Properties

Label 17.17.544...441.1
Degree $17$
Signature $[17, 0]$
Discriminant $5.447\times 10^{61}$
Root discriminant \(4280.94\)
Ramified primes $17,103$
Class number $17$ (GRH)
Class group [17] (GRH)
Galois group $D_{17}$ (as 17T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^17 - 3502*x^15 - 21012*x^14 + 3586048*x^13 + 27140500*x^12 - 1455974010*x^11 - 13391942168*x^10 + 247158969538*x^9 + 2699830692822*x^8 - 15367054046543*x^7 - 210262575924428*x^6 + 207808365630713*x^5 + 5600534069106679*x^4 + 891648638079425*x^3 - 50160692092741008*x^2 - 11309428987726617*x + 145001801906376687)
 
gp: K = bnfinit(y^17 - 3502*y^15 - 21012*y^14 + 3586048*y^13 + 27140500*y^12 - 1455974010*y^11 - 13391942168*y^10 + 247158969538*y^9 + 2699830692822*y^8 - 15367054046543*y^7 - 210262575924428*y^6 + 207808365630713*y^5 + 5600534069106679*y^4 + 891648638079425*y^3 - 50160692092741008*y^2 - 11309428987726617*y + 145001801906376687, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 - 3502*x^15 - 21012*x^14 + 3586048*x^13 + 27140500*x^12 - 1455974010*x^11 - 13391942168*x^10 + 247158969538*x^9 + 2699830692822*x^8 - 15367054046543*x^7 - 210262575924428*x^6 + 207808365630713*x^5 + 5600534069106679*x^4 + 891648638079425*x^3 - 50160692092741008*x^2 - 11309428987726617*x + 145001801906376687);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - 3502*x^15 - 21012*x^14 + 3586048*x^13 + 27140500*x^12 - 1455974010*x^11 - 13391942168*x^10 + 247158969538*x^9 + 2699830692822*x^8 - 15367054046543*x^7 - 210262575924428*x^6 + 207808365630713*x^5 + 5600534069106679*x^4 + 891648638079425*x^3 - 50160692092741008*x^2 - 11309428987726617*x + 145001801906376687)
 

\( x^{17} - 3502 x^{15} - 21012 x^{14} + 3586048 x^{13} + 27140500 x^{12} - 1455974010 x^{11} + \cdots + 14\!\cdots\!87 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $17$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[17, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(54471546860208560987402602575661525149433755592659973376605441\) \(\medspace = 17^{24}\cdot 103^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(4280.94\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $17^{49/34}103^{16/17}\approx 4652.957318416284$
