Properties

Label 22.6.616...125.2
Degree $22$
Signature $[6, 8]$
Discriminant $6.168\times 10^{33}$
Root discriminant \(34.35\)
Ramified primes $5,1831$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2\times \PSL(2,11)$ (as 22T13)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 + 5*x^20 + 14*x^19 - 14*x^18 + 142*x^17 - 5*x^16 + 272*x^15 + 173*x^14 + 218*x^13 + 72*x^12 + 64*x^11 - 24*x^10 - 523*x^9 - 90*x^8 - 459*x^7 + 102*x^6 - 56*x^5 + 85*x^4 + 4*x^3 + 7*x^2 - 4*x - 1)
 
gp: K = bnfinit(y^22 - 2*y^21 + 5*y^20 + 14*y^19 - 14*y^18 + 142*y^17 - 5*y^16 + 272*y^15 + 173*y^14 + 218*y^13 + 72*y^12 + 64*y^11 - 24*y^10 - 523*y^9 - 90*y^8 - 459*y^7 + 102*y^6 - 56*y^5 + 85*y^4 + 4*y^3 + 7*y^2 - 4*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 2*x^21 + 5*x^20 + 14*x^19 - 14*x^18 + 142*x^17 - 5*x^16 + 272*x^15 + 173*x^14 + 218*x^13 + 72*x^12 + 64*x^11 - 24*x^10 - 523*x^9 - 90*x^8 - 459*x^7 + 102*x^6 - 56*x^5 + 85*x^4 + 4*x^3 + 7*x^2 - 4*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 2*x^21 + 5*x^20 + 14*x^19 - 14*x^18 + 142*x^17 - 5*x^16 + 272*x^15 + 173*x^14 + 218*x^13 + 72*x^12 + 64*x^11 - 24*x^10 - 523*x^9 - 90*x^8 - 459*x^7 + 102*x^6 - 56*x^5 + 85*x^4 + 4*x^3 + 7*x^2 - 4*x - 1)
 

\( x^{22} - 2 x^{21} + 5 x^{20} + 14 x^{19} - 14 x^{18} + 142 x^{17} - 5 x^{16} + 272 x^{15} + 173 x^{14} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[6, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(6168460699614248235671671923828125\) \(\medspace = 5^{11}\cdot 1831^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(34.35\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}1831^{1/2}\approx 95.68176419778223$
Ramified primes:   \(5\), \(1831\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47}a^{20}+\frac{12}{47}a^{19}-\frac{7}{47}a^{18}+\frac{12}{47}a^{17}+\frac{4}{47}a^{16}+\frac{12}{47}a^{15}+\frac{7}{47}a^{14}-\frac{4}{47}a^{13}-\frac{15}{47}a^{12}+\frac{23}{47}a^{11}-\frac{8}{47}a^{10}-\frac{5}{47}a^{9}-\frac{17}{47}a^{8}-\frac{2}{47}a^{7}-\frac{19}{47}a^{6}+\frac{11}{47}a^{5}+\frac{10}{47}a^{4}-\frac{16}{47}a^{3}-\frac{12}{47}a^{2}-\frac{10}{47}a+\frac{6}{47}$, $\frac{1}{10\!\cdots\!67}a^{21}+\frac{38\!\cdots\!61}{10\!\cdots\!67}a^{20}-\frac{33\!\cdots\!53}{10\!\cdots\!67}a^{19}+\frac{33\!\cdots\!69}{10\!\cdots\!67}a^{18}+\frac{22\!\cdots\!31}{10\!\cdots\!67}a^{17}-\frac{38\!\cdots\!02}{10\!\cdots\!67}a^{16}+\frac{31\!\cdots\!34}{10\!\cdots\!67}a^{15}-\frac{36\!\cdots\!19}{10\!\cdots\!67}a^{14}+\frac{42\!