Properties

Label 17.17.234...609.1
Degree $17$
Signature $[17, 0]$
Discriminant $2.350\times 10^{33}$
Root discriminant \(91.83\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{17}$ (as 17T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^17 - 4*x^16 - 11*x^15 + 53*x^14 + 44*x^13 - 271*x^12 - 81*x^11 + 676*x^10 + 78*x^9 - 866*x^8 - 56*x^7 + 563*x^6 + 36*x^5 - 176*x^4 - 12*x^3 + 23*x^2 + x - 1)
 
gp: K = bnfinit(y^17 - 4*y^16 - 11*y^15 + 53*y^14 + 44*y^13 - 271*y^12 - 81*y^11 + 676*y^10 + 78*y^9 - 866*y^8 - 56*y^7 + 563*y^6 + 36*y^5 - 176*y^4 - 12*y^3 + 23*y^2 + y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 - 4*x^16 - 11*x^15 + 53*x^14 + 44*x^13 - 271*x^12 - 81*x^11 + 676*x^10 + 78*x^9 - 866*x^8 - 56*x^7 + 563*x^6 + 36*x^5 - 176*x^4 - 12*x^3 + 23*x^2 + x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - 4*x^16 - 11*x^15 + 53*x^14 + 44*x^13 - 271*x^12 - 81*x^11 + 676*x^10 + 78*x^9 - 866*x^8 - 56*x^7 + 563*x^6 + 36*x^5 - 176*x^4 - 12*x^3 + 23*x^2 + x - 1)
 

