Properties

Label 20.0.115...824.3
Degree $20$
Signature $[0, 10]$
Discriminant $1.154\times 10^{35}$
Root discriminant \(56.64\)
Ramified primes $2,401$
Class number $5046$ (GRH)
Class group [29, 174] (GRH)
Galois group $D_{10}$ (as 20T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 - 16*x^18 + 12*x^17 + 222*x^16 + 378*x^15 + 1750*x^14 + 4112*x^13 + 13433*x^12 + 23190*x^11 + 70881*x^10 + 89262*x^9 + 287947*x^8 + 230252*x^7 + 856214*x^6 + 418974*x^5 + 1783158*x^4 + 462756*x^3 + 2333308*x^2 + 204212*x + 1497569)
 
gp: K = bnfinit(y^20 - 4*y^19 - 16*y^18 + 12*y^17 + 222*y^16 + 378*y^15 + 1750*y^14 + 4112*y^13 + 13433*y^12 + 23190*y^11 + 70881*y^10 + 89262*y^9 + 287947*y^8 + 230252*y^7 + 856214*y^6 + 418974*y^5 + 1783158*y^4 + 462756*y^3 + 2333308*y^2 + 204212*y + 1497569, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 4*x^19 - 16*x^18 + 12*x^17 + 222*x^16 + 378*x^15 + 1750*x^14 + 4112*x^13 + 13433*x^12 + 23190*x^11 + 70881*x^10 + 89262*x^9 + 287947*x^8 + 230252*x^7 + 856214*x^6 + 418974*x^5 + 1783158*x^4 + 462756*x^3 + 2333308*x^2 + 204212*x + 1497569);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 4*x^19 - 16*x^18 + 12*x^17 + 222*x^16 + 378*x^15 + 1750*x^14 + 4112*x^13 + 13433*x^12 + 23190*x^11 + 70881*x^10 + 89262*x^9 + 287947*x^8 + 230252*x^7 + 856214*x^6 + 418974*x^5 + 1783158*x^4 + 462756*x^3 + 2333308*x^2 + 204212*x + 1497569)
 

\( x^{20} - 4 x^{19} - 16 x^{18} + 12 x^{17} + 222 x^{16} + 378 x^{15} + 1750 x^{14} + 4112 x^{13} + \cdots + 1497569 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(115436618418847759115953789493837824\) \(\medspace = 2^{30}\cdot 401^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(56.64\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}401^{1/2}\approx 56.639209034025185$
Ramified primes:   \(2\), \(401\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $20$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{512}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{3}a^{8}-\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{3}$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{10}+\frac{1}{9}a^{6}+\frac{2}{9}a^{2}+\frac{1}{9}$, $\frac{1}{9}a^{13}-\frac{1}{9}a^{11}+\frac{1}{9}a^{7}+\frac{2}{9}a^{3}+\frac{1}{9}a$, $\frac{1}{9}a^{14}-\frac{1}{9}a^{10}+\frac{1}{9}a^{8}+\frac{1}{9}a^{6}+\frac{2}{9}a^{4}+\frac{1}{3}a^{2}+\frac{1}{9}$, $\frac{1}{9}a^{15}-\frac{1}{9}a^{11}+\frac{1}{9}a^{9}+\frac{1}{9}a^{7}+\frac{2}{9}a^{5}+\frac{1}{3}a^{3}+\frac{1}{9}a$, $\frac{1}{81}a^{16}-\frac{1}{27}a^{15}-\frac{1}{81}a^{14}+\frac{1}{27}a^{13}+\frac{1}{81