Properties

Label 20.0.784...000.3
Degree $20$
Signature $[0, 10]$
Discriminant $7.848\times 10^{42}$
Root discriminant \(139.55\)
Ramified primes $2,3,5,7,11$
Class number $1060840$ (GRH)
Class group [2, 530420] (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 - 33*x^18 + 238*x^17 + 890*x^16 - 6260*x^15 - 8888*x^14 + 80734*x^13 + 112792*x^12 - 866142*x^11 + 64610*x^10 + 3714770*x^9 + 8810954*x^8 - 33816384*x^7 + 58532261*x^6 - 43081774*x^5 + 827188384*x^4 - 1045516946*x^3 + 3440960115*x^2 - 2632174544*x + 15777305149)
 
gp: K = bnfinit(y^20 - 6*y^19 - 33*y^18 + 238*y^17 + 890*y^16 - 6260*y^15 - 8888*y^14 + 80734*y^13 + 112792*y^12 - 866142*y^11 + 64610*y^10 + 3714770*y^9 + 8810954*y^8 - 33816384*y^7 + 58532261*y^6 - 43081774*y^5 + 827188384*y^4 - 1045516946*y^3 + 3440960115*y^2 - 2632174544*y + 15777305149, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 6*x^19 - 33*x^18 + 238*x^17 + 890*x^16 - 6260*x^15 - 8888*x^14 + 80734*x^13 + 112792*x^12 - 866142*x^11 + 64610*x^10 + 3714770*x^9 + 8810954*x^8 - 33816384*x^7 + 58532261*x^6 - 43081774*x^5 + 827188384*x^4 - 1045516946*x^3 + 3440960115*x^2 - 2632174544*x + 15777305149);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 6*x^19 - 33*x^18 + 238*x^17 + 890*x^16 - 6260*x^15 - 8888*x^14 + 80734*x^13 + 112792*x^12 - 866142*x^11 + 64610*x^10 + 3714770*x^9 + 8810954*x^8 - 33816384*x^7 + 58532261*x^6 - 43081774*x^5 + 827188384*x^4 - 1045516946*x^3 + 3440960115*x^2 - 2632174544*x + 15777305149)
 

\( x^{20} - 6 x^{19} - 33 x^{18} + 238 x^{17} + 890 x^{16} - 6260 x^{15} - 8888 x^{14} + 80734 x^{13} + \cdots + 15777305149 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(7848304897073886403551554174576640000000000\) \(\medspace = 2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(139.55\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}5^{1/2}7^{1/2}11^{4/5}\approx 139.55287669870722$
Ramified primes:   \(2\), \(3\), \(5\), \(7\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $20$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4620=2^{2}\cdot 3\cdot 5\cdot 