Ramified primes:   \(17\), \(103\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{45}a^{10}+\frac{1}{45}a^{9}+\frac{1}{15}a^{8}+\frac{1}{9}a^{7}+\frac{1}{9}a^{6}+\frac{1}{45}a^{5}+\frac{11}{45}a^{4}-\frac{2}{9}a^{2}-\frac{1}{3}a+\frac{2}{5}$, $\frac{1}{45}a^{11}+\frac{2}{45}a^{9}+\frac{2}{45}a^{8}-\frac{4}{45}a^{6}+\frac{2}{9}a^{5}-\frac{11}{45}a^{4}-\frac{2}{9}a^{3}-\frac{1}{9}a^{2}-\frac{4}{15}a-\frac{2}{5}$, $\frac{1}{45}a^{12}-\frac{2}{15}a^{8}+\frac{1}{45}a^{7}+\frac{17}{45}a^{5}-\frac{2}{45}a^{4}+\frac{2}{9}a^{3}-\frac{7}{45}a^{2}+\frac{4}{15}a+\frac{1}{5}$, $\frac{1}{225}a^{13}-\frac{1}{225}a^{12}-\frac{2}{225}a^{11}+\frac{4}{45}a^{9}-\frac{3}{25}a^{8}+\frac{14}{225}a^{7}-\frac{4}{45}a^{6}+\frac{37}{75}a^{5}-\frac{26}{225}a^{4}-\frac{4}{75}a^{3}+\frac{29}{225}a^{2}+\frac{22}{75}a+\frac{8}{25}$, $\frac{1}{3375}a^{14}-\frac{7}{3375}a^{13}+\frac{14}{3375}a^{12}+\frac{37}{3375}a^{11}-\frac{2}{675}a^{10}-\frac{352}{3375}a^{9}+\frac{526}{3375}a^{8}-\frac{544}{3375}a^{7}-\frac{469}{3375}a^{6}+\frac{223}{3375}a^{5}+\frac{1169}{3375}a^{4}+\frac{1676}{3375}a^{3}-\frac{39}{125}a^{2}+\frac{94}{375}a-\frac{16}{125}$, $\frac{1}{16875}a^{15}+\frac{2}{16875}a^{14}+\frac{26}{16875}a^{13}+\frac{88}{16875}a^{12}+\frac{98}{16875}a^{11}-\frac{67}{16875}a^{10}+\frac{1333}{16875}a^{9}-\frac{272}{3375}a^{8}+\frac{412}{3375}a^{7}+\frac{1177}{16875}a^{6}-\frac{5749}{16875}a^{5}+\frac{2822}{16875}a^{4}+\frac{877}{5625}a^{3}-\frac{277}{5625}a^{2}-\frac{309}{625}a-\frac{144}{625}$, $\frac{1}{34\!\cdots\!25}a^{16}-\frac{59\!\cdots\!39}{34\!\cdots\!25}a^{15}+\frac{47\!\cdots\!49}{42\!\cdots\!25}a^{14}-\frac{74\!\cdots\!38}{42\!\cdots\!25}a^{13}-\frac{48\!\cdots\!17}{68\!\cdots\!25}a^{12}-\frac{56\!\cdots\!68}{76\!\cdots\!25}a^{11}-\frac{17\!\cdots\!53}{22\!\cdots\!75}a^{10}-\frac{50\!\cdots\!18}{83\!\cdots\!25}a^{9}-\frac{42\!\cdots\!69}{76\!\cdots\!25}a^{8}+\frac{11\!\cdots\!38}{38\!\cdots\!25}a^{7}-\frac{11\!\cdots\!33}{84\!\cdots\!75}a^{6}-\frac{85\!\cdots\!91}{38\!\cdots\!25}a^{5}-\frac{44\!\cdots\!08}{92\!\cdots\!25}a^{4}+\frac{13\!\cdots\!48}{34\!\cdots\!25}a^{3}+\frac{28\!\cdots\!26}{11\!\cdots\!75}a^{2}-\frac{92\!\cdots\!37}{20\!\cdots\!75}a-\frac{56\!\cdots\!96}{12\!\cdots\!75}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{17}$, which has order $17$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $16$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{38\!\cdots\!99}{34\!\cdots\!25}a^{16}-\frac{10\!\cdots\!86}{34\!\cdots\!25}a^{15}-\frac{44\!\cdots\!73}{11\!\cdots\!75}a^{14}-\frac{16\!\cdots\!11}{12\!\cdots\!75}a^{13}+\frac{27\!\cdots\!22}{68\!