Properties

Label 19.1.336...139.1
Degree $19$
Signature $[1, 9]$
Discriminant $-3.360\times 10^{34}$
Root discriminant \(65.64\)
Ramified prime $19$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{19}$ (as 19T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^19 - 38*x^17 + 703*x^15 - 228*x^14 - 7239*x^13 + 6384*x^12 + 39159*x^11 - 64068*x^10 - 78147*x^9 + 263112*x^8 - 144818*x^7 - 236892*x^6 + 532855*x^5 - 695400*x^4 + 696844*x^3 - 445968*x^2 + 229824*x - 110592)
 
gp: K = bnfinit(y^19 - 38*y^17 + 703*y^15 - 228*y^14 - 7239*y^13 + 6384*y^12 + 39159*y^11 - 64068*y^10 - 78147*y^9 + 263112*y^8 - 144818*y^7 - 236892*y^6 + 532855*y^5 - 695400*y^4 + 696844*y^3 - 445968*y^2 + 229824*y - 110592, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^19 - 38*x^17 + 703*x^15 - 228*x^14 - 7239*x^13 + 6384*x^12 + 39159*x^11 - 64068*x^10 - 78147*x^9 + 263112*x^8 - 144818*x^7 - 236892*x^6 + 532855*x^5 - 695400*x^4 + 696844*x^3 - 445968*x^2 + 229824*x - 110592);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^19 - 38*x^17 + 703*x^15 - 228*x^14 - 7239*x^13 + 6384*x^12 + 39159*x^11 - 64068*x^10 - 78147*x^9 + 263112*x^8 - 144818*x^7 - 236892*x^6 + 532855*x^5 - 695400*x^4 + 696844*x^3 - 445968*x^2 + 229824*x - 110592)
 

\( x^{19} - 38 x^{17} + 703 x^{15} - 228 x^{14} - 7239 x^{13} + 6384 x^{12} + 39159 x^{11} - 64068 x^{10} + \cdots - 110592 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $19$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-33600614943460448322716069311260139\) \(\medspace = -\,19^{27}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(65.64\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $19^{55/38}\approx 70.9296113719033$
Ramified primes:   \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-19}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{6}a^{7}-\frac{1}{6}a^{5}-\frac{1}{3}a^{3}-\frac{1}{2}a^{2}-\frac{1}{6}a$, $\frac{1}{12}a^{8}+\frac{1}{6}a^{6}-\frac{1}{6}a^{4}-\frac{1}{2}a^{3}-\frac{1}{12}a^{2}-\frac{1}{2}a$, $\frac{1}{12}a^{9}+\frac{1}{4}a^{3}-\frac{1}{3}a$, $\frac{1}{24}a^{10}-\frac{1}{24}a^{9}-\frac{1}{24}a^{8}-\frac{1}{12}a^{7}+\frac{1}{6}a^{6}-\frac{1}{6}a^{5}-\frac{1}{24}a^{4}+\frac{1}{24}a^{3}+\frac{3}{8}a^{2}+\frac{1}{4}a$, $\frac{1}{144}a^{11}-\frac{1}{48}a^{10}-\frac{1}{144}a^{9}+\frac{1}{18}a^{7}-\frac{5}{144}a^{5}+\frac{1}{48}a^{4}+\frac{61}{144}a^{3}+\frac{1}{3}a^{2}+\frac{17}{36}a+\frac{1}{3}$, $\frac{1}{144