7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{4620}(1,·)$, $\chi_{4620}(3331,·)$, $\chi_{4620}(4229,·)$, $\chi_{4620}(1651,·)$, $\chi_{4620}(449,·)$, $\chi_{4620}(841,·)$, $\chi_{4620}(1681,·)$, $\chi_{4620}(3389,·)$, $\chi_{4620}(2071,·)$, $\chi_{4620}(3359,·)$, $\chi_{4620}(3809,·)$, $\chi_{4620}(419,·)$, $\chi_{4620}(421,·)$, $\chi_{4620}(839,·)$, $\chi_{4620}(1709,·)$, $\chi_{4620}(4591,·)$, $\chi_{4620}(2099,·)$, $\chi_{4620}(1259,·)$, $\chi_{4620}(2491,·)$, $\chi_{4620}(2941,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{512}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{43}a^{15}+\frac{17}{43}a^{14}-\frac{4}{43}a^{13}-\frac{2}{43}a^{12}+\frac{6}{43}a^{11}-\frac{2}{43}a^{10}-\frac{21}{43}a^{9}+\frac{1}{43}a^{7}-\frac{2}{43}a^{6}-\frac{20}{43}a^{5}-\frac{11}{43}a^{4}+\frac{18}{43}a^{3}+\frac{14}{43}a^{2}-\frac{11}{43}a+\frac{16}{43}$, $\frac{1}{43}a^{16}+\frac{8}{43}a^{14}-\frac{20}{43}a^{13}-\frac{3}{43}a^{12}-\frac{18}{43}a^{11}+\frac{13}{43}a^{10}+\frac{13}{43}a^{9}+\frac{1}{43}a^{8}-\frac{19}{43}a^{7}+\frac{14}{43}a^{6}-\frac{15}{43}a^{5}-\frac{10}{43}a^{4}+\frac{9}{43}a^{3}+\frac{9}{43}a^{2}-\frac{12}{43}a-\frac{14}{43}$, $\frac{1}{43}a^{17}+\frac{16}{43}a^{14}-\frac{14}{43}a^{13}-\frac{2}{43}a^{12}+\frac{8}{43}a^{11}-\frac{14}{43}a^{10}-\frac{3}{43}a^{9}-\frac{19}{43}a^{8}+\frac{6}{43}a^{7}+\frac{1}{43}a^{6}+\frac{21}{43}a^{5}+\frac{11}{43}a^{4}-\frac{6}{43}a^{3}+\frac{5}{43}a^{2}-\frac{12}{43}a+\frac{1}{43}$, $\frac{1}{24\!\cdots\!71}a^{18}+\frac{24\!\cdots\!63}{24\!\cdots\!71}a^{17}+\frac{18\!\cdots\!45}{24\!\cdots\!71}a^{16}-\frac{61\!\cdots\!58}{24\!\cdots\!71}a^{15}-\frac{45\!\cdots\!90}{24\!\cdots\!71}a^{14}-\frac{10\!\cdots\!83}{24\!\cdots\!71}a^{13}+\frac{11\!\cdots\!79}{24\!\cdots\!71}a^{12}+\frac{12\!\cdots\!00}{24\!\cdots\!71}a^{11}+\frac{29\!\cdots\!70}{24\!\cdots\!71}a^{10}+\frac{77\!\cdots\!25}{24\!\cdots\!71}a^{9}+\frac{11\!\cdots\!61}{24\!\cdots\!71}a^{8}+\frac{61\!\cdots\!09}{24\!\cdots\!71}a^{7}-\frac{80\!\cdots\!60}{24\!\cdots\!71}a^{6}-\frac{78\!\cdots\!11}{24\!\cdots\!71}a^{5}-\frac{13\!\cdots\!45}{24\!\cdots\!71}a^{4}+\frac{62\!\cdots\!04}{24\!\cdots\!71}a^{3}-\frac{72\!\cdots\!36}{24\!\cdots\!71}a^{2}-\frac{10\!\cdots\!31}{24\!\cdots\!71}a-\frac{91\!\cdots\!20}{24\!\cdots\!71}$, $\frac{1}{18\!\cdots\!19}a^{19}+\frac{36\!\cdots\!16}{18\!\cdots\!19}a^{18}-\frac{13\!\cdots\!55}{18\!\cdots\!19}a^{17}+\frac{79\!\cdots\!45}{18\!\cdots\!19}a^{16}-\frac{19\!\cdots\!74}{18\!\cdots\!19}a^{15}+\frac{11\!\cdots\!27}{18\!\cdots\!19}a^{14}+\frac{17\!\cdots\!27}{42\!\cdots\!33}a^{13}-\frac{73\!\cdots\!06}{18\!\cdots\!19}a^{12}+\frac{17\!\cdots\!32}{18\!\cdots\!19}a^{11}-\frac{59\!\cdots\!69}{18\!\cdots\!19}a^{10}+\frac{27\!\cdots\!67}{79\!\cdots\!53}a^{9}+\frac{46\!