Properties

Label 22.0.577...104.1
Degree $22$
Signature $[0, 11]$
Discriminant $-5.779\times 10^{26}$
Root discriminant \(16.46\)
Ramified primes $2,73,577,53149,3293113$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{11}\wr C_2$ (as 22T57)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^20 - 2*x^19 + 5*x^18 + 6*x^17 - 5*x^16 - 12*x^15 + 2*x^14 + 18*x^13 + 4*x^12 - 18*x^11 - 11*x^10 + 14*x^9 + 14*x^8 - 8*x^7 - 11*x^6 + 2*x^5 + 8*x^4 - 4*x^2 + 1)
 
gp: K = bnfinit(y^22 - 2*y^20 - 2*y^19 + 5*y^18 + 6*y^17 - 5*y^16 - 12*y^15 + 2*y^14 + 18*y^13 + 4*y^12 - 18*y^11 - 11*y^10 + 14*y^9 + 14*y^8 - 8*y^7 - 11*y^6 + 2*y^5 + 8*y^4 - 4*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 2*x^20 - 2*x^19 + 5*x^18 + 6*x^17 - 5*x^16 - 12*x^15 + 2*x^14 + 18*x^13 + 4*x^12 - 18*x^11 - 11*x^10 + 14*x^9 + 14*x^8 - 8*x^7 - 11*x^6 + 2*x^5 + 8*x^4 - 4*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 2*x^20 - 2*x^19 + 5*x^18 + 6*x^17 - 5*x^16 - 12*x^15 + 2*x^14 + 18*x^13 + 4*x^12 - 18*x^11 - 11*x^10 + 14*x^9 + 14*x^8 - 8*x^7 - 11*x^6 + 2*x^5 + 8*x^4 - 4*x^2 + 1)
 

\( x^{22} - 2 x^{20} - 2 x^{19} + 5 x^{18} + 6 x^{17} - 5 x^{16} - 12 x^{15} + 2 x^{14} + 18 x^{13} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 11]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-577860666762298833296687104\) \(\medspace = -\,2^{30}\cdot 73^{2}\cdot 577\cdot 53149\cdot 3293113\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(16.46\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(73\), \(577\), \(53149\), \(3293113\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-100989807456949}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $10$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( 2 a^{21} - 3 a^{19} - 4 a^{18} + 8 a^{17} + 10 a^{16} - 5 a^{15} - 18 a^{14} - a^{13} + 24 a^{12} + 10 a^{11} - 18 a^{10} - 18 a^{9} + 11 a^{8} + 17 a^{7} - 3 a^{6} - 9 a^{5} - 2 a^{4} + 7 a^{3} + a^{2} - 2 a \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{21}-2a^{19}-2a^{18}+5a^{17}+6a^{16}-5a^{15}-12a^{14}+2a^{13}+18a^{12}+4a^{11}-18a^{10}-11a^{9}+14a^{8}+14a^{7}-8a^{6}-11a^{5}+2a^{4}+8a^{3}-4a$, $3a^{21}+a^{20}-4a^{19}-7a^{18}+10a^{17}+17a^{16}-3a^{15}-27a^{14}-6a^{13}+34a^{12}+20a^{11}-26a^{10}-30a^{9}+14a^{8}+28a^{7}-5a^{6}-18a^{5}-4a^{4}+12a^{3}+3a^{2}-4a-1$, $5a^{21}+2a^{20}-8a^{19}-14a^{18}+17a^{17}+35a^{16}-4a^{15}-57a^{14}-21a^{13}+68a^{12}+53a^{11}-49a^{10}-75a^{9}+18a^{8}+68a^{7}+4a^{6}-41a^{5}-17a^{4}+23a^{3}+12a^{2}-8a-4$, $2a^{21}+a^{20}-4a^{19}-6a^{18}+7a^{17}+16a^{16}-3a^{15}-26a^{14}-10a^{13}+31a^{12}+24a^{11}-24a^{10}-35a^{9}+8a^{8}+33a^{7}+2a^{6}-21a^{5}-9a^{4}+11a^{3}+8a^{2}-5a-3$, $a^{20}-2a^{18}-2a^{17}+4a^{16}+5a^{15}-4a^{14}-9a^{13}+11a^{11}+2a^{10}-10a^{9}-6a^{8}+5a^{7}+5a^{6}-4a^{5}-2a^{4}+2a^{2}-1$, $a^{19}-a^{17}-2a^{16}+4a^{15}+4a^{14}-a^{13}-8a^{12}+a^{11}+10a^{10}+5a^{9}-8a^{8}-7a^{7}+6a^{6}+8a^{5}-a^{4}-5a^{3}-a^{2}+3a+1$, $a^{4}-a+1$, $2a^{21}-2a^{19}-3a^{18}+7a^{17}+7a^{16}-4a^{15}-11a^{14}+3a^{13}+18a^{12}+a^{11}-14a^{10}-6a^{9}+14a^{8}+8a^{7}-10a^{6}-4a^{5}+3a^{4}+7a^{3}-3a^{2}-2a+2$, $2a^{21}+2a^{20}-2a^{19}-7a^{18}+2a^{17}+16a^{16}+10a^{15}-18a^{14}-24a^{13}+13a^{12}+37a^{11}+5a^{10}-36a^{9}-20a^{8}+23a^{7}+23a^{6}-8a^{5}-17a^{4}+2a^{3}+9a^{2}-3$, $a^{21}+3a^{20}-a^{19}-7a^{18}-3a^{17}+17a^{16}+15a^{15}-17a^{14}-32a^{13}+9a^{12}+46a^{11}+8a^{10}-44a^{9}-27a^{8}+30a^{7}+29a^{6}-14a^{5}-21a^{4}+2a^{3}+14a^{2}-5$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 65028.759848 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{11}\cdot 65028.759848 \cdot 1}{4\cdot\sqrt{577860666762298833296687104}}\cr\approx \mathstrut & 0.40748578691 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^20 - 2*x^19 + 5*x^18 + 6*x^17 - 5*x^16 - 12*x^15 + 2*x^14 + 18*x^13 + 4*x^12 - 18*x^11 - 11*x^10 + 14*x^9 + 14*x^8 - 8*x^7 - 11*x^6 + 2*x^5 + 8*x^4 - 4*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 - 2*x^20 - 2*x^19 + 5*x^18 + 6*x^17 - 5*x^16 - 12*x^15 + 2*x^14 + 18*x^13 + 4*x^12 - 18*x^11 - 11*x^10 + 14*x^9 + 14*x^8 - 8*x^7 - 11*x^6 + 2*x^5 + 8*x^4 - 4*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 - 2*x^20 - 2*x^19 + 5*x^18 + 6*x^17 - 5*x^16 - 12*x^15 + 2*x^14 + 18*x^13 + 4*x^12 - 18*x^11 - 11*x^10 + 14*x^9 + 14*x^8 - 8*x^7 - 11*x^6 + 2*x^5 + 8*x^4 - 4*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 2*x^20 - 2*x^19 + 5*x^18 + 6*x^17 - 5*x^16 - 12*x^15 + 2*x^14 + 18*x^13 + 4*x^12 - 18*x^11 - 11*x^10 + 14*x^9 + 14*x^8 - 8*x^7 - 11*x^6 + 2*x^5 + 8*x^4 - 4*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{11}\wr C_2$ (as 22T57):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 3186701844480000
The 1652 conjugacy class representatives for $S_{11}\wr C_2$
Character table for $S_{11}\wr C_2$