}a^{12}+\frac{1}{72}a^{10}-\frac{1}{48}a^{9}-\frac{1}{36}a^{8}-\frac{29}{144}a^{6}+\frac{1}{12}a^{5}-\frac{7}{72}a^{4}+\frac{7}{16}a^{3}-\frac{5}{18}a^{2}+\frac{5}{12}a$, $\frac{1}{288}a^{13}-\frac{1}{288}a^{11}-\frac{7}{288}a^{9}+\frac{1}{48}a^{8}+\frac{7}{288}a^{7}-\frac{1}{24}a^{6}+\frac{49}{288}a^{5}-\frac{1}{24}a^{4}+\frac{71}{288}a^{3}-\frac{11}{48}a^{2}+\frac{5}{12}a$, $\frac{1}{288}a^{14}-\frac{1}{288}a^{12}+\frac{5}{288}a^{10}-\frac{1}{48}a^{9}-\frac{5}{288}a^{8}+\frac{1}{24}a^{7}-\frac{47}{288}a^{6}+\frac{1}{8}a^{5}+\frac{59}{288}a^{4}-\frac{1}{48}a^{3}-\frac{5}{24}a^{2}+\frac{1}{12}a$, $\frac{1}{288}a^{15}-\frac{1}{48}a^{10}+\frac{1}{72}a^{9}+\frac{1}{48}a^{8}-\frac{1}{4}a^{6}-\frac{1}{18}a^{5}+\frac{5}{48}a^{4}+\frac{91}{288}a^{3}-\frac{5}{48}a^{2}-\frac{4}{9}a+\frac{1}{3}$, $\frac{1}{1728}a^{16}+\frac{1}{1728}a^{15}+\frac{1}{1728}a^{13}-\frac{1}{432}a^{12}-\frac{1}{576}a^{11}-\frac{5}{864}a^{10}+\frac{47}{1728}a^{9}-\frac{1}{54}a^{8}-\frac{1}{192}a^{7}-\frac{1}{54}a^{6}+\frac{331}{1728}a^{5}-\frac{1}{64}a^{4}-\frac{85}{216}a^{3}-\frac{145}{432}a^{2}-\frac{13}{36}a-\frac{1}{3}$, $\frac{1}{44928}a^{17}-\frac{7}{44928}a^{16}+\frac{1}{864}a^{15}-\frac{53}{44928}a^{14}+\frac{5}{3744}a^{13}-\frac{1}{3456}a^{12}+\frac{61}{22464}a^{11}-\frac{515}{44928}a^{10}+\frac{25}{936}a^{9}+\frac{1837}{44928}a^{8}+\frac{23}{5616}a^{7}-\frac{10219}{44928}a^{6}-\frac{227}{3456}a^{5}-\frac{2071}{22464}a^{4}-\frac{7}{936}a^{3}+\frac{851}{2808}a^{2}-\frac{7}{36}a+\frac{3}{13}$, $\frac{1}{43\!\cdots\!56}a^{18}+\frac{37\!\cdots\!95}{35\!\cdots\!88}a^{17}-\frac{81\!\cdots\!73}{43\!\cdots\!56}a^{16}-\frac{80\!\cdots\!53}{53\!\cdots\!76}a^{15}+\frac{40\!\cdots\!65}{33\!\cdots\!12}a^{14}+\frac{11\!\cdots\!09}{14\!\cdots\!52}a^{13}-\frac{13\!\cdots\!69}{47\!\cdots\!84}a^{12}-\frac{27\!\cdots\!17}{47\!\cdots\!84}a^{11}-\frac{73\!\cdots\!81}{47\!\cdots\!84}a^{10}+\frac{10\!\cdots\!89}{47\!\cdots\!84}a^{9}-\frac{26\!\cdots\!55}{14\!\cdots\!52}a^{8}+\frac{13\!\cdots\!93}{47\!\cdots\!84}a^{7}-\frac{24\!\cdots\!09}{10\!\cdots\!64}a^{6}-\frac{22\!\cdots\!57}{14\!\cdots\!52}a^{5}-\frac{21\!\cdots\!79}{21\!\cdots\!28}a^{4}+\frac{13\!\cdots\!35}{99\!\cdots\!08}a^{3}+\frac{28\!\cdots\!09}{13\!\cdots\!08}a^{2}-\frac{86\!\cdots\!33}{44\!\cdots\!36}a+\frac{17\!\cdots\!05}{37\!\cdots\!03}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{12\!\cdots\!17}{43\!\cdots\!56}a^{18}+\frac{34\!\cdots\!61}{14\!