\cdots\!62}{18\!\cdots\!19}a^{8}-\frac{64\!\cdots\!79}{18\!\cdots\!19}a^{7}-\frac{58\!\cdots\!67}{79\!\cdots\!53}a^{6}+\frac{37\!\cdots\!65}{18\!\cdots\!19}a^{5}+\frac{23\!\cdots\!68}{18\!\cdots\!19}a^{4}+\frac{31\!\cdots\!97}{18\!\cdots\!19}a^{3}+\frac{13\!\cdots\!45}{18\!\cdots\!19}a^{2}+\frac{12\!\cdots\!86}{18\!\cdots\!19}a-\frac{69\!\cdots\!71}{18\!\cdots\!19}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{530420}$, which has order $1060840$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{51\!\cdots\!20}{42\!\cdots\!33}a^{19}-\frac{13\!\cdots\!14}{18\!\cdots\!71}a^{18}-\frac{20\!\cdots\!14}{42\!\cdots\!33}a^{17}+\frac{13\!\cdots\!73}{42\!\cdots\!33}a^{16}+\frac{59\!\cdots\!52}{42\!\cdots\!33}a^{15}-\frac{37\!\cdots\!70}{42\!\cdots\!33}a^{14}-\frac{85\!\cdots\!98}{42\!\cdots\!33}a^{13}+\frac{56\!\cdots\!06}{42\!\cdots\!33}a^{12}+\frac{11\!\cdots\!98}{42\!\cdots\!33}a^{11}-\frac{65\!\cdots\!60}{42\!\cdots\!33}a^{10}-\frac{68\!\cdots\!90}{42\!\cdots\!33}a^{9}+\frac{43\!\cdots\!69}{42\!\cdots\!33}a^{8}+\frac{83\!\cdots\!70}{42\!\cdots\!33}a^{7}-\frac{30\!\cdots\!78}{42\!\cdots\!33}a^{6}-\frac{29\!\cdots\!12}{42\!\cdots\!33}a^{5}+\frac{90\!\cdots\!77}{42\!\cdots\!33}a^{4}+\frac{49\!\cdots\!24}{42\!\cdots\!33}a^{3}-\frac{62\!\cdots\!25}{42\!\cdots\!33}a^{2}-\frac{14\!\cdots\!48}{42\!\cdots\!33}a-\frac{64\!\cdots\!97}{42\!\cdots\!33}$, $\frac{55\!\cdots\!00}{42\!\cdots\!33}a^{19}+\frac{66\!\cdots\!66}{18\!\cdots\!71}a^{18}-\frac{13\!\cdots\!18}{42\!\cdots\!33}a^{17}-\frac{58\!\cdots\!41}{42\!\cdots\!33}a^{16}+\frac{56\!\cdots\!56}{42\!\cdots\!33}a^{15}+\frac{16\!\cdots\!56}{42\!\cdots\!33}a^{14}-\frac{14\!\cdots\!16}{42\!\cdots\!33}a^{13}-\frac{20\!\cdots\!61}{42\!\cdots\!33}a^{12}+\frac{22\!\cdots\!50}{42\!\cdots\!33}a^{11}+\frac{19\!\cdots\!39}{42\!\cdots\!33}a^{10}-\frac{22\!\cdots\!36}{42\!\cdots\!33}a^{9}+\frac{54\!\cdots\!52}{42\!\cdots\!33}a^{8}+\frac{12\!\cdots\!98}{42\!\cdots\!33}a^{7}-\frac{32\!\cdots\!87}{42\!\cdots\!33}a^{6}-\frac{62\!\cdots\!24}{42\!\cdots\!33}a^{5}+\frac{15\!\cdots\!17}{42\!\cdots\!33}a^{4}+\frac{14\!\cdots\!40}{42\!\cdots\!33}a^{3}+\frac{38\!\cdots\!79}{42\!\cdots\!33}a^{2}-\frac{94\!\cdots\!22}{42\!\cdots\!33}a+\frac{27\!\cdots\!10}{42\!\cdots\!33}$, $\frac{91\!\cdots\!32}{42\!\cdots\!33}a^{19}-\frac{12\!\cdots\!00}{18\!\cdots\!71}a^{18}+\frac{85\!\cdots\!60}{42\!\cdots\!33}a^{17}+\frac{11\!\cdots\!96}{42\!\cdots\!33}a^{16}-\frac{37\!