\cdots\!03}{10\!\cdots\!67}a^{13}+\frac{15\!\cdots\!39}{10\!\cdots\!67}a^{12}-\frac{16\!\cdots\!87}{10\!\cdots\!67}a^{11}-\frac{54\!\cdots\!62}{10\!\cdots\!67}a^{10}+\frac{37\!\cdots\!33}{10\!\cdots\!67}a^{9}-\frac{35\!\cdots\!02}{10\!\cdots\!67}a^{8}+\frac{15\!\cdots\!28}{10\!\cdots\!67}a^{7}-\frac{13\!\cdots\!03}{10\!\cdots\!67}a^{6}+\frac{33\!\cdots\!48}{10\!\cdots\!67}a^{5}+\frac{10\!\cdots\!33}{10\!\cdots\!67}a^{4}+\frac{32\!\cdots\!59}{10\!\cdots\!67}a^{3}-\frac{29\!\cdots\!91}{10\!\cdots\!67}a^{2}+\frac{23\!\cdots\!34}{10\!\cdots\!67}a-\frac{44\!\cdots\!08}{10\!\cdots\!67}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{98\!\cdots\!00}{21\!\cdots\!61}a^{21}-\frac{15\!\cdots\!30}{21\!\cdots\!61}a^{20}+\frac{42\!\cdots\!22}{21\!\cdots\!61}a^{19}+\frac{15\!\cdots\!28}{21\!\cdots\!61}a^{18}-\frac{65\!\cdots\!38}{21\!\cdots\!61}a^{17}+\frac{13\!\cdots\!36}{21\!\cdots\!61}a^{16}+\frac{58\!\cdots\!32}{21\!\cdots\!61}a^{15}+\frac{29\!\cdots\!70}{21\!\cdots\!61}a^{14}+\frac{30\!\cdots\!39}{21\!\cdots\!61}a^{13}+\frac{35\!\cdots\!04}{21\!\cdots\!61}a^{12}+\frac{23\!\cdots\!90}{21\!\cdots\!61}a^{11}+\frac{17\!\cdots\!72}{21\!\cdots\!61}a^{10}+\frac{56\!\cdots\!38}{21\!\cdots\!61}a^{9}-\frac{48\!\cdots\!30}{21\!\cdots\!61}a^{8}-\frac{31\!\cdots\!79}{21\!\cdots\!61}a^{7}-\frac{59\!\cdots\!24}{21\!\cdots\!61}a^{6}-\frac{17\!\cdots\!72}{21\!\cdots\!61}a^{5}-\frac{13\!\cdots\!57}{21\!\cdots\!61}a^{4}+\frac{20\!\cdots\!80}{21\!\cdots\!61}a^{3}+\frac{13\!\cdots\!70}{21\!\cdots\!61}a^{2}+\frac{13\!\cdots\!98}{21\!\cdots\!61}a+\frac{56\!\cdots\!83}{21\!\cdots\!61}$, $\frac{22\!\cdots\!28}{10\!\cdots\!67}a^{21}-\frac{22\!\cdots\!22}{10\!\cdots\!67}a^{20}+\frac{75\!\cdots\!18}{10\!\cdots\!67}a^{19}+\frac{41\!\cdots\!99}{10\!\cdots\!67}a^{18}+\frac{52\!\cdots\!15}{10\!\cdots\!67}a^{17}+\frac{30\!\cdots\!94}{10\!\cdots\!67}a^{16}+\frac{30\!\cdots\!47}{10\!\cdots\!67}a^{15}+\frac{72\!\cdots\!98}{10\!\cdots\!67}a^{14}+\frac{10\!\cdots\!82}{10\!\cdots\!67}a^{13}+\frac{11\!\cdots\!95}{10\!\cdots\!67}a^{12}+\frac{78\!\cdots\!55}{10\!\cdots\!67}a^{11}+\frac{51\!\cdots\!66}{10\!\cdots\!67}a^{10}+\frac{19\!\cdots\!98}{10\!\cdots\!67}a^{9}-\frac{11\!\cdots\!01}{10\!\cdots\!67}a^{8}-\frac{14\!\cdots\!12}{10\!\cdots\!67}a^{7}-\frac{16\!\cdots\!96}{10\!\cdots\!67}a^{6}-\frac{80\!\cdots\!76}{10\!\cdots\!67}a^{5}-\frac{34\!\cdots\!91}{10\!\cdots\!67}a^{4}+\frac{11\!\cdots\!43}{10\!\cdots\!67}a^{3}+\frac{40\!\cdots\!96}{10\!\cdots\!67}a^{2}+\frac{59\!\cdots\!90}{10\!