}a^{12}-\frac{4}{27}a^{11}+\frac{1}{27}a^{9}+\frac{1}{9}a^{8}+\frac{1}{27}a^{7}+\frac{4}{27}a^{6}-\frac{1}{27}a^{5}-\frac{17}{81}a^{4}+\frac{4}{27}a^{3}+\frac{11}{81}a^{2}-\frac{1}{27}a-\frac{26}{81}$, $\frac{1}{81}a^{17}-\frac{1}{81}a^{15}+\frac{1}{81}a^{13}-\frac{1}{9}a^{11}-\frac{2}{27}a^{10}+\frac{1}{27}a^{8}-\frac{2}{27}a^{7}-\frac{4}{27}a^{6}-\frac{35}{81}a^{5}-\frac{4}{27}a^{4}+\frac{2}{81}a^{3}-\frac{2}{27}a^{2}-\frac{35}{81}a-\frac{5}{27}$, $\frac{1}{3159}a^{18}-\frac{5}{1053}a^{17}+\frac{4}{1053}a^{16}-\frac{44}{1053}a^{15}-\frac{55}{1053}a^{14}+\frac{38}{1053}a^{13}+\frac{10}{243}a^{12}-\frac{55}{351}a^{11}-\frac{20}{351}a^{10}-\frac{166}{1053}a^{9}-\frac{101}{1053}a^{8}-\frac{58}{351}a^{7}-\frac{239}{3159}a^{6}+\frac{26}{81}a^{5}+\frac{335}{1053}a^{4}+\frac{487}{1053}a^{3}+\frac{11}{351}a^{2}-\frac{47}{1053}a+\frac{211}{3159}$, $\frac{1}{46\!\cdots\!87}a^{19}-\frac{20\!\cdots\!61}{46\!\cdots\!87}a^{18}-\frac{21\!\cdots\!15}{17\!\cdots\!81}a^{17}-\frac{88\!\cdots\!17}{15\!\cdots\!29}a^{16}-\frac{11\!\cdots\!60}{15\!\cdots\!29}a^{15}+\frac{10\!\cdots\!78}{15\!\cdots\!29}a^{14}-\frac{10\!\cdots\!81}{46\!\cdots\!87}a^{13}+\frac{12\!\cdots\!86}{46\!\cdots\!87}a^{12}+\frac{25\!\cdots\!43}{51\!\cdots\!43}a^{11}+\frac{15\!\cdots\!24}{15\!\cdots\!29}a^{10}+\frac{72\!\cdots\!28}{15\!\cdots\!29}a^{9}+\frac{13\!\cdots\!02}{15\!\cdots\!29}a^{8}+\frac{58\!\cdots\!06}{46\!\cdots\!87}a^{7}+\frac{24\!\cdots\!15}{46\!\cdots\!87}a^{6}-\frac{16\!\cdots\!56}{51\!\cdots\!43}a^{5}-\frac{13\!\cdots\!81}{51\!\cdots\!43}a^{4}-\frac{65\!\cdots\!11}{18\!\cdots\!63}a^{3}-\frac{24\!\cdots\!98}{51\!\cdots\!43}a^{2}+\frac{45\!\cdots\!80}{12\!\cdots\!51}a-\frac{87\!\cdots\!52}{55\!\cdots\!89}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{29}\times C_{174}$, which has order $5046$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{41\!\cdots\!84}{48\!\cdots\!87}a^{19}-\frac{17\!\cdots\!82}{48\!\cdots\!87}a^{18}-\frac{86\!\cdots\!68}{53\!\cdots\!43}a^{17}+\frac{38\!\cdots\!78}{16\!\cdots\!29}a^{16}+\frac{39\!\cdots\!36}{16\!\cdots\!29}a^{15}+\frac{38\!\cdots\!04}{16\!\cdots\!29}a^{14}+\frac{25\!\cdots\!28}{37\!\cdots\!99}a^{13}+\frac{10\!\cdots\!79}{48\!\cdots\!87}a^{12}+\frac{41\!\cdots\!08}{53\!\cdots\!43}a^{11}+\frac{14\!\cdots\!58}{16\!\cdots\!29}a^{10}+\frac{15\!\cdots\!44}{53\!\cdots\!43}a^{9}+\frac{36\!\cdots\!20}{16\!\cdots\!29}a^{8}+\frac{51\!\cdots\!08}{48\!\cdots\!87}a^{7}+\frac{62\!\cdots\!20}{37\!\cdots\!99}a^{6}+\frac{36\!\cdots\!68}{16\!\cdots\!29}a^{5}-\frac{59\!\cdots\!63}{16\!\cdots\!29}a^{4}+\frac{16\!