\cdots\!25}a^{12}+\frac{43\!\cdots\!14}{22\!\cdots\!75}a^{11}-\frac{38\!\cdots\!37}{22\!\cdots\!75}a^{10}-\frac{86\!\cdots\!57}{83\!\cdots\!25}a^{9}+\frac{70\!\cdots\!07}{22\!\cdots\!75}a^{8}+\frac{92\!\cdots\!93}{42\!\cdots\!25}a^{7}-\frac{19\!\cdots\!92}{84\!\cdots\!75}a^{6}-\frac{19\!\cdots\!52}{11\!\cdots\!75}a^{5}+\frac{66\!\cdots\!58}{92\!\cdots\!25}a^{4}+\frac{14\!\cdots\!27}{34\!\cdots\!25}a^{3}-\frac{12\!\cdots\!51}{11\!\cdots\!75}a^{2}-\frac{13\!\cdots\!33}{50\!\cdots\!75}a+\frac{78\!\cdots\!21}{12\!\cdots\!75}$, $\frac{68\!\cdots\!38}{11\!\cdots\!75}a^{16}-\frac{98\!\cdots\!07}{11\!\cdots\!75}a^{15}-\frac{23\!\cdots\!03}{11\!\cdots\!75}a^{14}+\frac{63\!\cdots\!62}{38\!\cdots\!25}a^{13}+\frac{46\!\cdots\!09}{22\!\cdots\!75}a^{12}-\frac{31\!\cdots\!76}{22\!\cdots\!75}a^{11}-\frac{61\!\cdots\!54}{76\!\cdots\!25}a^{10}+\frac{11\!\cdots\!66}{27\!\cdots\!75}a^{9}+\frac{32\!\cdots\!27}{22\!\cdots\!75}a^{8}-\frac{65\!\cdots\!06}{12\!\cdots\!75}a^{7}-\frac{29\!\cdots\!54}{28\!\cdots\!25}a^{6}+\frac{40\!\cdots\!53}{11\!\cdots\!75}a^{5}+\frac{83\!\cdots\!46}{30\!\cdots\!75}a^{4}-\frac{13\!\cdots\!01}{11\!\cdots\!75}a^{3}-\frac{19\!\cdots\!87}{38\!\cdots\!25}a^{2}+\frac{34\!\cdots\!21}{50\!\cdots\!75}a-\frac{30\!\cdots\!73}{42\!\cdots\!25}$, $\frac{30\!\cdots\!94}{34\!\cdots\!25}a^{16}+\frac{53\!\cdots\!34}{34\!\cdots\!25}a^{15}-\frac{35\!\cdots\!88}{11\!\cdots\!75}a^{14}-\frac{27\!\cdots\!94}{11\!\cdots\!75}a^{13}+\frac{21\!\cdots\!92}{68\!\cdots\!25}a^{12}+\frac{67\!\cdots\!29}{22\!\cdots\!75}a^{11}-\frac{10\!\cdots\!76}{84\!\cdots\!25}a^{10}-\frac{11\!\cdots\!67}{83\!\cdots\!25}a^{9}+\frac{44\!\cdots\!67}{22\!\cdots\!75}a^{8}+\frac{31\!\cdots\!91}{11\!\cdots\!75}a^{7}-\frac{73\!\cdots\!02}{84\!\cdots\!75}a^{6}-\frac{23\!\cdots\!37}{11\!\cdots\!75}a^{5}-\frac{19\!\cdots\!27}{92\!\cdots\!25}a^{4}+\frac{16\!\cdots\!87}{34\!\cdots\!25}a^{3}+\frac{12\!\cdots\!69}{11\!\cdots\!75}a^{2}-\frac{10\!\cdots\!24}{50\!\cdots\!75}a-\frac{71\!\cdots\!74}{12\!\cdots\!75}$, $\frac{33\!\cdots\!06}{34\!\cdots\!25}a^{16}-\frac{10\!\cdots\!09}{34\!\cdots\!25}a^{15}-\frac{38\!\cdots\!37}{11\!\cdots\!75}a^{14}-\frac{38\!\cdots\!02}{38\!\cdots\!25}a^{13}+\frac{24\!\cdots\!98}{68\!\cdots\!25}a^{12}+\frac{35\!\cdots\!26}{22\!\cdots\!75}a^{11}-\frac{33\!\cdots\!43}{22\!\cdots\!75}a^{10}-\frac{71\!\cdots\!08}{83\!\cdots\!25}a^{9}+\frac{60\!\cdots\!58}{22\!\cdots\!75}a^{8}+\frac{68\!