\cdots\!67}a+\frac{43\!\cdots\!16}{10\!\cdots\!67}$, $\frac{45\!\cdots\!70}{21\!\cdots\!61}a^{21}-\frac{70\!\cdots\!78}{21\!\cdots\!61}a^{20}+\frac{19\!\cdots\!28}{21\!\cdots\!61}a^{19}+\frac{72\!\cdots\!62}{21\!\cdots\!61}a^{18}-\frac{30\!\cdots\!64}{21\!\cdots\!61}a^{17}+\frac{63\!\cdots\!32}{21\!\cdots\!61}a^{16}+\frac{26\!\cdots\!70}{21\!\cdots\!61}a^{15}+\frac{13\!\cdots\!39}{21\!\cdots\!61}a^{14}+\frac{14\!\cdots\!04}{21\!\cdots\!61}a^{13}+\frac{16\!\cdots\!90}{21\!\cdots\!61}a^{12}+\frac{10\!\cdots\!72}{21\!\cdots\!61}a^{11}+\frac{80\!\cdots\!38}{21\!\cdots\!61}a^{10}+\frac{25\!\cdots\!70}{21\!\cdots\!61}a^{9}-\frac{22\!\cdots\!79}{21\!\cdots\!61}a^{8}-\frac{14\!\cdots\!24}{21\!\cdots\!61}a^{7}-\frac{27\!\cdots\!72}{21\!\cdots\!61}a^{6}-\frac{81\!\cdots\!57}{21\!\cdots\!61}a^{5}-\frac{63\!\cdots\!20}{21\!\cdots\!61}a^{4}+\frac{95\!\cdots\!70}{21\!\cdots\!61}a^{3}+\frac{62\!\cdots\!98}{21\!\cdots\!61}a^{2}+\frac{95\!\cdots\!83}{21\!\cdots\!61}a+\frac{98\!\cdots\!00}{21\!\cdots\!61}$, $\frac{13\!\cdots\!28}{10\!\cdots\!67}a^{21}-\frac{21\!\cdots\!57}{10\!\cdots\!67}a^{20}+\frac{57\!\cdots\!40}{10\!\cdots\!67}a^{19}+\frac{20\!\cdots\!85}{10\!\cdots\!67}a^{18}-\frac{10\!\cdots\!93}{10\!\cdots\!67}a^{17}+\frac{18\!\cdots\!74}{10\!\cdots\!67}a^{16}+\frac{66\!\cdots\!32}{10\!\cdots\!67}a^{15}+\frac{38\!\cdots\!73}{10\!\cdots\!67}a^{14}+\frac{38\!\cdots\!38}{10\!\cdots\!67}a^{13}+\frac{44\!\cdots\!36}{10\!\cdots\!67}a^{12}+\frac{26\!\cdots\!28}{10\!\cdots\!67}a^{11}+\frac{19\!\cdots\!66}{10\!\cdots\!67}a^{10}+\frac{47\!\cdots\!71}{10\!\cdots\!67}a^{9}-\frac{66\!\cdots\!91}{10\!\cdots\!67}a^{8}-\frac{38\!\cdots\!07}{10\!\cdots\!67}a^{7}-\frac{75\!\cdots\!15}{10\!\cdots\!67}a^{6}-\frac{16\!\cdots\!18}{10\!\cdots\!67}a^{5}-\frac{14\!\cdots\!13}{10\!\cdots\!67}a^{4}+\frac{51\!\cdots\!38}{10\!\cdots\!67}a^{3}+\frac{21\!\cdots\!46}{10\!\cdots\!67}a^{2}+\frac{16\!\cdots\!52}{10\!\cdots\!67}a+\frac{15\!\cdots\!34}{10\!\cdots\!67}$, $\frac{53\!\cdots\!63}{10\!\cdots\!67}a^{21}-\frac{79\!\cdots\!60}{10\!\cdots\!67}a^{20}+\frac{23\!\cdots\!52}{10\!\cdots\!67}a^{19}+\frac{84\!\cdots\!55}{10\!\cdots\!67}a^{18}-\frac{25\!\cdots\!61}{10\!\cdots\!67}a^{17}+\frac{75\!\cdots\!20}{10\!\cdots\!67}a^{16}+\frac{33\!\cdots\!71}{10\!\cdots\!67}a^{15}+\frac{17\!\cdots\!64}{10\!\cdots\!67}a^{14}+\frac{16\!\cdots\!12}{10\!\cdots\!67}a^{13}+\frac{22\!\cdots\!27}{10\!\cdots\!67}a^{12}+\frac{14\!\cdots\!65}{10\!\cdots\!67}a^{11}+\frac{10\!\cdots\!48}{10\!\cdots\!67}a^{10}+\frac{28\!