Properties

Label 20.0.352...000.11
Degree $20$
Signature $[0, 10]$
Discriminant $3.525\times 10^{42}$
Root discriminant \(134.08\)
Ramified primes $2,3,5,11$
Class number $4792880$ (GRH)
Class group [2, 2, 1198220] (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 20*x^18 + 565*x^16 + 29472*x^14 + 869610*x^12 + 15155944*x^10 + 170472586*x^8 + 1270626240*x^6 + 6120549669*x^4 + 17367927780*x^2 + 22163170129)
 
gp: K = bnfinit(y^20 + 20*y^18 + 565*y^16 + 29472*y^14 + 869610*y^12 + 15155944*y^10 + 170472586*y^8 + 1270626240*y^6 + 6120549669*y^4 + 17367927780*y^2 + 22163170129, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 + 20*x^18 + 565*x^16 + 29472*x^14 + 869610*x^12 + 15155944*x^10 + 170472586*x^8 + 1270626240*x^6 + 6120549669*x^4 + 17367927780*x^2 + 22163170129);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 + 20*x^18 + 565*x^16 + 29472*x^14 + 869610*x^12 + 15155944*x^10 + 170472586*x^8 + 1270626240*x^6 + 6120549669*x^4 + 17367927780*x^2 + 22163170129)
 

\( x^{20} + 20 x^{18} + 565 x^{16} + 29472 x^{14} + 869610 x^{12} + 15155944 x^{10} + 170472586 x^{8} + \cdots + 22163170129 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(3525175555633378160676822382018560000000000\) \(\medspace = 2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(134.08\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}3^{1/2}5^{1/2}11^{9/10}\approx 134.0784675354655$
Ramified primes:   \(2\), \(3\), \(5\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $20$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1320=2^{3}\cdot 3\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(389,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(269,·)$, $\chi_{1320}(211,·)$, $\chi_{1320}(1109,·)$, $\chi_{1320}(1051,·)$, $\chi_{1320}(479,·)$, $\chi_{1320}(359,·)$, $\chi_{1320}(1319,·)$, $\chi_{1320}(509,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(811,·)$, $\chi_{1320}(749,·)$, $\chi_{1320}(239,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(571,·)$, $\chi_{1320}(931,·)$, $\chi_{1320}(959,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{512}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4}a^{4}+\frac{1}{4}$, $\frac{1}{4}a^{5}+\frac{1}{4}a$, $\frac{1}{4}a^{6}+\frac{1}{4}a^{2}$, $\frac{1}{4}a^{7}+\frac{1}{4}a^{3}$, $\frac{1}{16}a^{8}-\frac{1}{8}a^{4}-\frac{3}{16}$, $\frac{1}{16}a^{9}-\frac{1}{8}a^{5}-\frac{3}{16}a$, $\frac{1}{16}a^{10}-\frac{1}{8}a^{6}-\frac{3}{16}a^{2}$, $\frac{1}{16}a^{11}-\frac{1}{8}a^{7}-\frac{3}{16}a^{3}$, $\frac{1}{64}a^{12