\cdots\!03}{38\!\cdots\!25}a^{7}-\frac{17\!\cdots\!98}{84\!\cdots\!75}a^{6}-\frac{16\!\cdots\!63}{11\!\cdots\!75}a^{5}+\frac{59\!\cdots\!02}{92\!\cdots\!25}a^{4}+\frac{11\!\cdots\!38}{34\!\cdots\!25}a^{3}-\frac{11\!\cdots\!94}{11\!\cdots\!75}a^{2}-\frac{62\!\cdots\!28}{33\!\cdots\!25}a+\frac{58\!\cdots\!49}{12\!\cdots\!75}$, $\frac{16\!\cdots\!87}{34\!\cdots\!25}a^{16}-\frac{19\!\cdots\!43}{34\!\cdots\!25}a^{15}-\frac{61\!\cdots\!08}{38\!\cdots\!25}a^{14}+\frac{10\!\cdots\!38}{11\!\cdots\!75}a^{13}+\frac{11\!\cdots\!26}{68\!\cdots\!25}a^{12}-\frac{48\!\cdots\!21}{76\!\cdots\!25}a^{11}-\frac{53\!\cdots\!38}{84\!\cdots\!25}a^{10}+\frac{90\!\cdots\!09}{83\!\cdots\!25}a^{9}+\frac{81\!\cdots\!97}{76\!\cdots\!25}a^{8}+\frac{24\!\cdots\!43}{11\!\cdots\!75}a^{7}-\frac{64\!\cdots\!21}{84\!\cdots\!75}a^{6}-\frac{11\!\cdots\!14}{12\!\cdots\!75}a^{5}+\frac{19\!\cdots\!79}{92\!\cdots\!25}a^{4}+\frac{67\!\cdots\!76}{34\!\cdots\!25}a^{3}-\frac{22\!\cdots\!88}{11\!\cdots\!75}a^{2}-\frac{47\!\cdots\!43}{50\!\cdots\!75}a+\frac{73\!\cdots\!23}{12\!\cdots\!75}$, $\frac{39\!\cdots\!56}{34\!\cdots\!25}a^{16}-\frac{84\!\cdots\!09}{34\!\cdots\!25}a^{15}-\frac{46\!\cdots\!87}{11\!\cdots\!75}a^{14}-\frac{17\!\cdots\!31}{11\!\cdots\!75}a^{13}+\frac{28\!\cdots\!63}{68\!\cdots\!25}a^{12}+\frac{48\!\cdots\!81}{22\!\cdots\!75}a^{11}-\frac{14\!\cdots\!94}{84\!\cdots\!25}a^{10}-\frac{89\!\cdots\!33}{83\!\cdots\!25}a^{9}+\frac{66\!\cdots\!08}{22\!\cdots\!75}a^{8}+\frac{23\!\cdots\!34}{11\!\cdots\!75}a^{7}-\frac{18\!\cdots\!73}{84\!\cdots\!75}a^{6}-\frac{16\!\cdots\!38}{11\!\cdots\!75}a^{5}+\frac{69\!\cdots\!27}{92\!\cdots\!25}a^{4}+\frac{11\!\cdots\!88}{34\!\cdots\!25}a^{3}-\frac{15\!\cdots\!94}{11\!\cdots\!75}a^{2}-\frac{31\!\cdots\!88}{16\!\cdots\!25}a+\frac{80\!\cdots\!74}{12\!\cdots\!75}$, $\frac{17\!\cdots\!28}{34\!\cdots\!25}a^{16}-\frac{53\!\cdots\!17}{34\!\cdots\!25}a^{15}-\frac{22\!\cdots\!09}{12\!\cdots\!75}a^{14}-\frac{59\!\cdots\!28}{11\!\cdots\!75}a^{13}+\frac{12\!\cdots\!44}{68\!\cdots\!25}a^{12}+\frac{61\!\cdots\!26}{76\!\cdots\!25}a^{11}-\frac{17\!\cdots\!44}{22\!\cdots\!75}a^{10}-\frac{37\!\cdots\!79}{83\!\cdots\!25}a^{9}+\frac{10\!\cdots\!93}{76\!\cdots\!25}a^{8}+\frac{10\!\cdots\!92}{11\!\cdots\!75}a^{7}-\frac{89\!\cdots\!74}{84\!\cdots\!75}a^{6}-\frac{28\!\cdots\!23}{38\!\cdots\!25}a^{5}+\frac{30\!\cdots\!51}{92\!\cdots\!25}a^{4}+\frac{62\!\cdots\!44}{34\!