Properties

Label 19.1.714...419.1
Degree $19$
Signature $[1, 9]$
Discriminant $-7.142\times 10^{26}$
Root discriminant \(25.90\)
Ramified prime $19$
Class number $1$
Class group trivial
Galois group $C_{19}:C_{6}$ (as 19T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^19 + 19*x^15 - 19*x^14 - 19*x^13 + 171*x^12 + 19*x^11 - 266*x^10 + 19*x^9 + 475*x^8 + 741*x^7 + 437*x^6 + 38*x^5 - 38*x^4 - 19*x^3 + 1)
 
gp: K = bnfinit(y^19 + 19*y^15 - 19*y^14 - 19*y^13 + 171*y^12 + 19*y^11 - 266*y^10 + 19*y^9 + 475*y^8 + 741*y^7 + 437*y^6 + 38*y^5 - 38*y^4 - 19*y^3 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^19 + 19*x^15 - 19*x^14 - 19*x^13 + 171*x^12 + 19*x^11 - 266*x^10 + 19*x^9 + 475*x^8 + 741*x^7 + 437*x^6 + 38*x^5 - 38*x^4 - 19*x^3 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^19 + 19*x^15 - 19*x^14 - 19*x^13 + 171*x^12 + 19*x^11 - 266*x^10 + 19*x^9 + 475*x^8 + 741*x^7 + 437*x^6 + 38*x^5 - 38*x^4 - 19*x^3 + 1)
 

\( x^{19} + 19 x^{15} - 19 x^{14} - 19 x^{13} + 171 x^{12} + 19 x^{11} - 266 x^{10} + 19 x^{9} + 475 x^{8} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $19$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-714209495693373205673756419\) \(\medspace = -\,19^{21}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(25.90\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $19^{131/114}\approx 29.474396900751216$
Ramified primes:   \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-19}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{10}a^{16}+\frac{1}{5}a^{15}-\frac{1}{10}a^{14}+\frac{1}{10}a^{13}+\frac{1}{5}a^{12}-\frac{3}{10}a^{11}-\frac{1}{5}a^{10}-\frac{1}{5}a^{9}-\frac{2}{5}a^{8}+\frac{3}{10}a^{6}-\frac{1}{10}a^{5}+\frac{2}{5}a^{4}-\frac{1}{10}a^{3}+\frac{3}{10}a^{2}-\frac{1}{2}a+\frac{3}{10}$, $\frac{1}{370}a^{17}+\frac{6}{185}a^{16}-\frac{171}{370}a^{15}+\frac{51}{370}a^{14}+\frac{16}{185}a^{13}-\frac{123}{370}a^{12}-\frac{71}{185}a^{11}+\frac{69}{185}a^{10}-\frac{52}{185}a^{9}-\frac{14}{37}a^{8}+\frac{93}{370}a^{7}-\frac{41}{370}a^{6}+\frac{92}{185}a^{5}-\frac{91}{370}a^{4}-\frac{147}{370}a^{3}+\frac{15}{74}a^{2}-\frac{137}{370}a+\frac{15}{37}$, $\frac{1}{26\!\cdots\!10}a^{18}-\frac{68\!\cdots\!09}{26\!\cdots\!10}a^{17}+\frac{62\!\cdots\!46}{13\!\cdots\!55}a^{16}+\frac{64\!\cdots\!21}{13\!\cdots\!55}a^{15}-\frac{12\!\cdots\!87}{13\!\cdots\!55}a^{14}-\frac{90\!\cdots\!88}{26\!\cdots\!51}a^{13}-\frac{66\!\cdots\!79}{26\!\cdots\!10}a^{12}-\frac{39\!\cdots\!47}{53\!\cdots\!02}a^{11}-\frac{13\!\cdots\!66}{13\!\cdots\!55}a^{10}+\frac{24\!\cdots\!07}{13\!\cdots\!55}a^{9}-\frac{46\!\cdots\!77}{26\!\cdots\!10}a^{8}-\frac{41\!\cdots\!12}{13\!\cdots\!55}a^{7}-\frac{12\!\cdots\!36}{26\!\cdots\!51}a^{6}+\frac{60\!\cdots\!66}{26\!\cdots\!51}a^{5}-\frac{37\!\cdots\!98}{13\!\cdots\!55}a^{4}+\frac{19\!\cdots\!37}{26\!\cdots\!10}a^{3}+\frac{48\!\cdots\!13}{26\!\cdots\!10}a^{2}-\frac{52\!\cdots\!04}{13\!\cdots\!55}a+\frac{12\!\cdots\!59}{53\!