\cdots\!40}{42\!\cdots\!33}a^{15}-\frac{31\!\cdots\!30}{42\!\cdots\!33}a^{14}+\frac{10\!\cdots\!94}{42\!\cdots\!33}a^{13}+\frac{40\!\cdots\!43}{42\!\cdots\!33}a^{12}-\frac{13\!\cdots\!96}{42\!\cdots\!33}a^{11}-\frac{49\!\cdots\!35}{42\!\cdots\!33}a^{10}+\frac{14\!\cdots\!78}{42\!\cdots\!33}a^{9}+\frac{17\!\cdots\!38}{42\!\cdots\!33}a^{8}-\frac{46\!\cdots\!44}{42\!\cdots\!33}a^{7}-\frac{25\!\cdots\!73}{42\!\cdots\!33}a^{6}+\frac{30\!\cdots\!80}{42\!\cdots\!33}a^{5}-\frac{14\!\cdots\!75}{42\!\cdots\!33}a^{4}+\frac{25\!\cdots\!40}{42\!\cdots\!33}a^{3}-\frac{10\!\cdots\!26}{42\!\cdots\!33}a^{2}-\frac{27\!\cdots\!54}{42\!\cdots\!33}a-\frac{47\!\cdots\!98}{42\!\cdots\!33}$, $\frac{14\!\cdots\!32}{42\!\cdots\!33}a^{19}-\frac{59\!\cdots\!34}{18\!\cdots\!71}a^{18}-\frac{47\!\cdots\!58}{42\!\cdots\!33}a^{17}+\frac{53\!\cdots\!55}{42\!\cdots\!33}a^{16}+\frac{18\!\cdots\!16}{42\!\cdots\!33}a^{15}-\frac{15\!\cdots\!74}{42\!\cdots\!33}a^{14}-\frac{40\!\cdots\!22}{42\!\cdots\!33}a^{13}+\frac{20\!\cdots\!82}{42\!\cdots\!33}a^{12}+\frac{82\!\cdots\!54}{42\!\cdots\!33}a^{11}-\frac{29\!\cdots\!96}{42\!\cdots\!33}a^{10}-\frac{84\!\cdots\!58}{42\!\cdots\!33}a^{9}+\frac{22\!\cdots\!90}{42\!\cdots\!33}a^{8}+\frac{79\!\cdots\!54}{42\!\cdots\!33}a^{7}-\frac{29\!\cdots\!60}{42\!\cdots\!33}a^{6}-\frac{32\!\cdots\!44}{42\!\cdots\!33}a^{5}+\frac{11\!\cdots\!42}{42\!\cdots\!33}a^{4}+\frac{26\!\cdots\!80}{42\!\cdots\!33}a^{3}-\frac{67\!\cdots\!47}{42\!\cdots\!33}a^{2}-\frac{12\!\cdots\!76}{42\!\cdots\!33}a-\frac{19\!\cdots\!88}{42\!\cdots\!33}$, $\frac{15\!\cdots\!38}{18\!\cdots\!19}a^{19}-\frac{49\!\cdots\!27}{18\!\cdots\!19}a^{18}-\frac{59\!\cdots\!05}{18\!\cdots\!19}a^{17}+\frac{17\!\cdots\!44}{18\!\cdots\!19}a^{16}+\frac{15\!\cdots\!18}{18\!\cdots\!19}a^{15}-\frac{35\!\cdots\!79}{18\!\cdots\!19}a^{14}-\frac{79\!\cdots\!13}{79\!\cdots\!53}a^{13}+\frac{47\!\cdots\!95}{18\!\cdots\!19}a^{12}+\frac{23\!\cdots\!27}{18\!\cdots\!19}a^{11}-\frac{42\!\cdots\!71}{18\!\cdots\!19}a^{10}-\frac{14\!\cdots\!05}{18\!\cdots\!19}a^{9}+\frac{66\!\cdots\!68}{18\!\cdots\!19}a^{8}+\frac{17\!\cdots\!39}{18\!\cdots\!19}a^{7}+\frac{28\!\cdots\!39}{18\!\cdots\!19}a^{6}+\frac{94\!\cdots\!07}{18\!\cdots\!19}a^{5}+\frac{74\!\cdots\!56}{18\!\cdots\!19}a^{4}+\frac{89\!\cdots\!24}{18\!\cdots\!19}a^{3}+\frac{23\!\cdots\!16}{18\!\cdots\!19}a^{2}-\frac{62\!\cdots\!17}{18\!\cdots\!19}a+\frac{34\!\cdots\!38}{18\!