Properties

Label 22.2.302...024.1
Degree $22$
Signature $[2, 10]$
Discriminant $3.030\times 10^{27}$
Root discriminant \(17.75\)
Ramified primes $2,1583,2731,6217$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^{10}.S_{11}$ (as 22T51)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 + 3*x^20 - 11*x^16 - 24*x^14 - 24*x^12 + x^10 + 11*x^8 - 9*x^6 - 5*x^4 + 5*x^2 - 1)
 
gp: K = bnfinit(y^22 + 3*y^20 - 11*y^16 - 24*y^14 - 24*y^12 + y^10 + 11*y^8 - 9*y^6 - 5*y^4 + 5*y^2 - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 + 3*x^20 - 11*x^16 - 24*x^14 - 24*x^12 + x^10 + 11*x^8 - 9*x^6 - 5*x^4 + 5*x^2 - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 + 3*x^20 - 11*x^16 - 24*x^14 - 24*x^12 + x^10 + 11*x^8 - 9*x^6 - 5*x^4 + 5*x^2 - 1)
 

\( x^{22} + 3x^{20} - 11x^{16} - 24x^{14} - 24x^{12} + x^{10} + 11x^{8} - 9x^{6} - 5x^{4} + 5x^{2} - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(3029890053010200585803137024\) \(\medspace = 2^{22}\cdot 1583^{2}\cdot 2731^{2}\cdot 6217^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(17.75\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(1583\), \(2731\), \(6217\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $12a^{20}+20a^{18}-24a^{16}-95a^{14}-166a^{12}-89a^{10}+90a^{8}-14a^{6}-71a^{4}+35a^{2}-5$, $a$, $a^{19}+2a^{17}-2a^{15}-9a^{13}-15a^{11}-9a^{9}+10a^{7}+a^{5}-10a^{3}+4a$, $22a^{20}+35a^{18}-49a^{16}-172a^{14}-285a^{12}-129a^{10}+195a^{8}-45a^{6}-143a^{4}+90a^{2}-17$, $13a^{20}+19a^{18}-32a^{16}-99a^{14}-155a^{12}-50a^{10}+133a^{8}-34a^{6}-84a^{4}+60a^{2}-11$, $11a^{20}+19a^{18}-25a^{16}-90a^{14}-147a^{12}-71a^{10}+109a^{8}-20a^{6}-86a^{4}+54a^{2}-10$, $15a^{21}+26a^{19}-30a^{17}-122a^{15}-212a^{13}-116a^{11}+122a^{9}-7a^{7}-94a^{5}+47a^{3}-5a+1$, $13a^{21}+a^{20}+19a^{19}+3a^{18}-32a^{17}-a^{16}-99a^{15}-11a^{14}-155a^{13}-22a^{12}-50a^{11}-20a^{10}+133a^{9}+8a^{8}-34a^{7}+8a^{6}-84a^{5}-9a^{4}+60a^{3}+a^{2}-12a+1$, $7a^{21}+15a^{19}+2a^{18}-8a^{17}+5a^{16}-61a^{15}-3a^{14}-124a^{13}-20a^{12}-103a^{11}-37a^{10}+20a^{9}-29a^{8}+12a^{7}+18a^{6}-38a^{5}+9a^{4}+6a^{3}-19a^{2}+a+5$, $6a^{21}+4a^{20}+11a^{19}+8a^{18}-9a^{17}-7a^{16}-48a^{15}-35a^{14}-93a^{13}-63a^{12}-67a^{11}-42a^{10}+21a^{9}+31a^{8}-8a^{7}+4a^{6}-35a^{5}-30a^{4}+9a^{3}+11a^{2}-a-1$, $6a^{21}-5a^{20}+10a^{19}-7a^{18}-11a^{17}+11a^{16}-47a^{15}+37a^{14}-85a^{13}+62a^{12}-50a^{11}+23a^{10}+36a^{9}-41a^{8}-7a^{7}+8a^{6}-32a^{5}+24a^{4}+16a^{3}-11a^{2}-a+1$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 45090.7591736 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{10}\cdot 45090.7591736 \cdot 1}{2\cdot\sqrt{3029890053010200585803137024}}\cr\approx \mathstrut & 0.157109624982 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 + 3*x^20 - 11*x^16 - 24*x^14 - 24*x^12 + x^10 + 11*x^8 - 9*x^6 - 5*x^4 + 5*x^2 - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 + 3*x^20 - 11*x^16 - 24*x^14 - 24*x^12 + x^10 + 11*x^8 - 9*x^6 - 5*x^4 + 5*x^2 - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 + 3*x^20 - 11*x^16 - 24*x^14 - 24*x^12 + x^10 + 11*x^8 - 9*x^6 - 5*x^4 + 5*x^2 - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 + 3*x^20 - 11*x^16 - 24*x^14 - 24*x^12 + x^10 + 11*x^8 - 9*x^6 - 5*x^4 + 5*x^2 - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.S_{11}$ (as 22T51):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 40874803200
The 376 conjugacy class representatives for $C_2^{10}.S_{11}$
Character table for $C_2^{10}.S_{11}$

Intermediate fields

11.3.26877166541.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Degree 44 sibling: data not computed
Minimal sibling: 22.2.22175744575873036916503499520264786831563893893995877992071954808632453436026095819183932377428294448708837952947239256064.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.14.0.1}{14} }{,}\,{\href{/padicField/3.8.0.1}{8} }$ ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.4.0.1}{4} }$ ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.5.0.1}{5} }^{2}$ ${\href{/padicField/11.11.0.1}{11} }^{2}$ ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ ${\href{/padicField/17.11.0.1}{11} }^{2}$ ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.10.0.1}{10} }$ ${\href{/padicField/23.9.0.1}{9} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.7.0.1}{7} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.11.0.1}{11} }^{2}$ ${\href{/padicField/37.7.0.1}{7} }^{2}{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}$ $20{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.10.0.1}{10} }{,}\,{\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.10.10.9$x^{10} + 10 x^{9} + 22 x^{8} - 8 x^{7} + 72 x^{6} + 1328 x^{5} + 4496 x^{4} + 3680 x^{3} - 3696 x^{2} - 96 x - 32$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2, 2]^{5}$
2.12.12.5$x^{12} + 4 x^{11} + 24 x^{10} - 8 x^{9} + 140 x^{8} - 1488 x^{7} + 832 x^{6} - 10208 x^{5} + 20336 x^{4} + 12160 x^{3} + 113280 x^{2} + 139520 x + 45376$$2$$6$$12$12T51$[2, 2, 2, 2]^{6}$
\(1583\) Copy content Toggle raw display $\Q_{1583}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1583}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $4$$2$$2$$2$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
\(2731\) Copy content Toggle raw display $\Q_{2731}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{2731}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{2731}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{2731}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $4$$2$$2$$2$
Deg $12$$1$$12$$0$$C_{12}$$[\ ]^{12}$
\(6217\) Copy content Toggle raw display Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$2$$2$$2$
Deg $14$$1$$14$$0$$C_{14}$$[\ ]^{14}$