\cdots\!02}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $\frac{28\!\cdots\!81}{26\!\cdots\!10}a^{18}+\frac{32\!\cdots\!67}{26\!\cdots\!51}a^{17}-\frac{58\!\cdots\!89}{26\!\cdots\!10}a^{16}+\frac{19\!\cdots\!35}{53\!\cdots\!02}a^{15}+\frac{26\!\cdots\!42}{13\!\cdots\!55}a^{14}+\frac{86\!\cdots\!59}{26\!\cdots\!10}a^{13}-\frac{63\!\cdots\!22}{13\!\cdots\!55}a^{12}+\frac{22\!\cdots\!97}{13\!\cdots\!55}a^{11}+\frac{29\!\cdots\!39}{13\!\cdots\!55}a^{10}-\frac{39\!\cdots\!27}{13\!\cdots\!55}a^{9}-\frac{66\!\cdots\!21}{26\!\cdots\!10}a^{8}+\frac{14\!\cdots\!03}{26\!\cdots\!10}a^{7}+\frac{17\!\cdots\!77}{13\!\cdots\!55}a^{6}+\frac{70\!\cdots\!17}{53\!\cdots\!02}a^{5}+\frac{14\!\cdots\!39}{26\!\cdots\!10}a^{4}+\frac{21\!\cdots\!83}{26\!\cdots\!10}a^{3}-\frac{12\!\cdots\!39}{26\!\cdots\!10}a^{2}-\frac{24\!\cdots\!28}{13\!\cdots\!55}a-\frac{59\!\cdots\!36}{13\!\cdots\!55}$, $\frac{10\!\cdots\!57}{26\!\cdots\!10}a^{18}-\frac{22\!\cdots\!84}{13\!\cdots\!55}a^{17}+\frac{47\!\cdots\!59}{53\!\cdots\!02}a^{16}-\frac{98\!\cdots\!19}{26\!\cdots\!10}a^{15}+\frac{97\!\cdots\!58}{13\!\cdots\!55}a^{14}-\frac{28\!\cdots\!69}{26\!\cdots\!10}a^{13}-\frac{31\!\cdots\!13}{13\!\cdots\!55}a^{12}+\frac{88\!\cdots\!81}{13\!\cdots\!55}a^{11}-\frac{30\!\cdots\!33}{13\!\cdots\!55}a^{10}-\frac{11\!\cdots\!77}{13\!\cdots\!55}a^{9}+\frac{12\!\cdots\!57}{26\!\cdots\!10}a^{8}+\frac{41\!\cdots\!37}{26\!\cdots\!10}a^{7}+\frac{28\!\cdots\!14}{13\!\cdots\!55}a^{6}+\frac{21\!\cdots\!39}{26\!\cdots\!10}a^{5}-\frac{39\!\cdots\!93}{26\!\cdots\!10}a^{4}-\frac{22\!\cdots\!77}{26\!\cdots\!10}a^{3}-\frac{23\!\cdots\!91}{26\!\cdots\!10}a^{2}+\frac{43\!\cdots\!47}{13\!\cdots\!55}a+\frac{42\!\cdots\!54}{13\!\cdots\!55}$, $\frac{58\!\cdots\!27}{13\!\cdots\!55}a^{18}+\frac{29\!\cdots\!57}{53\!\cdots\!02}a^{17}-\frac{83\!\cdots\!63}{26\!\cdots\!10}a^{16}-\frac{17\!\cdots\!89}{26\!\cdots\!10}a^{15}+\frac{11\!\cdots\!44}{13\!\cdots\!55}a^{14}+\frac{57\!\cdots\!19}{26\!\cdots\!10}a^{13}-\frac{13\!\cdots\!59}{53\!\cdots\!02}a^{12}+\frac{18\!\cdots\!97}{26\!\cdots\!10}a^{11}+\frac{14\!\cdots\!98}{13\!\cdots\!55}a^{10}-\frac{21\!\cdots\!16}{13\!\cdots\!55}a^{9}-\frac{20\!\cdots\!63}{13\!\cdots\!55}a^{8}+\frac{78\!\cdots\!07}{26\!\cdots\!10}a^{7}+\frac{16\!\cdots\!74}{26\!\cdots\!51}a^{6}+\frac{12\!\cdots\!07}{26\!\cdots\!10}a^{5}-\frac{40\!\cdots\!37}{26\!\cdots\!10}a^{4}-\frac{25\!\cdots\!93}{13\!\cdots\!55}a^{3}-\frac{11\!\cdots\!61}{13\!\cdots\!55}a^{2}-\frac{12\!\cdots\!47}{13\!\cdots\!55}a+\frac{13\!\cdots\!21}{26\!\cdots\!10}$, $\frac{37\!\cdots\!29}{26\!\cdots\!10}a^{18}+\frac{18\!\cdots\!19}{13\!\cdots\!55}a^{17}-\frac{27\!\cdots\!41}{26\!\cdots\!10}a^{16}+\frac{31\!\cdots\!25}{53\!\cdots\!02}a^{15}+\frac{71\!\cdots\!10}{26\!\cdots\!51}a^{14}+\frac{41\!\cdots\!51}{26\!\cdots\!10}a^{13}-\frac{98\!\cdots\!71}{13\!\cdots\!55}a^{12}+\frac{32\!\cdots\!79}{13\!\cdots\!55}a^{11}+\frac{36\!\cdots\!29}{13\!\cdots\!55}a^{10}-\frac{70\!\cdots\!53}{13\!