\cdots\!52}a^{17}-\frac{23\!\cdots\!41}{21\!\cdots\!28}a^{16}-\frac{14\!\cdots\!27}{14\!\cdots\!52}a^{15}+\frac{33\!\cdots\!23}{16\!\cdots\!56}a^{14}+\frac{61\!\cdots\!79}{47\!\cdots\!84}a^{13}-\frac{76\!\cdots\!47}{35\!\cdots\!88}a^{12}-\frac{44\!\cdots\!09}{14\!\cdots\!52}a^{11}+\frac{10\!\cdots\!01}{79\!\cdots\!64}a^{10}-\frac{75\!\cdots\!33}{14\!\cdots\!52}a^{9}-\frac{28\!\cdots\!31}{79\!\cdots\!64}a^{8}+\frac{54\!\cdots\!79}{14\!\cdots\!52}a^{7}+\frac{79\!\cdots\!39}{43\!\cdots\!56}a^{6}-\frac{72\!\cdots\!79}{13\!\cdots\!44}a^{5}+\frac{45\!\cdots\!99}{53\!\cdots\!32}a^{4}-\frac{22\!\cdots\!77}{22\!\cdots\!18}a^{3}+\frac{21\!\cdots\!05}{33\!\cdots\!27}a^{2}-\frac{16\!\cdots\!35}{44\!\cdots\!36}a+\frac{72\!\cdots\!89}{37\!\cdots\!03}$, $\frac{71\!\cdots\!71}{43\!\cdots\!56}a^{18}-\frac{73\!\cdots\!93}{14\!\cdots\!52}a^{17}-\frac{10\!\cdots\!07}{21\!\cdots\!28}a^{16}+\frac{21\!\cdots\!87}{14\!\cdots\!52}a^{15}+\frac{16\!\cdots\!99}{21\!\cdots\!28}a^{14}-\frac{12\!\cdots\!79}{47\!\cdots\!84}a^{13}-\frac{40\!\cdots\!89}{89\!\cdots\!72}a^{12}+\frac{11\!\cdots\!63}{47\!\cdots\!84}a^{11}-\frac{49\!\cdots\!63}{71\!\cdots\!76}a^{10}-\frac{13\!\cdots\!71}{14\!\cdots\!52}a^{9}+\frac{11\!\cdots\!21}{71\!\cdots\!76}a^{8}-\frac{37\!\cdots\!29}{47\!\cdots\!84}a^{7}-\frac{13\!\cdots\!31}{43\!\cdots\!56}a^{6}+\frac{52\!\cdots\!03}{89\!\cdots\!72}a^{5}-\frac{77\!\cdots\!73}{10\!\cdots\!64}a^{4}+\frac{22\!\cdots\!33}{35\!\cdots\!88}a^{3}-\frac{20\!\cdots\!75}{53\!\cdots\!32}a^{2}+\frac{19\!\cdots\!96}{11\!\cdots\!09}a-\frac{19\!\cdots\!83}{37\!\cdots\!03}$, $\frac{71\!\cdots\!65}{14\!\cdots\!52}a^{18}+\frac{59\!\cdots\!51}{23\!\cdots\!92}a^{17}-\frac{28\!\cdots\!97}{14\!\cdots\!52}a^{16}-\frac{52\!\cdots\!17}{47\!\cdots\!84}a^{15}+\frac{52\!\cdots\!99}{14\!\cdots\!52}a^{14}+\frac{19\!\cdots\!29}{15\!\cdots\!28}a^{13}-\frac{62\!\cdots\!23}{15\!\cdots\!28}a^{12}+\frac{21\!\cdots\!51}{47\!\cdots\!84}a^{11}+\frac{37\!\cdots\!41}{15\!\cdots\!28}a^{10}-\frac{70\!\cdots\!59}{47\!\cdots\!84}a^{9}-\frac{32\!\cdots\!49}{47\!\cdots\!84}a^{8}+\frac{39\!\cdots\!65}{47\!\cdots\!84}a^{7}+\frac{21\!\cdots\!51}{71\!\cdots\!76}a^{6}-\frac{17\!\cdots\!03}{15\!\cdots\!28}a^{5}+\frac{29\!\cdots\!55}{17\!\cdots\!44}a^{4}-\frac{24\!\cdots\!01}{11\!\cdots\!96}a^{3}+\frac{15\!\cdots\!11}{11\!\cdots\!09}a^{2}-\frac{10\!\cdots\!19}{14\!\cdots\!12}a+\frac{17\!\cdots\!81}{41\!\cdots\!67}$, $\frac{17\!