\cdots\!25}a^{3}-\frac{58\!\cdots\!47}{11\!\cdots\!75}a^{2}-\frac{49\!\cdots\!62}{50\!\cdots\!75}a+\frac{30\!\cdots\!87}{12\!\cdots\!75}$, $\frac{52\!\cdots\!42}{34\!\cdots\!25}a^{16}-\frac{47\!\cdots\!63}{34\!\cdots\!25}a^{15}-\frac{60\!\cdots\!59}{11\!\cdots\!75}a^{14}+\frac{56\!\cdots\!86}{38\!\cdots\!25}a^{13}+\frac{36\!\cdots\!41}{68\!\cdots\!25}a^{12}-\frac{14\!\cdots\!08}{22\!\cdots\!75}a^{11}-\frac{49\!\cdots\!41}{22\!\cdots\!75}a^{10}-\frac{86\!\cdots\!31}{83\!\cdots\!25}a^{9}+\frac{88\!\cdots\!06}{22\!\cdots\!75}a^{8}+\frac{25\!\cdots\!96}{38\!\cdots\!25}a^{7}-\frac{24\!\cdots\!11}{84\!\cdots\!75}a^{6}-\frac{66\!\cdots\!41}{11\!\cdots\!75}a^{5}+\frac{77\!\cdots\!64}{92\!\cdots\!25}a^{4}+\frac{36\!\cdots\!41}{34\!\cdots\!25}a^{3}-\frac{90\!\cdots\!58}{11\!\cdots\!75}a^{2}-\frac{24\!\cdots\!73}{50\!\cdots\!75}a+\frac{30\!\cdots\!43}{12\!\cdots\!75}$, $\frac{88\!\cdots\!39}{62\!\cdots\!75}a^{16}-\frac{99\!\cdots\!61}{62\!\cdots\!75}a^{15}-\frac{33\!\cdots\!96}{69\!\cdots\!75}a^{14}+\frac{16\!\cdots\!77}{69\!\cdots\!75}a^{13}+\frac{59\!\cdots\!48}{12\!\cdots\!75}a^{12}-\frac{24\!\cdots\!02}{15\!\cdots\!75}a^{11}-\frac{12\!\cdots\!37}{66\!\cdots\!41}a^{10}+\frac{34\!\cdots\!03}{15\!\cdots\!75}a^{9}+\frac{44\!\cdots\!54}{13\!\cdots\!75}a^{8}+\frac{11\!\cdots\!07}{69\!\cdots\!75}a^{7}-\frac{39\!\cdots\!47}{16\!\cdots\!75}a^{6}-\frac{24\!\cdots\!01}{76\!\cdots\!75}a^{5}+\frac{10\!\cdots\!23}{16\!\cdots\!75}a^{4}+\frac{40\!\cdots\!82}{62\!\cdots\!75}a^{3}-\frac{12\!\cdots\!81}{20\!\cdots\!25}a^{2}-\frac{14\!\cdots\!23}{46\!\cdots\!25}a+\frac{42\!\cdots\!16}{23\!\cdots\!25}$, $\frac{26\!\cdots\!61}{68\!\cdots\!25}a^{16}-\frac{72\!\cdots\!94}{68\!\cdots\!25}a^{15}-\frac{10\!\cdots\!94}{76\!\cdots\!25}a^{14}-\frac{33\!\cdots\!47}{76\!\cdots\!25}a^{13}+\frac{19\!\cdots\!44}{13\!\cdots\!25}a^{12}+\frac{10\!\cdots\!16}{15\!\cdots\!25}a^{11}-\frac{26\!\cdots\!76}{45\!\cdots\!75}a^{10}-\frac{60\!\cdots\!43}{16\!\cdots\!25}a^{9}+\frac{53\!\cdots\!62}{50\!\cdots\!75}a^{8}+\frac{19\!\cdots\!56}{25\!\cdots\!75}a^{7}-\frac{13\!\cdots\!53}{16\!\cdots\!75}a^{6}-\frac{15\!\cdots\!62}{25\!\cdots\!75}a^{5}+\frac{44\!\cdots\!22}{18\!\cdots\!25}a^{4}+\frac{10\!\cdots\!88}{68\!\cdots\!25}a^{3}-\frac{85\!\cdots\!84}{22\!\cdots\!75}a^{2}-\frac{15\!\cdots\!61}{16\!\cdots\!25}a+\frac{52\!\cdots\!54}{25\!\cdots\!75}$, $\frac{19\!\cdots\!74}{34\!\cdots\!25}a^{16}-\frac{27\!\cdots\!86}{34\!