\cdots\!55}a^{9}-\frac{14\!\cdots\!93}{53\!\cdots\!02}a^{8}+\frac{25\!\cdots\!51}{26\!\cdots\!10}a^{7}+\frac{41\!\cdots\!59}{26\!\cdots\!51}a^{6}+\frac{33\!\cdots\!03}{26\!\cdots\!10}a^{5}+\frac{13\!\cdots\!67}{71\!\cdots\!30}a^{4}-\frac{24\!\cdots\!03}{26\!\cdots\!10}a^{3}+\frac{52\!\cdots\!51}{26\!\cdots\!10}a^{2}-\frac{67\!\cdots\!15}{26\!\cdots\!51}a+\frac{49\!\cdots\!82}{13\!\cdots\!55}$, $\frac{45\!\cdots\!89}{26\!\cdots\!10}a^{18}-\frac{20\!\cdots\!25}{26\!\cdots\!51}a^{17}-\frac{68\!\cdots\!77}{26\!\cdots\!10}a^{16}+\frac{67\!\cdots\!13}{26\!\cdots\!10}a^{15}+\frac{42\!\cdots\!96}{13\!\cdots\!55}a^{14}-\frac{24\!\cdots\!13}{53\!\cdots\!02}a^{13}-\frac{89\!\cdots\!49}{13\!\cdots\!55}a^{12}+\frac{14\!\cdots\!71}{35\!\cdots\!15}a^{11}-\frac{15\!\cdots\!98}{13\!\cdots\!55}a^{10}-\frac{12\!\cdots\!57}{13\!\cdots\!55}a^{9}+\frac{33\!\cdots\!97}{53\!\cdots\!02}a^{8}+\frac{36\!\cdots\!57}{26\!\cdots\!10}a^{7}+\frac{33\!\cdots\!74}{13\!\cdots\!55}a^{6}-\frac{20\!\cdots\!09}{26\!\cdots\!10}a^{5}-\frac{31\!\cdots\!53}{26\!\cdots\!10}a^{4}+\frac{87\!\cdots\!93}{26\!\cdots\!10}a^{3}+\frac{16\!\cdots\!91}{26\!\cdots\!10}a^{2}+\frac{23\!\cdots\!13}{13\!\cdots\!55}a+\frac{88\!\cdots\!72}{13\!\cdots\!55}$, $\frac{45\!\cdots\!28}{26\!\cdots\!51}a^{18}-\frac{17\!\cdots\!41}{13\!\cdots\!55}a^{17}+\frac{19\!\cdots\!59}{26\!\cdots\!10}a^{16}-\frac{53\!\cdots\!71}{13\!\cdots\!55}a^{15}+\frac{17\!\cdots\!35}{53\!\cdots\!02}a^{14}-\frac{15\!\cdots\!11}{26\!\cdots\!10}a^{13}+\frac{93\!\cdots\!21}{13\!\cdots\!55}a^{12}+\frac{15\!\cdots\!55}{53\!\cdots\!02}a^{11}-\frac{25\!\cdots\!66}{13\!\cdots\!55}a^{10}-\frac{47\!\cdots\!69}{13\!\cdots\!55}a^{9}+\frac{44\!\cdots\!54}{13\!\cdots\!55}a^{8}+\frac{86\!\cdots\!87}{13\!\cdots\!55}a^{7}+\frac{18\!\cdots\!01}{26\!\cdots\!10}a^{6}+\frac{15\!\cdots\!09}{26\!\cdots\!10}a^{5}-\frac{79\!\cdots\!33}{13\!\cdots\!55}a^{4}+\frac{73\!\cdots\!01}{26\!\cdots\!10}a^{3}+\frac{12\!\cdots\!79}{26\!\cdots\!10}a^{2}-\frac{10\!\cdots\!21}{26\!\cdots\!10}a+\frac{95\!\cdots\!79}{26\!\cdots\!10}$, $\frac{12\!\cdots\!98}{13\!\cdots\!55}a^{18}+\frac{83\!\cdots\!63}{53\!\cdots\!02}a^{17}+\frac{17\!\cdots\!81}{53\!\cdots\!02}a^{16}+\frac{22\!\cdots\!13}{26\!\cdots\!10}a^{15}+\frac{46\!\cdots\!58}{26\!\cdots\!51}a^{14}-\frac{38\!\cdots\!87}{26\!\cdots\!10}a^{13}-\frac{54\!\cdots\!31}{26\!\cdots\!10}a^{12}+\frac{41\!\cdots\!27}{26\!\cdots\!10}a^{11}+\frac{10\!\cdots\!39}{26\!\cdots\!51}a^{10}-\frac{31\!\cdots\!16}{13\!\cdots\!55}a^{9}-\frac{12\!\cdots\!61}{13\!\cdots\!55}a^{8}+\frac{10\!\cdots\!63}{26\!\cdots\!10}a^{7}+\frac{10\!\cdots\!28}{13\!\cdots\!55}a^{6}+\frac{16\!\cdots\!41}{26\!\cdots\!10}a^{5}+\frac{38\!\cdots\!07}{53\!\cdots\!02}a^{4}-\frac{13\!\cdots\!13}{13\!\cdots\!55}a^{3}-\frac{10\!\cdots\!13}{35\!\cdots\!15}a^{2}+\frac{10\!\cdots\!87}{13\!\cdots\!55}a+\frac{32\!\cdots\!35}{53\!\cdots\!02}$, $\frac{55\!\cdots\!02}{13\!\cdots\!55}a^{18}-\frac{16\!\cdots\!13}{26\!\cdots\!10}a^{17}-\frac{29\!