\cdots\!67}{10\!\cdots\!67}a^{9}-\frac{26\!\cdots\!69}{10\!\cdots\!67}a^{8}-\frac{19\!\cdots\!88}{10\!\cdots\!67}a^{7}-\frac{37\!\cdots\!17}{10\!\cdots\!67}a^{6}-\frac{93\!\cdots\!52}{10\!\cdots\!67}a^{5}-\frac{92\!\cdots\!67}{10\!\cdots\!67}a^{4}+\frac{29\!\cdots\!27}{10\!\cdots\!67}a^{3}+\frac{78\!\cdots\!10}{10\!\cdots\!67}a^{2}+\frac{10\!\cdots\!16}{10\!\cdots\!67}a+\frac{54\!\cdots\!43}{10\!\cdots\!67}$, $\frac{15\!\cdots\!45}{10\!\cdots\!67}a^{21}-\frac{61\!\cdots\!29}{10\!\cdots\!67}a^{20}+\frac{12\!\cdots\!94}{10\!\cdots\!67}a^{19}-\frac{26\!\cdots\!92}{10\!\cdots\!67}a^{18}-\frac{85\!\cdots\!97}{10\!\cdots\!67}a^{17}+\frac{10\!\cdots\!88}{10\!\cdots\!67}a^{16}-\frac{81\!\cdots\!70}{10\!\cdots\!67}a^{15}+\frac{36\!\cdots\!30}{10\!\cdots\!67}a^{14}-\frac{14\!\cdots\!00}{10\!\cdots\!67}a^{13}-\frac{10\!\cdots\!75}{10\!\cdots\!67}a^{12}-\frac{11\!\cdots\!54}{10\!\cdots\!67}a^{11}-\frac{44\!\cdots\!74}{10\!\cdots\!67}a^{10}-\frac{37\!\cdots\!58}{10\!\cdots\!67}a^{9}-\frac{27\!\cdots\!46}{10\!\cdots\!67}a^{8}+\frac{30\!\cdots\!05}{10\!\cdots\!67}a^{7}+\frac{49\!\cdots\!25}{10\!\cdots\!67}a^{6}+\frac{24\!\cdots\!45}{10\!\cdots\!67}a^{5}-\frac{42\!\cdots\!45}{10\!\cdots\!67}a^{4}+\frac{22\!\cdots\!18}{10\!\cdots\!67}a^{3}-\frac{26\!\cdots\!10}{10\!\cdots\!67}a^{2}-\frac{40\!\cdots\!87}{10\!\cdots\!67}a+\frac{75\!\cdots\!39}{10\!\cdots\!67}$, $\frac{10\!\cdots\!54}{10\!\cdots\!67}a^{21}-\frac{15\!\cdots\!67}{10\!\cdots\!67}a^{20}+\frac{43\!\cdots\!65}{10\!\cdots\!67}a^{19}+\frac{16\!\cdots\!98}{10\!\cdots\!67}a^{18}-\frac{69\!\cdots\!27}{10\!\cdots\!67}a^{17}+\frac{14\!\cdots\!95}{10\!\cdots\!67}a^{16}+\frac{12\!\cdots\!89}{21\!\cdots\!61}a^{15}+\frac{29\!\cdots\!15}{10\!\cdots\!67}a^{14}+\frac{30\!\cdots\!37}{10\!\cdots\!67}a^{13}+\frac{35\!\cdots\!67}{10\!\cdots\!67}a^{12}+\frac{21\!\cdots\!28}{10\!\cdots\!67}a^{11}+\frac{14\!\cdots\!78}{10\!\cdots\!67}a^{10}+\frac{34\!\cdots\!85}{10\!\cdots\!67}a^{9}-\frac{52\!\cdots\!29}{10\!\cdots\!67}a^{8}-\frac{33\!\cdots\!50}{10\!\cdots\!67}a^{7}-\frac{59\!\cdots\!64}{10\!\cdots\!67}a^{6}-\frac{13\!\cdots\!07}{10\!\cdots\!67}a^{5}-\frac{10\!\cdots\!00}{10\!\cdots\!67}a^{4}+\frac{48\!\cdots\!80}{10\!\cdots\!67}a^{3}+\frac{17\!\cdots\!47}{10\!\cdots\!67}a^{2}+\frac{14\!\cdots\!46}{10\!\cdots\!67}a+\frac{67\!\cdots\!34}{10\!\cdots\!67}$, $\frac{40\!\cdots\!71}{10\!\cdots\!67}a^{21}-\frac{40\!\cdots\!59}{10\!\cdots\!67}a^{20}+\frac{14\!\cdots\!02}{10\!\cdots\!67}a^{19}+\frac{71\!