\cdots\!25}a^{15}-\frac{69\!\cdots\!41}{38\!\cdots\!25}a^{14}+\frac{17\!\cdots\!51}{11\!\cdots\!75}a^{13}+\frac{12\!\cdots\!57}{68\!\cdots\!25}a^{12}-\frac{27\!\cdots\!74}{25\!\cdots\!75}a^{11}-\frac{55\!\cdots\!71}{84\!\cdots\!25}a^{10}+\frac{17\!\cdots\!68}{83\!\cdots\!25}a^{9}+\frac{81\!\cdots\!19}{76\!\cdots\!25}a^{8}-\frac{73\!\cdots\!14}{11\!\cdots\!75}a^{7}-\frac{64\!\cdots\!42}{84\!\cdots\!75}a^{6}-\frac{22\!\cdots\!59}{38\!\cdots\!25}a^{5}+\frac{18\!\cdots\!83}{92\!\cdots\!25}a^{4}+\frac{55\!\cdots\!52}{34\!\cdots\!25}a^{3}-\frac{21\!\cdots\!26}{11\!\cdots\!75}a^{2}-\frac{41\!\cdots\!74}{50\!\cdots\!75}a+\frac{70\!\cdots\!46}{12\!\cdots\!75}$, $\frac{10\!\cdots\!11}{34\!\cdots\!25}a^{16}+\frac{51\!\cdots\!71}{34\!\cdots\!25}a^{15}-\frac{13\!\cdots\!08}{12\!\cdots\!75}a^{14}-\frac{13\!\cdots\!36}{11\!\cdots\!75}a^{13}+\frac{70\!\cdots\!93}{68\!\cdots\!25}a^{12}+\frac{10\!\cdots\!97}{76\!\cdots\!25}a^{11}-\frac{86\!\cdots\!73}{22\!\cdots\!75}a^{10}-\frac{49\!\cdots\!98}{83\!\cdots\!25}a^{9}+\frac{39\!\cdots\!49}{84\!\cdots\!25}a^{8}+\frac{11\!\cdots\!29}{11\!\cdots\!75}a^{7}+\frac{38\!\cdots\!12}{84\!\cdots\!75}a^{6}-\frac{23\!\cdots\!26}{38\!\cdots\!25}a^{5}-\frac{22\!\cdots\!13}{92\!\cdots\!25}a^{4}+\frac{18\!\cdots\!28}{34\!\cdots\!25}a^{3}+\frac{32\!\cdots\!36}{11\!\cdots\!75}a^{2}-\frac{57\!\cdots\!38}{50\!\cdots\!75}a-\frac{11\!\cdots\!56}{12\!\cdots\!75}$, $\frac{31\!\cdots\!61}{31\!\cdots\!75}a^{16}-\frac{96\!\cdots\!54}{31\!\cdots\!75}a^{15}-\frac{40\!\cdots\!33}{11\!\cdots\!25}a^{14}-\frac{10\!\cdots\!11}{10\!\cdots\!25}a^{13}+\frac{22\!\cdots\!48}{62\!\cdots\!75}a^{12}+\frac{37\!\cdots\!39}{23\!\cdots\!25}a^{11}-\frac{10\!\cdots\!96}{69\!\cdots\!75}a^{10}-\frac{67\!\cdots\!48}{75\!\cdots\!75}a^{9}+\frac{21\!\cdots\!99}{76\!\cdots\!75}a^{8}+\frac{19\!\cdots\!29}{10\!\cdots\!25}a^{7}-\frac{17\!\cdots\!18}{84\!\cdots\!75}a^{6}-\frac{16\!\cdots\!92}{11\!\cdots\!25}a^{5}+\frac{55\!\cdots\!62}{84\!\cdots\!75}a^{4}+\frac{11\!\cdots\!28}{31\!\cdots\!75}a^{3}-\frac{10\!\cdots\!39}{10\!\cdots\!25}a^{2}-\frac{89\!\cdots\!71}{46\!\cdots\!25}a+\frac{55\!\cdots\!94}{11\!\cdots\!25}$, $\frac{11\!\cdots\!76}{68\!\cdots\!25}a^{16}+\frac{25\!\cdots\!31}{68\!\cdots\!25}a^{15}-\frac{13\!\cdots\!97}{22\!\cdots\!75}a^{14}-\frac{12\!\cdots\!29}{25\!\cdots\!75}a^{13}+\frac{16\!\cdots\!71}{27\!\cdots\!25}a^{12}+\frac{53\!\cdots\!16}{91\!\cdots\!75}a^{11}-\frac{10\!