\cdots\!33}{26\!\cdots\!10}a^{16}-\frac{73\!\cdots\!29}{26\!\cdots\!10}a^{15}+\frac{10\!\cdots\!67}{13\!\cdots\!55}a^{14}-\frac{24\!\cdots\!51}{26\!\cdots\!10}a^{13}-\frac{23\!\cdots\!99}{26\!\cdots\!10}a^{12}+\frac{36\!\cdots\!05}{53\!\cdots\!02}a^{11}+\frac{15\!\cdots\!25}{26\!\cdots\!51}a^{10}-\frac{17\!\cdots\!51}{13\!\cdots\!55}a^{9}-\frac{63\!\cdots\!51}{26\!\cdots\!51}a^{8}+\frac{61\!\cdots\!43}{26\!\cdots\!10}a^{7}+\frac{46\!\cdots\!28}{13\!\cdots\!55}a^{6}+\frac{16\!\cdots\!69}{26\!\cdots\!10}a^{5}-\frac{11\!\cdots\!51}{53\!\cdots\!02}a^{4}-\frac{29\!\cdots\!83}{13\!\cdots\!55}a^{3}-\frac{13\!\cdots\!42}{13\!\cdots\!55}a^{2}-\frac{37\!\cdots\!79}{13\!\cdots\!55}a-\frac{81\!\cdots\!91}{26\!\cdots\!10}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1437945.22979 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{9}\cdot 1437945.22979 \cdot 1}{2\cdot\sqrt{714209495693373205673756419}}\cr\approx \mathstrut & 0.821198882384 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^19 + 19*x^15 - 19*x^14 - 19*x^13 + 171*x^12 + 19*x^11 - 266*x^10 + 19*x^9 + 475*x^8 + 741*x^7 + 437*x^6 + 38*x^5 - 38*x^4 - 19*x^3 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^19 + 19*x^15 - 19*x^14 - 19*x^13 + 171*x^12 + 19*x^11 - 266*x^10 + 19*x^9 + 475*x^8 + 741*x^7 + 437*x^6 + 38*x^5 - 38*x^4 - 19*x^3 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^19 + 19*x^15 - 19*x^14 - 19*x^13 + 171*x^12 + 19*x^11 - 266*x^10 + 19*x^9 + 475*x^8 + 741*x^7 + 437*x^6 + 38*x^5 - 38*x^4 - 19*x^3 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^19 + 19*x^15 - 19*x^14 - 19*x^13 + 171*x^12 + 19*x^11 - 266*x^10 + 19*x^9 + 475*x^8 + 741*x^7 + 437*x^6 + 38*x^5 - 38*x^4 - 19*x^3 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{19}:C_6$ (as 19T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 114
The 9 conjugacy class representatives for $C_{19}:C_{6}$
Character table for $C_{19}:C_{6}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{3}{,}\,{\href{/padicField/2.1.0.1}{1} }$ ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.3.0.1}{3} }^{6}{,}\,{\href{/padicField/5.1.0.1}{1} }$ $19$ $19$ ${\href{/padicField/13.6.0.1}{6} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.3.0.1}{3} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }$ R ${\href{/padicField/23.3.0.1}{3} }^{6}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.6.0.1}{6} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.2.0.1}{2} }^{9}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.2.0.1}{2} }^{9}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.6.0.1}{6} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.3.0.1}{3} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.3.0.1}{3} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.6.0.1}{6} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(19\) Copy content Toggle raw display 19.19.21.11$x^{19} + 247 x^{3} + 19$$19$$1$$21$$C_{19}:C_{6}$$[7/6]_{6}$