\cdots\!19}$, $\frac{11\!\cdots\!02}{18\!\cdots\!19}a^{19}-\frac{29\!\cdots\!43}{18\!\cdots\!19}a^{18}+\frac{35\!\cdots\!55}{18\!\cdots\!19}a^{17}+\frac{14\!\cdots\!40}{18\!\cdots\!19}a^{16}-\frac{30\!\cdots\!96}{18\!\cdots\!19}a^{15}-\frac{44\!\cdots\!34}{18\!\cdots\!19}a^{14}+\frac{10\!\cdots\!44}{18\!\cdots\!19}a^{13}+\frac{72\!\cdots\!18}{18\!\cdots\!19}a^{12}-\frac{18\!\cdots\!46}{18\!\cdots\!19}a^{11}-\frac{34\!\cdots\!38}{79\!\cdots\!53}a^{10}+\frac{20\!\cdots\!98}{18\!\cdots\!19}a^{9}+\frac{37\!\cdots\!18}{18\!\cdots\!19}a^{8}-\frac{11\!\cdots\!24}{18\!\cdots\!19}a^{7}-\frac{18\!\cdots\!28}{18\!\cdots\!19}a^{6}+\frac{19\!\cdots\!84}{18\!\cdots\!19}a^{5}-\frac{21\!\cdots\!63}{79\!\cdots\!53}a^{4}+\frac{93\!\cdots\!99}{18\!\cdots\!19}a^{3}-\frac{81\!\cdots\!34}{18\!\cdots\!19}a^{2}-\frac{99\!\cdots\!78}{18\!\cdots\!19}a-\frac{88\!\cdots\!18}{18\!\cdots\!19}$, $\frac{63\!\cdots\!44}{18\!\cdots\!19}a^{19}-\frac{55\!\cdots\!36}{18\!\cdots\!19}a^{18}-\frac{36\!\cdots\!40}{18\!\cdots\!19}a^{17}+\frac{32\!\cdots\!18}{18\!\cdots\!19}a^{16}+\frac{12\!\cdots\!44}{18\!\cdots\!19}a^{15}-\frac{10\!\cdots\!84}{18\!\cdots\!19}a^{14}-\frac{23\!\cdots\!60}{18\!\cdots\!19}a^{13}+\frac{19\!\cdots\!86}{18\!\cdots\!19}a^{12}+\frac{32\!\cdots\!06}{18\!\cdots\!19}a^{11}-\frac{26\!\cdots\!03}{18\!\cdots\!19}a^{10}-\frac{33\!\cdots\!29}{18\!\cdots\!19}a^{9}+\frac{19\!\cdots\!85}{18\!\cdots\!19}a^{8}+\frac{63\!\cdots\!66}{42\!\cdots\!33}a^{7}-\frac{16\!\cdots\!82}{18\!\cdots\!19}a^{6}-\frac{30\!\cdots\!26}{18\!\cdots\!19}a^{5}+\frac{22\!\cdots\!16}{18\!\cdots\!19}a^{4}+\frac{94\!\cdots\!27}{18\!\cdots\!19}a^{3}-\frac{41\!\cdots\!20}{18\!\cdots\!19}a^{2}-\frac{10\!\cdots\!06}{18\!\cdots\!19}a-\frac{48\!\cdots\!12}{79\!\cdots\!53}$, $\frac{44\!\cdots\!90}{18\!\cdots\!19}a^{19}+\frac{25\!\cdots\!87}{18\!\cdots\!19}a^{18}-\frac{70\!\cdots\!91}{79\!\cdots\!53}a^{17}-\frac{10\!\cdots\!74}{18\!\cdots\!19}a^{16}+\frac{68\!\cdots\!48}{18\!\cdots\!19}a^{15}+\frac{32\!\cdots\!14}{18\!\cdots\!19}a^{14}-\frac{17\!\cdots\!70}{18\!\cdots\!19}a^{13}-\frac{47\!\cdots\!04}{18\!\cdots\!19}a^{12}+\frac{24\!\cdots\!88}{18\!\cdots\!19}a^{11}+\frac{57\!\cdots\!52}{18\!\cdots\!19}a^{10}-\frac{24\!\cdots\!38}{18\!\cdots\!19}a^{9}-\frac{24\!\cdots\!92}{18\!\cdots\!19}a^{8}+\frac{11\!\cdots\!00}{18\!\cdots\!19}a^{7}+\frac{18\!\cdots\!09}{18\!\cdots\!19}a^{6}-\frac{37\!\cdots\!23}{18\!\cdots\!19}a^{5}+\frac{10\!\cdots\!06}{18\!