Intermediate fields

\(\Q(\sqrt{-1}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 44 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $22$ ${\href{/padicField/5.8.0.1}{8} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.11.0.1}{11} }{,}\,{\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ $20{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.8.0.1}{8} }^{2}{,}\,{\href{/padicField/23.6.0.1}{6} }$ ${\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ $20{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ $16{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}$ $16{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}$ ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.16.65$x^{8} + 2 x^{6} + 4 x^{3} + 4 x + 2$$8$$1$$16$$QD_{16}$$[2, 2, 5/2]^{2}$
2.14.14.38$x^{14} + 14 x^{13} + 98 x^{12} + 448 x^{11} + 1948 x^{10} + 8392 x^{9} + 30520 x^{8} + 84992 x^{7} + 178608 x^{6} + 284064 x^{5} + 325984 x^{4} + 242688 x^{3} + 97600 x^{2} + 11648 x - 5504$$2$$7$$14$$C_{14}$$[2]^{7}$
\(73\) Copy content Toggle raw display $\Q_{73}$$x + 68$$1$$1$$0$Trivial$[\ ]$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.1.1$x^{2} + 73$$2$$1$$1$$C_2$$[\ ]_{2}$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.1.1$x^{2} + 73$$2$$1$$1$$C_2$$[\ ]_{2}$
73.4.0.1$x^{4} + 16 x^{2} + 56 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
73.9.0.1$x^{9} + 72 x^{2} + 15 x + 68$$1$$9$$0$$C_9$$[\ ]^{9}$
\(577\) Copy content Toggle raw display $\Q_{577}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{577}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{577}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
\(53149\) Copy content Toggle raw display $\Q_{53149}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{53149}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
\(3293113\) Copy content Toggle raw display $\Q_{3293113}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $9$$1$$9$$0$$C_9$$[\ ]^{9}$