\cdots\!96}{53\!\cdots\!43}a^{3}-\frac{35\!\cdots\!66}{16\!\cdots\!29}a^{2}+\frac{65\!\cdots\!48}{48\!\cdots\!87}a-\frac{72\!\cdots\!08}{37\!\cdots\!99}$, $\frac{23\!\cdots\!90}{32\!\cdots\!11}a^{19}-\frac{90\!\cdots\!77}{25\!\cdots\!47}a^{18}-\frac{11\!\cdots\!22}{10\!\cdots\!37}a^{17}+\frac{30\!\cdots\!14}{10\!\cdots\!37}a^{16}+\frac{15\!\cdots\!56}{83\!\cdots\!49}a^{15}+\frac{80\!\cdots\!40}{10\!\cdots\!37}a^{14}+\frac{17\!\cdots\!16}{32\!\cdots\!11}a^{13}+\frac{42\!\cdots\!03}{32\!\cdots\!11}a^{12}+\frac{14\!\cdots\!86}{27\!\cdots\!83}a^{11}+\frac{31\!\cdots\!73}{83\!\cdots\!49}a^{10}+\frac{22\!\cdots\!30}{10\!\cdots\!37}a^{9}-\frac{13\!\cdots\!26}{10\!\cdots\!37}a^{8}+\frac{27\!\cdots\!94}{32\!\cdots\!11}a^{7}-\frac{18\!\cdots\!79}{32\!\cdots\!11}a^{6}+\frac{23\!\cdots\!12}{10\!\cdots\!37}a^{5}-\frac{58\!\cdots\!07}{27\!\cdots\!83}a^{4}+\frac{50\!\cdots\!10}{14\!\cdots\!71}a^{3}-\frac{15\!\cdots\!28}{36\!\cdots\!79}a^{2}+\frac{19\!\cdots\!06}{88\!\cdots\!03}a-\frac{12\!\cdots\!20}{39\!\cdots\!17}$, $\frac{11\!\cdots\!88}{26\!\cdots\!29}a^{19}-\frac{26\!\cdots\!93}{80\!\cdots\!87}a^{18}-\frac{65\!\cdots\!12}{26\!\cdots\!29}a^{17}+\frac{11\!\cdots\!74}{29\!\cdots\!81}a^{16}+\frac{96\!\cdots\!02}{89\!\cdots\!43}a^{15}-\frac{17\!\cdots\!89}{68\!\cdots\!11}a^{14}-\frac{11\!\cdots\!90}{26\!\cdots\!29}a^{13}-\frac{12\!\cdots\!95}{80\!\cdots\!87}a^{12}-\frac{74\!\cdots\!94}{29\!\cdots\!81}a^{11}-\frac{12\!\cdots\!89}{89\!\cdots\!43}a^{10}-\frac{53\!\cdots\!02}{26\!\cdots\!29}a^{9}-\frac{22\!\cdots\!46}{26\!\cdots\!29}a^{8}-\frac{13\!\cdots\!26}{20\!\cdots\!33}a^{7}-\frac{26\!\cdots\!01}{80\!\cdots\!87}a^{6}-\frac{14\!\cdots\!06}{89\!\cdots\!43}a^{5}-\frac{23\!\cdots\!79}{26\!\cdots\!29}a^{4}-\frac{31\!\cdots\!52}{10\!\cdots\!21}a^{3}-\frac{39\!\cdots\!79}{26\!\cdots\!29}a^{2}-\frac{74\!\cdots\!28}{24\!\cdots\!39}a-\frac{12\!\cdots\!11}{97\!\cdots\!89}$, $\frac{28\!\cdots\!26}{21\!\cdots\!53}a^{19}+\frac{20\!\cdots\!95}{65\!\cdots\!59}a^{18}-\frac{11\!\cdots\!10}{21\!\cdots\!53}a^{17}-\frac{30\!\cdots\!40}{72\!\cdots\!51}a^{16}+\frac{48\!\cdots\!60}{80\!\cdots\!39}a^{15}+\frac{39\!\cdots\!52}{24\!\cdots\!17}a^{14}+\frac{27\!\cdots\!48}{21\!\cdots\!53}a^{13}+\frac{61\!\cdots\!96}{65\!\cdots\!59}a^{12}+\frac{20\!\cdots\!46}{80\!\cdots\!39}a^{11}+\frac{12\!\cdots\!25}{24\!\cdots\!17}a^{10}+\frac{16\!\cdots\!54}{21\!\cdots\!53}a^{9}+\frac{51\!\cdots\!34}{21\!\cdots\!53}a^{8}+\frac{47\!\cdots\!90}{21\!\cdots\!53}a^{7}+\frac{47\!\cdots\!71}{65\!\cdots\!59}a^{6}+\frac{10\!\cdots\!24}{80\!\cdots\!39}a^{5}+\frac{37\!