\cdots\!34}{45\!\cdots\!75}a^{10}-\frac{45\!\cdots\!58}{16\!\cdots\!25}a^{9}+\frac{15\!\cdots\!98}{45\!\cdots\!75}a^{8}+\frac{44\!\cdots\!07}{84\!\cdots\!25}a^{7}-\frac{21\!\cdots\!63}{16\!\cdots\!75}a^{6}-\frac{86\!\cdots\!33}{22\!\cdots\!75}a^{5}-\frac{10\!\cdots\!13}{18\!\cdots\!25}a^{4}+\frac{53\!\cdots\!93}{68\!\cdots\!25}a^{3}+\frac{46\!\cdots\!11}{22\!\cdots\!75}a^{2}-\frac{54\!\cdots\!82}{16\!\cdots\!25}a-\frac{24\!\cdots\!51}{25\!\cdots\!75}$, $\frac{92\!\cdots\!09}{34\!\cdots\!25}a^{16}+\frac{17\!\cdots\!99}{34\!\cdots\!25}a^{15}-\frac{10\!\cdots\!18}{11\!\cdots\!75}a^{14}-\frac{28\!\cdots\!28}{38\!\cdots\!25}a^{13}+\frac{65\!\cdots\!82}{68\!\cdots\!25}a^{12}+\frac{20\!\cdots\!34}{22\!\cdots\!75}a^{11}-\frac{85\!\cdots\!07}{22\!\cdots\!75}a^{10}-\frac{35\!\cdots\!37}{83\!\cdots\!25}a^{9}+\frac{13\!\cdots\!62}{22\!\cdots\!75}a^{8}+\frac{31\!\cdots\!67}{38\!\cdots\!25}a^{7}-\frac{20\!\cdots\!22}{84\!\cdots\!75}a^{6}-\frac{67\!\cdots\!07}{11\!\cdots\!75}a^{5}-\frac{61\!\cdots\!22}{92\!\cdots\!25}a^{4}+\frac{42\!\cdots\!82}{34\!\cdots\!25}a^{3}+\frac{31\!\cdots\!84}{11\!\cdots\!75}a^{2}-\frac{26\!\cdots\!21}{50\!\cdots\!75}a-\frac{16\!\cdots\!64}{12\!\cdots\!75}$, $\frac{12\!\cdots\!56}{31\!\cdots\!75}a^{16}-\frac{33\!\cdots\!84}{31\!\cdots\!75}a^{15}-\frac{14\!\cdots\!12}{10\!\cdots\!25}a^{14}-\frac{48\!\cdots\!31}{10\!\cdots\!25}a^{13}+\frac{90\!\cdots\!53}{62\!\cdots\!75}a^{12}+\frac{14\!\cdots\!11}{20\!\cdots\!25}a^{11}-\frac{41\!\cdots\!86}{69\!\cdots\!75}a^{10}-\frac{28\!\cdots\!08}{75\!\cdots\!75}a^{9}+\frac{22\!\cdots\!83}{20\!\cdots\!25}a^{8}+\frac{82\!\cdots\!34}{10\!\cdots\!25}a^{7}-\frac{70\!\cdots\!03}{84\!\cdots\!75}a^{6}-\frac{64\!\cdots\!63}{10\!\cdots\!25}a^{5}+\frac{21\!\cdots\!77}{84\!\cdots\!75}a^{4}+\frac{49\!\cdots\!13}{31\!\cdots\!75}a^{3}-\frac{40\!\cdots\!69}{10\!\cdots\!25}a^{2}-\frac{44\!\cdots\!53}{46\!\cdots\!25}a+\frac{24\!\cdots\!99}{11\!\cdots\!25}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 10720674608800000000000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{17}\cdot(2\pi)^{0}\cdot 10720674608800000000000000 \cdot 17}{2\cdot\sqrt{54471546860208560987402602575661525149433755592659973376605441}}\cr\approx \mathstrut & 1.61832637592874 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^17 - 3502*x^15 - 21012*x^14 + 3586048*x^13 + 27140500*x^12 - 1455974010*x^11 - 13391942168*x^10 + 247158969538*x^9 + 