}-\frac{1}{64}a^{8}-\frac{5}{64}a^{4}-\frac{3}{64}$, $\frac{1}{64}a^{13}-\frac{1}{64}a^{9}-\frac{5}{64}a^{5}-\frac{3}{64}a$, $\frac{1}{64}a^{14}-\frac{1}{64}a^{10}-\frac{5}{64}a^{6}-\frac{3}{64}a^{2}$, $\frac{1}{64}a^{15}-\frac{1}{64}a^{11}-\frac{5}{64}a^{7}-\frac{3}{64}a^{3}$, $\frac{1}{256}a^{16}-\frac{3}{128}a^{8}-\frac{1}{32}a^{4}-\frac{3}{256}$, $\frac{1}{256}a^{17}-\frac{3}{128}a^{9}-\frac{1}{32}a^{5}-\frac{3}{256}a$, $\frac{1}{18\!\cdots\!96}a^{18}+\frac{32\!\cdots\!57}{18\!\cdots\!96}a^{16}+\frac{37\!\cdots\!69}{22\!\cdots\!12}a^{14}+\frac{94\!\cdots\!15}{45\!\cdots\!24}a^{12}-\frac{16\!\cdots\!11}{91\!\cdots\!48}a^{10}-\frac{20\!\cdots\!29}{91\!\cdots\!48}a^{8}-\frac{35\!\cdots\!25}{11\!\cdots\!56}a^{6}+\frac{46\!\cdots\!63}{45\!\cdots\!24}a^{4}-\frac{59\!\cdots\!99}{18\!\cdots\!96}a^{2}-\frac{58\!\cdots\!71}{18\!\cdots\!96}$, $\frac{1}{27\!\cdots\!08}a^{19}+\frac{15\!\cdots\!89}{13\!\cdots\!04}a^{17}-\frac{37\!\cdots\!63}{68\!\cdots\!52}a^{15}-\frac{17\!\cdots\!61}{68\!\cdots\!52}a^{13}+\frac{39\!\cdots\!99}{13\!\cdots\!04}a^{11}+\frac{10\!\cdots\!05}{34\!\cdots\!76}a^{9}+\frac{14\!\cdots\!33}{68\!\cdots\!52}a^{7}-\frac{31\!\cdots\!83}{68\!\cdots\!52}a^{5}+\frac{54\!\cdots\!37}{27\!\cdots\!08}a^{3}-\frac{54\!\cdots\!61}{13\!\cdots\!04}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{2}\times C_{1198220}$, which has order $4792880$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{74\!\cdots\!97}{11\!\cdots\!56}a^{18}+\frac{24\!\cdots\!85}{22\!\cdots\!12}a^{16}+\frac{14\!\cdots\!01}{45\!\cdots\!24}a^{14}+\frac{41\!\cdots\!57}{22\!\cdots\!12}a^{12}+\frac{22\!\cdots\!55}{45\!\cdots\!24}a^{10}+\frac{17\!\cdots\!67}{22\!\cdots\!12}a^{8}+\frac{35\!\cdots\!99}{45\!\cdots\!24}a^{6}+\frac{10\!\cdots\!91}{22\!\cdots\!12}a^{4}+\frac{76\!\cdots\!29}{45\!\cdots\!24}a^{2}+\frac{15\!\cdots\!53}{57\!\cdots\!28}$, $\frac{36\!\cdots\!05}{91\!\cdots\!48}a^{18}+\frac{47\!\cdots\!70}{71\!\cdots\!41}a^{16}+\frac{89\!\cdots\!05}{45\!\cdots\!24}a^{14}+\frac{25\!\cdots\!83}{22\!\cdots\!12}a^{12}+\frac{35\!\cdots\!25}{11\!\cdots\!56}a^{10}+\frac{11\!\cdots\!25}{22\!\cdots\!12}a^{8}+\frac{21\!\cdots\!67}{45\!\cdots\!24}a^{6}+\frac{66\!\cdots\!65}{22\!\cdots\!12}a^{4}+\frac{94\!\cdots\!19}{91\!\cdots\!48}a^{2}+\frac{37\!\cdots\!99}{22\!\cdots\!12}$, $\frac{93\!\cdots\!01}{18\!\cdots\!96}a^{18}+\frac{97\!\cdots\!65}{91\!\cdots\!48}a^{16}+\frac{67\!\cdots\!55}{22\!\cdots\!12}a^{14}+\frac{69\!\cdots\!65}{45\!\cdots\!24}a^{12}+\frac{41\!\cdots\!61}{91\!\cdots\!48}a^{10}+\frac{91\!