\cdots\!46}{21\!\cdots\!53}a^{4}-\frac{41\!\cdots\!86}{87\!\cdots\!97}a^{3}+\frac{45\!\cdots\!34}{21\!\cdots\!53}a^{2}-\frac{40\!\cdots\!74}{45\!\cdots\!13}a+\frac{25\!\cdots\!91}{78\!\cdots\!73}$, $\frac{92\!\cdots\!76}{46\!\cdots\!87}a^{19}-\frac{31\!\cdots\!72}{46\!\cdots\!87}a^{18}-\frac{23\!\cdots\!04}{51\!\cdots\!43}a^{17}+\frac{53\!\cdots\!10}{15\!\cdots\!29}a^{16}+\frac{10\!\cdots\!80}{15\!\cdots\!29}a^{15}+\frac{14\!\cdots\!02}{15\!\cdots\!29}a^{14}+\frac{46\!\cdots\!28}{46\!\cdots\!87}a^{13}+\frac{23\!\cdots\!77}{46\!\cdots\!87}a^{12}+\frac{10\!\cdots\!62}{51\!\cdots\!43}a^{11}+\frac{24\!\cdots\!88}{15\!\cdots\!29}a^{10}+\frac{22\!\cdots\!12}{51\!\cdots\!43}a^{9}+\frac{49\!\cdots\!91}{15\!\cdots\!29}a^{8}+\frac{66\!\cdots\!70}{46\!\cdots\!87}a^{7}-\frac{48\!\cdots\!83}{46\!\cdots\!87}a^{6}+\frac{40\!\cdots\!62}{15\!\cdots\!29}a^{5}-\frac{13\!\cdots\!15}{15\!\cdots\!29}a^{4}+\frac{39\!\cdots\!72}{61\!\cdots\!21}a^{3}-\frac{40\!\cdots\!16}{15\!\cdots\!29}a^{2}+\frac{67\!\cdots\!78}{12\!\cdots\!51}a-\frac{15\!\cdots\!47}{55\!\cdots\!89}$, $\frac{27\!\cdots\!00}{44\!\cdots\!89}a^{19}-\frac{21\!\cdots\!32}{13\!\cdots\!67}a^{18}-\frac{66\!\cdots\!54}{44\!\cdots\!89}a^{17}-\frac{21\!\cdots\!91}{14\!\cdots\!63}a^{16}+\frac{10\!\cdots\!32}{55\!\cdots\!69}a^{15}+\frac{19\!\cdots\!66}{49\!\cdots\!21}a^{14}+\frac{39\!\cdots\!96}{44\!\cdots\!89}a^{13}+\frac{41\!\cdots\!57}{13\!\cdots\!67}a^{12}+\frac{50\!\cdots\!56}{55\!\cdots\!69}a^{11}+\frac{84\!\cdots\!80}{49\!\cdots\!21}a^{10}+\frac{17\!\cdots\!50}{44\!\cdots\!89}a^{9}+\frac{31\!\cdots\!64}{44\!\cdots\!89}a^{8}+\frac{63\!\cdots\!16}{44\!\cdots\!89}a^{7}+\frac{28\!\cdots\!38}{13\!\cdots\!67}a^{6}+\frac{15\!\cdots\!46}{49\!\cdots\!21}a^{5}+\frac{22\!\cdots\!51}{44\!\cdots\!89}a^{4}+\frac{85\!\cdots\!98}{18\!\cdots\!61}a^{3}+\frac{23\!\cdots\!99}{34\!\cdots\!53}a^{2}+\frac{38\!\cdots\!30}{12\!\cdots\!97}a+\frac{10\!\cdots\!43}{16\!\cdots\!49}$, $\frac{11\!\cdots\!84}{65\!\cdots\!59}a^{19}-\frac{24\!\cdots\!63}{65\!\cdots\!59}a^{18}-\frac{20\!\cdots\!08}{72\!\cdots\!51}a^{17}-\frac{17\!\cdots\!76}{21\!\cdots\!53}a^{16}+\frac{31\!\cdots\!70}{21\!\cdots\!53}a^{15}+\frac{36\!\cdots\!39}{21\!\cdots\!53}a^{14}+\frac{54\!\cdots\!50}{65\!\cdots\!59}a^{13}+\frac{12\!\cdots\!26}{65\!\cdots\!59}a^{12}+\frac{35\!\cdots\!02}{72\!\cdots\!51}a^{11}+\frac{28\!\cdots\!75}{21\!\cdots\!53}a^{10}+\frac{23\!\cdots\!10}{72\!\cdots\!51}a^{9}+\frac{12\!\cdots\!94}{21\!\cdots\!53}a^{8}+\frac{84\!\cdots\!14}{65\!\cdots\!59}a^{7}+\frac{12\!\cdots\!35}{65\!\cdots\!59}a^{6}+\frac{79\!