\cdots\!37}{43\!\cdots\!56}a^{18}-\frac{11\!\cdots\!69}{14\!\cdots\!52}a^{17}-\frac{42\!\cdots\!69}{21\!\cdots\!28}a^{16}+\frac{26\!\cdots\!95}{14\!\cdots\!52}a^{15}+\frac{45\!\cdots\!65}{10\!\cdots\!64}a^{14}-\frac{26\!\cdots\!49}{14\!\cdots\!52}a^{13}-\frac{32\!\cdots\!69}{71\!\cdots\!76}a^{12}+\frac{31\!\cdots\!81}{14\!\cdots\!52}a^{11}+\frac{88\!\cdots\!95}{35\!\cdots\!88}a^{10}-\frac{33\!\cdots\!31}{15\!\cdots\!28}a^{9}-\frac{76\!\cdots\!45}{13\!\cdots\!88}a^{8}+\frac{12\!\cdots\!93}{14\!\cdots\!52}a^{7}-\frac{96\!\cdots\!63}{43\!\cdots\!56}a^{6}-\frac{74\!\cdots\!67}{17\!\cdots\!44}a^{5}+\frac{33\!\cdots\!09}{21\!\cdots\!28}a^{4}-\frac{51\!\cdots\!61}{13\!\cdots\!44}a^{3}+\frac{11\!\cdots\!51}{26\!\cdots\!16}a^{2}-\frac{52\!\cdots\!55}{22\!\cdots\!18}a+\frac{71\!\cdots\!13}{37\!\cdots\!03}$, $\frac{13\!\cdots\!23}{16\!\cdots\!56}a^{18}-\frac{21\!\cdots\!79}{15\!\cdots\!28}a^{17}-\frac{15\!\cdots\!87}{43\!\cdots\!56}a^{16}+\frac{24\!\cdots\!21}{61\!\cdots\!28}a^{15}+\frac{31\!\cdots\!43}{43\!\cdots\!56}a^{14}-\frac{17\!\cdots\!37}{23\!\cdots\!92}a^{13}-\frac{34\!\cdots\!49}{40\!\cdots\!52}a^{12}+\frac{82\!\cdots\!45}{89\!\cdots\!72}a^{11}+\frac{72\!\cdots\!79}{14\!\cdots\!52}a^{10}-\frac{51\!\cdots\!03}{71\!\cdots\!76}a^{9}-\frac{18\!\cdots\!25}{14\!\cdots\!52}a^{8}+\frac{20\!\cdots\!81}{71\!\cdots\!76}a^{7}-\frac{73\!\cdots\!65}{43\!\cdots\!56}a^{6}-\frac{40\!\cdots\!65}{11\!\cdots\!04}a^{5}+\frac{98\!\cdots\!65}{21\!\cdots\!28}a^{4}-\frac{94\!\cdots\!59}{17\!\cdots\!44}a^{3}+\frac{63\!\cdots\!31}{13\!\cdots\!08}a^{2}-\frac{48\!\cdots\!13}{34\!\cdots\!72}a+\frac{58\!\cdots\!61}{37\!\cdots\!03}$, $\frac{57\!\cdots\!63}{10\!\cdots\!64}a^{18}-\frac{12\!\cdots\!97}{71\!\cdots\!76}a^{17}-\frac{16\!\cdots\!19}{67\!\cdots\!54}a^{16}+\frac{42\!\cdots\!03}{71\!\cdots\!76}a^{15}+\frac{90\!\cdots\!33}{16\!\cdots\!56}a^{14}-\frac{86\!\cdots\!79}{79\!\cdots\!64}a^{13}-\frac{47\!\cdots\!53}{71\!\cdots\!76}a^{12}+\frac{29\!\cdots\!25}{23\!\cdots\!92}a^{11}+\frac{30\!\cdots\!47}{71\!\cdots\!76}a^{10}-\frac{58\!\cdots\!49}{71\!\cdots\!76}a^{9}-\frac{86\!\cdots\!59}{71\!\cdots\!76}a^{8}+\frac{67\!\cdots\!89}{23\!\cdots\!92}a^{7}+\frac{33\!\cdots\!33}{21\!\cdots\!28}a^{6}-\frac{95\!\cdots\!79}{35\!\cdots\!88}a^{5}+\frac{77\!\cdots\!87}{21\!\cdots\!28}a^{4}-\frac{20\!\cdots\!21}{35\!\cdots\!88}a^{3}+\frac{54\!\cdots\!75}{13\!\cdots\!08}a^{2}-\frac{42\!\cdots\!37}{22\!\cdots\!18}a+\frac{56\!