\cdots\!67}{11\!\cdots\!56}a^{8}+\frac{51\!\cdots\!51}{57\!\cdots\!28}a^{6}+\frac{29\!\cdots\!55}{45\!\cdots\!24}a^{4}+\frac{49\!\cdots\!97}{18\!\cdots\!96}a^{2}+\frac{47\!\cdots\!75}{91\!\cdots\!48}$, $\frac{93\!\cdots\!01}{18\!\cdots\!96}a^{18}+\frac{97\!\cdots\!65}{91\!\cdots\!48}a^{16}+\frac{67\!\cdots\!55}{22\!\cdots\!12}a^{14}+\frac{69\!\cdots\!65}{45\!\cdots\!24}a^{12}+\frac{41\!\cdots\!61}{91\!\cdots\!48}a^{10}+\frac{91\!\cdots\!67}{11\!\cdots\!56}a^{8}+\frac{51\!\cdots\!51}{57\!\cdots\!28}a^{6}+\frac{29\!\cdots\!55}{45\!\cdots\!24}a^{4}+\frac{49\!\cdots\!97}{18\!\cdots\!96}a^{2}+\frac{47\!\cdots\!23}{91\!\cdots\!48}$, $\frac{12\!\cdots\!33}{13\!\cdots\!04}a^{19}+\frac{23\!\cdots\!25}{45\!\cdots\!24}a^{18}+\frac{97\!\cdots\!11}{68\!\cdots\!52}a^{17}+\frac{13\!\cdots\!95}{18\!\cdots\!96}a^{16}+\frac{32\!\cdots\!49}{68\!\cdots\!52}a^{15}+\frac{10\!\cdots\!57}{45\!\cdots\!24}a^{14}+\frac{17\!\cdots\!47}{68\!\cdots\!52}a^{13}+\frac{63\!\cdots\!51}{45\!\cdots\!24}a^{12}+\frac{11\!\cdots\!53}{17\!\cdots\!88}a^{11}+\frac{16\!\cdots\!21}{45\!\cdots\!24}a^{10}+\frac{75\!\cdots\!03}{68\!\cdots\!52}a^{9}+\frac{47\!\cdots\!17}{91\!\cdots\!48}a^{8}+\frac{75\!\cdots\!27}{68\!\cdots\!52}a^{7}+\frac{20\!\cdots\!07}{45\!\cdots\!24}a^{6}+\frac{47\!\cdots\!73}{68\!\cdots\!52}a^{5}+\frac{11\!\cdots\!19}{45\!\cdots\!24}a^{4}+\frac{35\!\cdots\!55}{13\!\cdots\!04}a^{3}+\frac{15\!\cdots\!91}{22\!\cdots\!12}a^{2}+\frac{15\!\cdots\!75}{34\!\cdots\!76}a+\frac{16\!\cdots\!23}{18\!\cdots\!96}$, $\frac{17\!\cdots\!01}{34\!\cdots\!76}a^{19}-\frac{32\!\cdots\!13}{45\!\cdots\!24}a^{18}+\frac{76\!\cdots\!81}{13\!\cdots\!04}a^{17}-\frac{21\!\cdots\!75}{18\!\cdots\!96}a^{16}+\frac{16\!\cdots\!11}{68\!\cdots\!52}a^{15}-\frac{77\!\cdots\!29}{22\!\cdots\!12}a^{14}+\frac{90\!\cdots\!35}{68\!\cdots\!52}a^{13}-\frac{88\!\cdots\!65}{45\!\cdots\!24}a^{12}+\frac{22\!\cdots\!01}{68\!\cdots\!52}a^{11}-\frac{30\!\cdots\!97}{57\!\cdots\!28}a^{10}+\frac{16\!\cdots\!07}{34\!\cdots\!76}a^{9}-\frac{76\!\cdots\!85}{91\!\cdots\!48}a^{8}+\frac{29\!\cdots\!97}{68\!\cdots\!52}a^{7}-\frac{18\!\cdots\!03}{22\!\cdots\!12}a^{6}+\frac{16\!\cdots\!69}{68\!\cdots\!52}a^{5}-\frac{22\!\cdots\!01}{45\!\cdots\!24}a^{4}+\frac{52\!\cdots\!53}{68\!\cdots\!52}a^{3}-\frac{79\!\cdots\!11}{45\!\cdots\!24}a^{2}+\frac{14\!\cdots\!95}{13\!\cdots\!04}a-\frac{49\!\cdots\!23}{18\!\cdots\!96}$, $\frac{13\!\cdots\!63}{13\!\cdots\!04}a^{19}+\frac{13\!\cdots\!53}{18\!\cdots\!96}a^{18}+\frac{84\!\cdots\!87}{68\!\cdots\!52}a^{17}+\frac{22\!