!89}a^{12}+\frac{11\!\cdots\!11}{14\!\cdots\!89}a^{11}+\frac{56\!\cdots\!45}{14\!\cdots\!89}a^{10}+\frac{11\!\cdots\!35}{14\!\cdots\!89}a^{9}+\frac{12\!\cdots\!55}{14\!\cdots\!89}a^{8}+\frac{10\!\cdots\!38}{14\!\cdots\!89}a^{7}+\frac{61\!\cdots\!82}{14\!\cdots\!89}a^{6}+\frac{68\!\cdots\!03}{14\!\cdots\!89}a^{5}+\frac{66\!\cdots\!66}{14\!\cdots\!89}a^{4}+\frac{67\!\cdots\!15}{14\!\cdots\!89}a^{3}+\frac{44\!\cdots\!96}{14\!\cdots\!89}a^{2}+\frac{31\!\cdots\!35}{29\!\cdots\!78}a+\frac{97\!\cdots\!13}{29\!\cdots\!78}$, $\frac{34\!\cdots\!29}{22\!\cdots\!06}a^{16}-\frac{52\!\cdots\!57}{14\!\cdots\!89}a^{15}+\frac{11\!\cdots\!29}{29\!\cdots\!78}a^{14}-\frac{14\!\cdots\!17}{29\!\cdots\!78}a^{13}+\frac{20\!\cdots\!74}{14\!\cdots\!89}a^{12}+\frac{73\!\cdots\!07}{29\!\cdots\!78}a^{11}+\frac{41\!\cdots\!10}{14\!\cdots\!89}a^{10}+\frac{14\!\cdots\!41}{29\!\cdots\!78}a^{9}-\frac{17\!\cdots\!73}{22\!\cdots\!06}a^{8}-\frac{21\!\cdots\!87}{29\!\cdots\!78}a^{7}-\frac{25\!\cdots\!01}{29\!\cdots\!78}a^{6}+\frac{10\!\cdots\!36}{14\!\cdots\!89}a^{5}-\frac{82\!\cdots\!43}{14\!\cdots\!89}a^{4}-\frac{13\!\cdots\!19}{14\!\cdots\!89}a^{3}-\frac{21\!\cdots\!61}{29\!\cdots\!78}a^{2}-\frac{45\!\cdots\!03}{29\!\cdots\!78}a-\frac{18\!\cdots\!66}{14\!\cdots\!89}$, $\frac{14\!\cdots\!43}{29\!\cdots\!78}a^{16}-\frac{28\!\cdots\!66}{14\!\cdots\!89}a^{15}+\frac{65\!\cdots\!17}{22\!\cdots\!06}a^{14}-\frac{52\!\cdots\!07}{29\!\cdots\!78}a^{13}+\frac{82\!\cdots\!55}{29\!\cdots\!78}a^{12}+\frac{63\!\cdots\!66}{14\!\cdots\!89}a^{11}-\frac{27\!\cdots\!94}{14\!\cdots\!89}a^{10}+\frac{12\!\cdots\!12}{14\!\cdots\!89}a^{9}-\frac{12\!\cdots\!93}{29\!\cdots\!78}a^{8}-\frac{18\!\cdots\!85}{14\!\cdots\!89}a^{7}-\frac{14\!\cdots\!11}{14\!\cdots\!89}a^{6}-\frac{30\!\cdots\!87}{29\!\cdots\!78}a^{5}-\frac{52\!\cdots\!03}{29\!\cdots\!78}a^{4}-\frac{65\!\cdots\!47}{14\!\cdots\!89}a^{3}-\frac{26\!\cdots\!03}{29\!\cdots\!78}a^{2}+\frac{43\!\cdots\!29}{29\!\cdots\!78}a-\frac{94\!\cdots\!19}{29\!\cdots\!78}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4992205.48619 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{8}\cdot 4992205.48619 \cdot 1}{2\cdot\sqrt{92267897090016343666010049}}\cr\approx \mathstrut & 1.26242646052 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^17 - 34*x^14 - 68*x^13 + 17*x^12 + 323*x^11 + 884*x^10 + 1241*x^9 + 1394*x^8 + 1003*x^7 + 935*x^6 + 663*x^5 + 901*x^4 + 578*x^3 + 493*x^2 + 136*x + 57)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^17 - 34*x^14 - 68*x^13 + 17*x^12 + 323*x^11 + 884*x^10 + 1241*x^9 + 1394*x^8 + 1003*x^7 + 935*x^6 + 663*x^5 + 901*x^4 + 578*x^3 + 493*x^2 + 136*x + 57, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^17 - 34*x^14 - 68*x^13 + 17*x^12 + 323*x^11 + 884*x^10 + 1241*x^9 + 1394*x^8 + 1003*x^7 + 935*x^6 + 663*x^5 + 901*x^4 + 578*x^3 + 493*x^2 + 136*x + 57);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - 34*x^14 - 68*x^13 + 17*x^12 + 323*x^11 + 884*x^10 + 1241*x^9 + 1394*x^8 + 1003*x^7 + 935*x^6 + 663*x^5 + 901*x^4 + 578*x^3 + 493*x^2 + 136*x + 57);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{17}:C_8$ (as 17T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 136
The 10 conjugacy class representatives for $C_{17}:C_{8}$
Character table for $C_{17}:C_{8}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{4}{,}\,{\href{/padicField/2.1.0.1}{1} }$ R ${\href{/padicField/5.8.0.1}{8} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.8.0.1}{8} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.8.0.1}{8} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.2.0.1}{2} }^{8}{,}\,{\href{/padicField/13.1.0.1}{1} }$ R ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.8.0.1}{8} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.8.0.1}{8} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.8.0.1}{8} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.8.0.1}{8} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.8.0.1}{8} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.4.0.1}{4} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }$ $17$ ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.8.4.2$x^{8} - 6 x^{6} + 162$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
3.8.4.2$x^{8} - 6 x^{6} + 162$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
\(17\) Copy content Toggle raw display 17.17.18.4$x^{17} + 136 x^{2} + 17$$17$$1$$18$$C_{17}:C_{8}$$[9/8]_{8}$