\cdots\!09}{37\!\cdots\!03}$, $\frac{24\!\cdots\!19}{43\!\cdots\!56}a^{18}-\frac{24\!\cdots\!41}{14\!\cdots\!52}a^{17}-\frac{39\!\cdots\!21}{21\!\cdots\!28}a^{16}+\frac{85\!\cdots\!15}{14\!\cdots\!52}a^{15}+\frac{62\!\cdots\!99}{21\!\cdots\!28}a^{14}-\frac{15\!\cdots\!57}{14\!\cdots\!52}a^{13}-\frac{21\!\cdots\!32}{11\!\cdots\!09}a^{12}+\frac{54\!\cdots\!63}{47\!\cdots\!84}a^{11}-\frac{20\!\cdots\!59}{71\!\cdots\!76}a^{10}-\frac{72\!\cdots\!47}{14\!\cdots\!52}a^{9}+\frac{19\!\cdots\!19}{23\!\cdots\!92}a^{8}+\frac{42\!\cdots\!19}{53\!\cdots\!76}a^{7}-\frac{79\!\cdots\!59}{43\!\cdots\!56}a^{6}+\frac{36\!\cdots\!05}{11\!\cdots\!96}a^{5}-\frac{46\!\cdots\!71}{13\!\cdots\!08}a^{4}+\frac{11\!\cdots\!11}{35\!\cdots\!88}a^{3}-\frac{10\!\cdots\!23}{53\!\cdots\!32}a^{2}+\frac{10\!\cdots\!25}{11\!\cdots\!09}a-\frac{15\!\cdots\!13}{37\!\cdots\!03}$, $\frac{41\!\cdots\!97}{23\!\cdots\!92}a^{18}-\frac{99\!\cdots\!93}{14\!\cdots\!52}a^{17}-\frac{74\!\cdots\!11}{14\!\cdots\!52}a^{16}+\frac{17\!\cdots\!83}{79\!\cdots\!64}a^{15}+\frac{87\!\cdots\!83}{11\!\cdots\!04}a^{14}-\frac{27\!\cdots\!79}{71\!\cdots\!76}a^{13}-\frac{20\!\cdots\!75}{47\!\cdots\!84}a^{12}+\frac{12\!\cdots\!29}{35\!\cdots\!88}a^{11}-\frac{23\!\cdots\!79}{14\!\cdots\!52}a^{10}-\frac{94\!\cdots\!91}{71\!\cdots\!76}a^{9}+\frac{10\!\cdots\!63}{47\!\cdots\!84}a^{8}-\frac{25\!\cdots\!07}{71\!\cdots\!76}a^{7}-\frac{63\!\cdots\!09}{14\!\cdots\!52}a^{6}+\frac{38\!\cdots\!03}{47\!\cdots\!84}a^{5}-\frac{75\!\cdots\!75}{71\!\cdots\!76}a^{4}+\frac{36\!\cdots\!41}{35\!\cdots\!88}a^{3}-\frac{37\!\cdots\!15}{59\!\cdots\!48}a^{2}+\frac{25\!\cdots\!71}{74\!\cdots\!06}a-\frac{21\!\cdots\!77}{12\!\cdots\!01}$, $\frac{78\!\cdots\!83}{21\!\cdots\!28}a^{18}+\frac{17\!\cdots\!47}{15\!\cdots\!28}a^{17}-\frac{51\!\cdots\!55}{43\!\cdots\!56}a^{16}-\frac{33\!\cdots\!79}{89\!\cdots\!72}a^{15}+\frac{62\!\cdots\!05}{33\!\cdots\!12}a^{14}+\frac{95\!\cdots\!61}{17\!\cdots\!44}a^{13}-\frac{25\!\cdots\!73}{14\!\cdots\!52}a^{12}-\frac{25\!\cdots\!55}{71\!\cdots\!76}a^{11}+\frac{50\!\cdots\!31}{47\!\cdots\!84}a^{10}+\frac{34\!\cdots\!49}{35\!\cdots\!88}a^{9}-\frac{55\!\cdots\!67}{14\!\cdots\!52}a^{8}+\frac{13\!\cdots\!07}{35\!\cdots\!88}a^{7}+\frac{28\!\cdots\!69}{43\!\cdots\!56}a^{6}-\frac{78\!\cdots\!05}{14\!\cdots\!52}a^{5}-\frac{55\!\cdots\!05}{10\!\cdots\!64}a^{4}+\frac{12\!\cdots\!81}{89\!\cdots\!72}a^{3}-\frac{12\!\cdots\!85}{53\!