\cdots\!05}{18\!\cdots\!96}a^{16}+\frac{32\!\cdots\!25}{68\!\cdots\!52}a^{15}+\frac{26\!\cdots\!87}{71\!\cdots\!41}a^{14}+\frac{17\!\cdots\!43}{68\!\cdots\!52}a^{13}+\frac{47\!\cdots\!15}{22\!\cdots\!12}a^{12}+\frac{23\!\cdots\!67}{34\!\cdots\!76}a^{11}+\frac{53\!\cdots\!13}{91\!\cdots\!48}a^{10}+\frac{68\!\cdots\!23}{68\!\cdots\!52}a^{9}+\frac{83\!\cdots\!21}{91\!\cdots\!48}a^{8}+\frac{63\!\cdots\!43}{68\!\cdots\!52}a^{7}+\frac{20\!\cdots\!07}{22\!\cdots\!12}a^{6}+\frac{37\!\cdots\!21}{68\!\cdots\!52}a^{5}+\frac{31\!\cdots\!07}{57\!\cdots\!28}a^{4}+\frac{25\!\cdots\!69}{13\!\cdots\!04}a^{3}+\frac{36\!\cdots\!41}{18\!\cdots\!96}a^{2}+\frac{95\!\cdots\!25}{34\!\cdots\!76}a+\frac{59\!\cdots\!65}{18\!\cdots\!96}$, $\frac{12\!\cdots\!73}{27\!\cdots\!08}a^{19}-\frac{20\!\cdots\!63}{18\!\cdots\!96}a^{18}+\frac{17\!\cdots\!51}{27\!\cdots\!08}a^{17}-\frac{16\!\cdots\!65}{91\!\cdots\!48}a^{16}+\frac{18\!\cdots\!71}{85\!\cdots\!44}a^{15}-\frac{15\!\cdots\!51}{28\!\cdots\!64}a^{14}+\frac{10\!\cdots\!97}{85\!\cdots\!44}a^{13}-\frac{14\!\cdots\!45}{45\!\cdots\!24}a^{12}+\frac{44\!\cdots\!61}{13\!\cdots\!04}a^{11}-\frac{77\!\cdots\!71}{91\!\cdots\!48}a^{10}+\frac{67\!\cdots\!43}{13\!\cdots\!04}a^{9}-\frac{15\!\cdots\!13}{11\!\cdots\!56}a^{8}+\frac{16\!\cdots\!79}{34\!\cdots\!76}a^{7}-\frac{30\!\cdots\!37}{22\!\cdots\!12}a^{6}+\frac{98\!\cdots\!33}{34\!\cdots\!76}a^{5}-\frac{37\!\cdots\!67}{45\!\cdots\!24}a^{4}+\frac{27\!\cdots\!45}{27\!\cdots\!08}a^{3}-\frac{54\!\cdots\!51}{18\!\cdots\!96}a^{2}+\frac{44\!\cdots\!35}{27\!\cdots\!08}a-\frac{43\!\cdots\!67}{91\!\cdots\!48}$, $\frac{10\!\cdots\!07}{27\!\cdots\!08}a^{19}-\frac{10\!\cdots\!51}{18\!\cdots\!96}a^{18}+\frac{13\!\cdots\!07}{27\!\cdots\!08}a^{17}-\frac{16\!\cdots\!55}{18\!\cdots\!96}a^{16}+\frac{11\!\cdots\!19}{68\!\cdots\!52}a^{15}-\frac{60\!\cdots\!17}{22\!\cdots\!12}a^{14}+\frac{65\!\cdots\!29}{68\!\cdots\!52}a^{13}-\frac{34\!\cdots\!99}{22\!\cdots\!12}a^{12}+\frac{34\!\cdots\!37}{13\!\cdots\!04}a^{11}-\frac{38\!\cdots\!07}{91\!\cdots\!48}a^{10}+\frac{52\!\cdots\!37}{13\!\cdots\!04}a^{9}-\frac{59\!\cdots\!15}{91\!\cdots\!48}a^{8}+\frac{25\!\cdots\!31}{68\!\cdots\!52}a^{7}-\frac{36\!\cdots\!73}{57\!\cdots\!28}a^{6}+\frac{15\!\cdots\!93}{68\!\cdots\!52}a^{5}-\frac{43\!\cdots\!77}{11\!\cdots\!56}a^{4}+\frac{20\!\cdots\!35}{27\!\cdots\!08}a^{3}-\frac{24\!\cdots\!91}{18\!\cdots\!96}a^{2}+\frac{31\!\cdots\!35}{27\!\cdots\!08}a-\frac{37\!\cdots\!15}{18\!