2699830692822*x^8 - 15367054046543*x^7 - 210262575924428*x^6 + 207808365630713*x^5 + 5600534069106679*x^4 + 891648638079425*x^3 - 50160692092741008*x^2 - 11309428987726617*x + 145001801906376687)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^17 - 3502*x^15 - 21012*x^14 + 3586048*x^13 + 27140500*x^12 - 1455974010*x^11 - 13391942168*x^10 + 247158969538*x^9 + 2699830692822*x^8 - 15367054046543*x^7 - 210262575924428*x^6 + 207808365630713*x^5 + 5600534069106679*x^4 + 891648638079425*x^3 - 50160692092741008*x^2 - 11309428987726617*x + 145001801906376687, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^17 - 3502*x^15 - 21012*x^14 + 3586048*x^13 + 27140500*x^12 - 1455974010*x^11 - 13391942168*x^10 + 247158969538*x^9 + 2699830692822*x^8 - 15367054046543*x^7 - 210262575924428*x^6 + 207808365630713*x^5 + 5600534069106679*x^4 + 891648638079425*x^3 - 50160692092741008*x^2 - 11309428987726617*x + 145001801906376687);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - 3502*x^15 - 21012*x^14 + 3586048*x^13 + 27140500*x^12 - 1455974010*x^11 - 13391942168*x^10 + 247158969538*x^9 + 2699830692822*x^8 - 15367054046543*x^7 - 210262575924428*x^6 + 207808365630713*x^5 + 5600534069106679*x^4 + 891648638079425*x^3 - 50160692092741008*x^2 - 11309428987726617*x + 145001801906376687);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{17}$ (as 17T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 34
The 10 conjugacy class representatives for $D_{17}$
Character table for $D_{17}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $17$ ${\href{/padicField/3.2.0.1}{2} }^{8}{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.2.0.1}{2} }^{8}{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.2.0.1}{2} }^{8}{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.2.0.1}{2} }^{8}{,}\,{\href{/padicField/11.1.0.1}{1} }$ $17$ R $17$ ${\href{/padicField/23.2.0.1}{2} }^{8}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.2.0.1}{2} }^{8}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.2.0.1}{2} }^{8}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.2.0.1}{2} }^{8}{,}\,{\href{/padicField/41.1.0.1}{1} }$ $17$ $17$ $17$ $17$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(17\) Copy content Toggle raw display 17.17.24.2$x^{17} + 255 x^{8} + 17$$17$$1$$24$$D_{17}$$[3/2]_{2}$
\(103\) Copy content Toggle raw display 103.17.16.10$x^{17} + 309$$17$$1$$16$$C_{17}$$[\ ]_{17}$