\cdots\!32}a^{2}+\frac{69\!\cdots\!57}{22\!\cdots\!18}a-\frac{38\!\cdots\!39}{37\!\cdots\!03}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 215015238772 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{9}\cdot 215015238772 \cdot 1}{2\cdot\sqrt{33600614943460448322716069311260139}}\cr\approx \mathstrut & 17.9025313582229 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^19 - 38*x^17 + 703*x^15 - 228*x^14 - 7239*x^13 + 6384*x^12 + 39159*x^11 - 64068*x^10 - 78147*x^9 + 263112*x^8 - 144818*x^7 - 236892*x^6 + 532855*x^5 - 695400*x^4 + 696844*x^3 - 445968*x^2 + 229824*x - 110592)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^19 - 38*x^17 + 703*x^15 - 228*x^14 - 7239*x^13 + 6384*x^12 + 39159*x^11 - 64068*x^10 - 78147*x^9 + 263112*x^8 - 144818*x^7 - 236892*x^6 + 532855*x^5 - 695400*x^4 + 696844*x^3 - 445968*x^2 + 229824*x - 110592, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^19 - 38*x^17 + 703*x^15 - 228*x^14 - 7239*x^13 + 6384*x^12 + 39159*x^11 - 64068*x^10 - 78147*x^9 + 263112*x^8 - 144818*x^7 - 236892*x^6 + 532855*x^5 - 695400*x^4 + 696844*x^3 - 445968*x^2 + 229824*x - 110592);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^19 - 38*x^17 + 703*x^15 - 228*x^14 - 7239*x^13 + 6384*x^12 + 39159*x^11 - 64068*x^10 - 78147*x^9 + 263112*x^8 - 144818*x^7 - 236892*x^6 + 532855*x^5 - 695400*x^4 + 696844*x^3 - 445968*x^2 + 229824*x - 110592);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{19}$ (as 19T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 38
The 11 conjugacy class representatives for $D_{19}$
Character table for $D_{19}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{9}{,}\,{\href{/padicField/2.1.0.1}{1} }$ ${\href{/padicField/3.2.0.1}{2} }^{9}{,}\,{\href{/padicField/3.1.0.1}{1} }$ $19$ $19$ $19$ ${\href{/padicField/13.2.0.1}{2} }^{9}{,}\,{\href{/padicField/13.1.0.1}{1} }$ $19$ R $19$ ${\href{/padicField/29.2.0.1}{2} }^{9}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.2.0.1}{2} }^{9}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.2.0.1}{2} }^{9}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.2.0.1}{2} }^{9}{,}\,{\href{/padicField/41.1.0.1}{1} }$ $19$ $19$ ${\href{/padicField/53.2.0.1}{2} }^{9}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.2.0.1}{2} }^{9}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(19\) Copy content Toggle raw display 19.19.27.10$x^{19} + 323 x^{9} + 19$$19$$1$$27$$D_{19}$$[3/2]_{2}$