\cdots\!19}a^{4}-\frac{34\!\cdots\!70}{42\!\cdots\!33}a^{3}+\frac{86\!\cdots\!32}{18\!\cdots\!19}a^{2}+\frac{35\!\cdots\!94}{18\!\cdots\!19}a-\frac{12\!\cdots\!33}{18\!\cdots\!19}$, $\frac{52\!\cdots\!58}{18\!\cdots\!19}a^{19}+\frac{39\!\cdots\!93}{18\!\cdots\!19}a^{18}-\frac{49\!\cdots\!79}{18\!\cdots\!19}a^{17}-\frac{17\!\cdots\!88}{18\!\cdots\!19}a^{16}+\frac{17\!\cdots\!18}{18\!\cdots\!19}a^{15}+\frac{58\!\cdots\!71}{18\!\cdots\!19}a^{14}-\frac{16\!\cdots\!57}{79\!\cdots\!53}a^{13}-\frac{96\!\cdots\!87}{18\!\cdots\!19}a^{12}+\frac{48\!\cdots\!33}{18\!\cdots\!19}a^{11}+\frac{13\!\cdots\!00}{18\!\cdots\!19}a^{10}-\frac{38\!\cdots\!74}{18\!\cdots\!19}a^{9}-\frac{77\!\cdots\!97}{18\!\cdots\!19}a^{8}+\frac{15\!\cdots\!03}{18\!\cdots\!19}a^{7}+\frac{77\!\cdots\!92}{18\!\cdots\!19}a^{6}+\frac{90\!\cdots\!84}{18\!\cdots\!19}a^{5}+\frac{18\!\cdots\!27}{18\!\cdots\!19}a^{4}-\frac{24\!\cdots\!32}{18\!\cdots\!19}a^{3}+\frac{26\!\cdots\!78}{18\!\cdots\!19}a^{2}+\frac{31\!\cdots\!17}{18\!\cdots\!19}a+\frac{18\!\cdots\!96}{18\!\cdots\!19}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 8013735.512306594 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 8013735.512306594 \cdot 1060840}{2\cdot\sqrt{7848304897073886403551554174576640000000000}}\cr\approx \mathstrut & 0.145500888811448 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 - 33*x^18 + 238*x^17 + 890*x^16 - 6260*x^15 - 8888*x^14 + 80734*x^13 + 112792*x^12 - 866142*x^11 + 64610*x^10 + 3714770*x^9 + 8810954*x^8 - 33816384*x^7 + 58532261*x^6 - 43081774*x^5 + 827188384*x^4 - 1045516946*x^3 + 3440960115*x^2 - 2632174544*x + 15777305149)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 6*x^19 - 33*x^18 + 238*x^17 + 890*x^16 - 6260*x^15 - 8888*x^14 + 80734*x^13 + 112792*x^12 - 866142*x^11 + 64610*x^10 + 3714770*x^9 + 8810954*x^8 - 33816384*x^7 + 58532261*x^6 - 43081774*x^5 + 827188384*x^4 - 1045516946*x^3 + 3440960115*x^2 - 2632174544*x + 15777305149, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 6*x^19 - 33*x^18 + 238*x^17 + 890*x^16 - 6260*x^15 - 8888*x^14 + 80734*x^13 + 112792*x^12 - 866142*x^11 + 64610*x^10 + 3714770*x^9 + 8810954*x^8 - 33816384*x^7 + 58532261*x^6 - 43081774*x^5 + 827188384*x^4 - 1045516946*x^3 + 3440960115*x^2 - 2632174544*x + 15777305149);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 6*x^19 - 33*x^18 + 238*x^17 + 890*x^16 - 6260*x^15 - 8888*x^14 + 80734*x^13 + 112792*x^12 - 866142*x^11 + 64610*x^10 + 3714770*x^9 + 8810954*x^8 - 33816384*x^7 + 58532261*x^6 - 43081774*x^5 + 827188384*x^4 - 1045516946*x^3 + 3440960115*x^2 - 2632174544*x + 15777305149);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{10}$ (as 20T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-105}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{7}, \sqrt{-15})\), \(\Q(\zeta_{11})^+\), 10.0.2801482624803139200000.1, 10.0.162778775259375.1, 10.10.3689195226078208.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R R R ${\href{/padicField/13.10.0.1}{10} }^{2}$ ${\href{/padicField/17.10.0.1}{10} }^{2}$ ${\href{/padicField/19.5.0.1}{5} }^{4}$ ${\href{/padicField/23.2.0.1}{2} }^{10}$ ${\href{/padicField/29.10.0.1}{10} }^{2}$ ${\href{/padicField/31.5.0.1}{5} }^{4}$ ${\href{/padicField/37.10.0.1}{10} }^{2}$ ${\href{/padicField/41.10.0.1}{10} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{10}$ ${\href{/padicField/47.5.0.1}{5} }^{4}$ ${\href{/padicField/53.5.0.1}{5} }^{4}$ ${\href{/padicField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.10.10.7$x^{10} + 10 x^{9} + 50 x^{8} + 160 x^{7} + 360 x^{6} + 592 x^{5} + 656 x^{4} + 384 x^{3} - 112 x^{2} - 352 x - 1248$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.7$x^{10} + 10 x^{9} + 50 x^{8} + 160 x^{7} + 360 x^{6} + 592 x^{5} + 656 x^{4} + 384 x^{3} - 112 x^{2} - 352 x - 1248$$2$$5$$10$$C_{10}$$[2]^{5}$
\(3\) Copy content Toggle raw display 3.10.5.1$x^{10} + 162 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
3.10.5.1$x^{10} + 162 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
\(5\) Copy content Toggle raw display Deg $20$$2$$10$$10$
\(7\) Copy content Toggle raw display 7.20.10.1$x^{20} + 70 x^{18} + 2207 x^{16} + 2 x^{15} + 41168 x^{14} - 68 x^{13} + 501639 x^{12} - 3674 x^{11} + 4175501 x^{10} - 48430 x^{9} + 24202032 x^{8} - 163712 x^{7} + 97377995 x^{6} + 430996 x^{5} + 259701777 x^{4} + 2947158 x^{3} + 412861211 x^{2} + 7541370 x + 287825400$$2$$10$$10$20T3$[\ ]_{2}^{10}$
\(11\) Copy content Toggle raw display 11.10.8.5$x^{10} + 35 x^{9} + 500 x^{8} + 3710 x^{7} + 14985 x^{6} + 31389 x^{5} + 30355 x^{4} + 19790 x^{3} + 37110 x^{2} + 111495 x + 148840$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} + 35 x^{9} + 500 x^{8} + 3710 x^{7} + 14985 x^{6} + 31389 x^{5} + 30355 x^{4} + 19790 x^{3} + 37110 x^{2} + 111495 x + 148840$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$