\( x^{17} - 4 x^{16} - 11 x^{15} + 53 x^{14} + 44 x^{13} - 271 x^{12} - 81 x^{11} + 676 x^{10} + 78 x^{9} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $17$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[17, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2349760091653551409013119601402609\) \(\medspace = 19501\cdot 163667513\cdot 736214146077100976893\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(91.83\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $19501^{1/2}163667513^{1/2}736214146077100976893^{1/2}\approx 4.847432404534953e+16$
Ramified primes:   \(19501\), \(163667513\), \(736214146077100976893\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{23497\!\cdots\!02609}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $16$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $a^{16}-4a^{15}-11a^{14}+53a^{13}+44a^{12}-271a^{11}-81a^{10}+676a^{9}+78a^{8}-866a^{7}-56a^{6}+563a^{5}+36a^{4}-176a^{3}-12a^{2}+22a+2$, $a^{16}-4a^{15}-11a^{14}+53a^{13}+44a^{12}-271a^{11}-81a^{10}+676a^{9}+78a^{8}-866a^{7}-56a^{6}+563a^{5}+35a^{4}-174a^{3}-8a^{2}+18a-2$, $a^{16}-4a^{15}-11a^{14}+53a^{13}+44a^{12}-271a^{11}-81a^{10}+676a^{9}+78a^{8}-866a^{7}-56a^{6}+563a^{5}+37a^{4}-177a^{3}-17a^{2}+23a+4$, $5a^{16}-24a^{15}-37a^{14}+299a^{13}-5a^{12}-1408a^{11}+655a^{10}+3134a^{9}-1951a^{8}-3397a^{7}+2186a^{6}+1714a^{5}-969a^{4}-358a^{3}+140a^{2}+22a-5$, $a^{16}-5a^{15}-6a^{14}+59a^{13}-15a^{12}-256a^{11}+175a^{10}+501a^{9}-423a^{8}-443a^{7}+387a^{6}+176a^{5}-140a^{4}-37a^{3}+26a^{2}+a-2$, $7a^{16}-30a^{15}-67a^{14}+384a^{13}+185a^{12}-1872a^{11}+a^{10}+4357a^{9}-679a^{8}-5011a^{7}+867a^{6}+2734a^{5}-335a^{4}-638a^{3}+36a^{2}+45a$, $a^{16}-4a^{15}-11a^{14}+53a^{13}+44a^{12}-271a^{11}-81a^{10}+676a^{9}+78a^{8}-866a^{7}-56a^{6}+562a^{5}+37a^{4}-170a^{3}-14a^{2}+17a+1$, $3a^{16}-14a^{15}-26a^{14}+185a^{13}+36a^{12}-950a^{11}+265a^{10}+2412a^{9}-1071a^{8}-3207a^{7}+1531a^{6}+2203a^{5}-977a^{4}-718a^{3}+270a^{2}+82a-25$, $a^{16}-4a^{15}-11a^{14}+53a^{13}+44a^{12}-271a^{11}-81a^{10}+676a^{9}+78a^{8}-866a^{7}-56a^{6}+563a^{5}+36a^{4}-176a^{3}-13a^{2}+22a+3$, $2a^{15}-9a^{14}-17a^{13}+113a^{12}+24a^{11}-532a^{10}+148a^{9}+1158a^{8}-551a^{7}-1158a^{6}+660a^{5}+458a^{4}-302a^{3}-41a^{2}+39a-3$, $a^{16}-4a^{15}-11a^{14}+53a^{13}+44a^{12}-271a^{11}-81a^{10}+676a^{9}+78a^{8}-866a^{7}-56a^{6}+563a^{5}+36a^{4}-175a^{3}-12a^{2}+18a$, $2a^{16}-17a^{15}+13a^{14}+205a^{13}-363a^{12}-945a^{11}+2039a^{10}+2147a^{9}-4897a^{8}-2630a^{7}+5419a^{6}+1805a^{5}-2553a^{4}-613a^{3}+408a^{2}+51a-19$, $2a^{16}-8a^{15}-19a^{14}+95a^{13}+53a^{12}-401a^{11}-2a^{10}+674a^{9}-230a^{8}-229a^{7}+438a^{6}-396a^{5}-366a^{4}+257a^{3}+115a^{2}-30a-9$, $9a^{16}-25a^{15}-145a^{14}+368a^{13}+983a^{12}-2095a^{11}-3573a^{10}+5788a^{9}+7241a^{8}-8046a^{7}-7852a^{6}+5289a^{5}+4172a^{4}-1340a^{3}-948a^{2}+58a+51$, $14a^{16}-62a^{15}-125a^{14}+785a^{13}+257a^{12}-3770a^{11}+540a^{10}+8584a^{9}-2572a^{8}-9525a^{7}+3062a^{6}+4873a^{5}-1318a^{4}-1006a^{3}+186a^{2}+53a-11$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 384409141351 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{17}\cdot(2\pi)^{0}\cdot 384409141351 \cdot 1}{2\cdot\sqrt{2349760091653551409013119601402609}}\cr\approx \mathstrut & 0.519710960054038 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^17 - 4*x^16 - 11*x^15 + 53*x^14 + 44*x^13 - 271*x^12 - 81*x^11 + 676*x^10 + 78*x^9 - 866*x^8 - 56*x^7 + 563*x^6 + 36*x^5 - 176*x^4 - 12*x^3 + 23*x^2 + x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^17 - 4*x^16 - 11*x^15 + 53*x^14 + 44*x^13 - 271*x^12 - 81*x^11 + 676*x^10 + 78*x^9 - 866*x^8 - 56*x^7 + 563*x^6 + 36*x^5 - 176*x^4 - 12*x^3 + 23*x^2 + x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^17 - 4*x^16 - 11*x^15 + 53*x^14 + 44*x^13 - 271*x^12 - 81*x^11 + 676*x^10 + 78*x^9 - 866*x^8 - 56*x^7 + 563*x^6 + 36*x^5 - 176*x^4 - 12*x^3 + 23*x^2 + x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - 4*x^16 - 11*x^15 + 53*x^14 + 44*x^13 - 271*x^12 - 81*x^11 + 676*x^10 + 78*x^9 - 866*x^8 - 56*x^7 + 563*x^6 + 36*x^5 - 176*x^4 - 12*x^3 + 23*x^2 + x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{17}$ (as 17T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 355687428096000
The 297 conjugacy class representatives for $S_{17}$
Character table for $S_{17}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $17$ ${\href{/padicField/3.13.0.1}{13} }{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ $17$ $17$ $17$ ${\href{/padicField/13.8.0.1}{8} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ ${\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.8.0.1}{8} }$ ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.5.0.1}{5} }^{2}$ $15{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.11.0.1}{11} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{3}$ $15{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.9.0.1}{9} }{,}\,{\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.11.0.1}{11} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(19501\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
\(163667513\) Copy content Toggle raw display $\Q_{163667513}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $12$$1$$12$$0$$C_{12}$$[\ ]^{12}$
\(736\!\cdots\!893\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$