\cdots\!06}{21\!\cdots\!53}a^{5}+\frac{10\!\cdots\!20}{21\!\cdots\!53}a^{4}+\frac{60\!\cdots\!20}{87\!\cdots\!97}a^{3}+\frac{14\!\cdots\!21}{16\!\cdots\!81}a^{2}+\frac{10\!\cdots\!64}{17\!\cdots\!07}a+\frac{70\!\cdots\!56}{78\!\cdots\!73}$, $\frac{22\!\cdots\!64}{10\!\cdots\!37}a^{19}-\frac{11\!\cdots\!89}{10\!\cdots\!37}a^{18}-\frac{11\!\cdots\!46}{36\!\cdots\!79}a^{17}+\frac{32\!\cdots\!74}{36\!\cdots\!79}a^{16}+\frac{20\!\cdots\!74}{36\!\cdots\!79}a^{15}+\frac{50\!\cdots\!49}{36\!\cdots\!79}a^{14}+\frac{10\!\cdots\!42}{10\!\cdots\!37}a^{13}+\frac{23\!\cdots\!82}{10\!\cdots\!37}a^{12}+\frac{44\!\cdots\!46}{40\!\cdots\!31}a^{11}-\frac{68\!\cdots\!93}{36\!\cdots\!79}a^{10}+\frac{10\!\cdots\!28}{36\!\cdots\!79}a^{9}-\frac{25\!\cdots\!53}{36\!\cdots\!79}a^{8}+\frac{12\!\cdots\!14}{10\!\cdots\!37}a^{7}-\frac{45\!\cdots\!85}{10\!\cdots\!37}a^{6}+\frac{82\!\cdots\!48}{36\!\cdots\!79}a^{5}-\frac{16\!\cdots\!21}{12\!\cdots\!93}a^{4}+\frac{38\!\cdots\!38}{14\!\cdots\!71}a^{3}-\frac{33\!\cdots\!20}{12\!\cdots\!93}a^{2}-\frac{93\!\cdots\!58}{29\!\cdots\!01}a-\frac{35\!\cdots\!16}{13\!\cdots\!39}$, $\frac{53\!\cdots\!88}{80\!\cdots\!87}a^{19}-\frac{26\!\cdots\!62}{80\!\cdots\!87}a^{18}-\frac{24\!\cdots\!20}{26\!\cdots\!29}a^{17}+\frac{62\!\cdots\!69}{26\!\cdots\!29}a^{16}+\frac{41\!\cdots\!36}{26\!\cdots\!29}a^{15}+\frac{22\!\cdots\!78}{26\!\cdots\!29}a^{14}+\frac{52\!\cdots\!08}{80\!\cdots\!87}a^{13}+\frac{96\!\cdots\!65}{80\!\cdots\!87}a^{12}+\frac{40\!\cdots\!50}{89\!\cdots\!43}a^{11}+\frac{78\!\cdots\!96}{26\!\cdots\!29}a^{10}+\frac{50\!\cdots\!64}{26\!\cdots\!29}a^{9}-\frac{19\!\cdots\!95}{26\!\cdots\!29}a^{8}+\frac{59\!\cdots\!34}{80\!\cdots\!87}a^{7}-\frac{72\!\cdots\!43}{80\!\cdots\!87}a^{6}+\frac{49\!\cdots\!46}{26\!\cdots\!29}a^{5}-\frac{32\!\cdots\!11}{89\!\cdots\!43}a^{4}+\frac{10\!\cdots\!04}{35\!\cdots\!07}a^{3}-\frac{22\!\cdots\!80}{29\!\cdots\!81}a^{2}+\frac{30\!\cdots\!62}{16\!\cdots\!27}a-\frac{64\!\cdots\!68}{97\!\cdots\!89}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 795087.603907 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 795087.603907 \cdot 5046}{2\cdot\sqrt{115436618418847759115953789493837824}}\cr\approx \mathstrut & 0.566185989705 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 - 16*x^18 + 12*x^17 + 222*x^16 + 378*x^15 + 1750*x^14 + 4112*x^13 + 13433*x^12 + 23190*x^11 + 70881*x^10 + 89262*x^9 + 287947*x^8 + 230252*x^7 + 856214*x^6 + 418974*x^5 + 1783158*x^4 + 462756*x^3 + 2333308*x^2 + 204212*x + 1497569)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 4*x^19 - 16*x^18 + 12*x^17 + 222*x^16 + 378*x^15 + 1750*x^14 + 4112*x^13 + 13433*x^12 + 23190*x^11 + 70881*x^10 + 89262*x^9 + 287947*x^8 + 230252*x^7 + 856214*x^6 + 418974*x^5 + 1783158*x^4 + 462756*x^3 + 2333308*x^2 + 204212*x + 1497569, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 4*x^19 - 16*x^18 + 12*x^17 + 222*x^16 + 378*x^15 + 1750*x^14 + 4112*x^13 + 13433*x^12 + 23190*x^11 + 70881*x^10 + 89262*x^9 + 287947*x^8 + 230252*x^7 + 856214*x^6 + 418974*x^5 + 1783158*x^4 + 462756*x^3 + 2333308*x^2 + 204212*x + 1497569);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 4*x^19 - 16*x^18 + 12*x^17 + 222*x^16 + 378*x^15 + 1750*x^14 + 4112*x^13 + 13433*x^12 + 23190*x^11 + 70881*x^10 + 89262*x^9 + 287947*x^8 + 230252*x^7 + 856214*x^6 + 418974*x^5 + 1783158*x^4 + 462756*x^3 + 2333308*x^2 + 204212*x + 1497569);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{10}$ (as 20T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 20
The 8 conjugacy class representatives for $D_{10}$
Character table for $D_{10}$

Intermediate fields

\(\Q(\sqrt{401}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-802}) \), \(\Q(\sqrt{-2}, \sqrt{401})\), 5.5.160801.1 x5, 10.10.10368641602001.1, 10.0.847280917741568.1 x5, 10.0.339759648014368768.1 x5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 10 siblings: 10.0.339759648014368768.1, 10.0.847280917741568.1
Minimal sibling: 10.0.847280917741568.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.2.0.1}{2} }^{10}$ ${\href{/padicField/5.10.0.1}{10} }^{2}$ ${\href{/padicField/7.10.0.1}{10} }^{2}$ ${\href{/padicField/11.5.0.1}{5} }^{4}$ ${\href{/padicField/13.2.0.1}{2} }^{10}$ ${\href{/padicField/17.2.0.1}{2} }^{10}$ ${\href{/padicField/19.2.0.1}{2} }^{10}$ ${\href{/padicField/23.2.0.1}{2} }^{10}$ ${\href{/padicField/29.10.0.1}{10} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{10}$ ${\href{/padicField/37.2.0.1}{2} }^{10}$ ${\href{/padicField/41.5.0.1}{5} }^{4}$ ${\href{/padicField/43.5.0.1}{5} }^{4}$ ${\href{/padicField/47.10.0.1}{10} }^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{10}$ ${\href{/padicField/59.2.0.1}{2} }^{10}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.10.15.9$x^{10} + 20 x^{9} + 206 x^{8} + 1376 x^{7} + 6504 x^{6} + 22496 x^{5} + 57328 x^{4} + 105856 x^{3} + 135504 x^{2} + 108864 x + 9568$$2$$5$$15$$C_{10}$$[3]^{5}$
2.10.15.9$x^{10} + 20 x^{9} + 206 x^{8} + 1376 x^{7} + 6504 x^{6} + 22496 x^{5} + 57328 x^{4} + 105856 x^{3} + 135504 x^{2} + 108864 x + 9568$$2$$5$$15$$C_{10}$$[3]^{5}$
\(401\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$