\cdots\!96}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1589230.0087159988 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 1589230.0087159988 \cdot 4792880}{2\cdot\sqrt{3525175555633378160676822382018560000000000}}\cr\approx \mathstrut & 0.194518819666524 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 + 20*x^18 + 565*x^16 + 29472*x^14 + 869610*x^12 + 15155944*x^10 + 170472586*x^8 + 1270626240*x^6 + 6120549669*x^4 + 17367927780*x^2 + 22163170129)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 + 20*x^18 + 565*x^16 + 29472*x^14 + 869610*x^12 + 15155944*x^10 + 170472586*x^8 + 1270626240*x^6 + 6120549669*x^4 + 17367927780*x^2 + 22163170129, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 + 20*x^18 + 565*x^16 + 29472*x^14 + 869610*x^12 + 15155944*x^10 + 170472586*x^8 + 1270626240*x^6 + 6120549669*x^4 + 17367927780*x^2 + 22163170129);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 + 20*x^18 + 565*x^16 + 29472*x^14 + 869610*x^12 + 15155944*x^10 + 170472586*x^8 + 1270626240*x^6 + 6120549669*x^4 + 17367927780*x^2 + 22163170129);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{10}$ (as 20T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-165}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{22}, \sqrt{-30})\), \(\Q(\zeta_{11})^+\), 10.0.1833540124521600000.1, 10.10.77265229938688.1, 10.0.5333934907699200000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.10.0.1}{10} }^{2}$ R ${\href{/padicField/13.5.0.1}{5} }^{4}$ ${\href{/padicField/17.10.0.1}{10} }^{2}$ ${\href{/padicField/19.10.0.1}{10} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{10}$ ${\href{/padicField/29.5.0.1}{5} }^{4}$ ${\href{/padicField/31.10.0.1}{10} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }^{2}$ ${\href{/padicField/41.10.0.1}{10} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{10}$ ${\href{/padicField/47.10.0.1}{10} }^{2}$ ${\href{/padicField/53.10.0.1}{10} }^{2}$ ${\href{/padicField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $20$$4$$5$$40$
\(3\) Copy content Toggle raw display 3.10.5.2$x^{10} + 15 x^{8} + 94 x^{6} + 2 x^{5} + 210 x^{4} - 60 x^{3} + 229 x^{2} + 94 x + 364$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
3.10.5.2$x^{10} + 15 x^{8} + 94 x^{6} + 2 x^{5} + 210 x^{4} - 60 x^{3} + 229 x^{2} + 94 x + 364$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
\(5\) Copy content Toggle raw display Deg $20$$2$$10$$10$
\(11\) Copy content Toggle raw display 11.10.9.7$x^{10} + 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.7$x^{10} + 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$