\cdots\!73}{10\!\cdots\!67}a^{18}+\frac{12\!\cdots\!55}{10\!\cdots\!67}a^{17}+\frac{53\!\cdots\!26}{10\!\cdots\!67}a^{16}+\frac{50\!\cdots\!00}{10\!\cdots\!67}a^{15}+\frac{13\!\cdots\!69}{10\!\cdots\!67}a^{14}+\frac{16\!\cdots\!30}{10\!\cdots\!67}a^{13}+\frac{21\!\cdots\!79}{10\!\cdots\!67}a^{12}+\frac{14\!\cdots\!44}{10\!\cdots\!67}a^{11}+\frac{93\!\cdots\!98}{10\!\cdots\!67}a^{10}+\frac{34\!\cdots\!13}{10\!\cdots\!67}a^{9}-\frac{19\!\cdots\!33}{10\!\cdots\!67}a^{8}-\frac{24\!\cdots\!09}{10\!\cdots\!67}a^{7}-\frac{32\!\cdots\!16}{10\!\cdots\!67}a^{6}-\frac{12\!\cdots\!60}{10\!\cdots\!67}a^{5}-\frac{82\!\cdots\!03}{10\!\cdots\!67}a^{4}+\frac{25\!\cdots\!71}{10\!\cdots\!67}a^{3}+\frac{58\!\cdots\!90}{10\!\cdots\!67}a^{2}+\frac{11\!\cdots\!28}{10\!\cdots\!67}a+\frac{10\!\cdots\!28}{10\!\cdots\!67}$, $\frac{13\!\cdots\!59}{10\!\cdots\!67}a^{21}-\frac{26\!\cdots\!42}{10\!\cdots\!67}a^{20}+\frac{67\!\cdots\!53}{10\!\cdots\!67}a^{19}+\frac{18\!\cdots\!58}{10\!\cdots\!67}a^{18}-\frac{18\!\cdots\!21}{10\!\cdots\!67}a^{17}+\frac{18\!\cdots\!96}{10\!\cdots\!67}a^{16}-\frac{10\!\cdots\!50}{10\!\cdots\!67}a^{15}+\frac{37\!\cdots\!66}{10\!\cdots\!67}a^{14}+\frac{22\!\cdots\!55}{10\!\cdots\!67}a^{13}+\frac{31\!\cdots\!10}{10\!\cdots\!67}a^{12}+\frac{11\!\cdots\!13}{10\!\cdots\!67}a^{11}+\frac{11\!\cdots\!06}{10\!\cdots\!67}a^{10}-\frac{16\!\cdots\!23}{10\!\cdots\!67}a^{9}-\frac{67\!\cdots\!02}{10\!\cdots\!67}a^{8}-\frac{10\!\cdots\!04}{10\!\cdots\!67}a^{7}-\frac{66\!\cdots\!45}{10\!\cdots\!67}a^{6}+\frac{11\!\cdots\!80}{10\!\cdots\!67}a^{5}-\frac{13\!\cdots\!63}{10\!\cdots\!67}a^{4}+\frac{10\!\cdots\!66}{10\!\cdots\!67}a^{3}-\frac{54\!\cdots\!02}{10\!\cdots\!67}a^{2}+\frac{14\!\cdots\!93}{10\!\cdots\!67}a-\frac{45\!\cdots\!19}{10\!\cdots\!67}$, $\frac{40\!\cdots\!19}{10\!\cdots\!67}a^{21}-\frac{69\!\cdots\!91}{10\!\cdots\!67}a^{20}+\frac{16\!\cdots\!68}{10\!\cdots\!67}a^{19}+\frac{66\!\cdots\!36}{10\!\cdots\!67}a^{18}-\frac{47\!\cdots\!23}{10\!\cdots\!67}a^{17}+\frac{54\!\cdots\!51}{10\!\cdots\!67}a^{16}+\frac{18\!\cdots\!33}{10\!\cdots\!67}a^{15}+\frac{92\!\cdots\!29}{10\!\cdots\!67}a^{14}+\frac{11\!\cdots\!52}{10\!\cdots\!67}a^{13}+\frac{87\!\cdots\!96}{10\!\cdots\!67}a^{12}+\frac{59\!\cdots\!14}{10\!\cdots\!67}a^{11}+\frac{46\!\cdots\!94}{10\!\cdots\!67}a^{10}+\frac{21\!\cdots\!68}{10\!\cdots\!67}a^{9}-\frac{20\!\cdots\!83}{10\!\cdots\!67}a^{8}-\frac{88\!\cdots\!43}{10\!\cdots\!67}a^{7}-\frac{13\!\cdots\!22}{10\!\cdots\!67}a^{6}-\frac{62\!\cdots\!38}{10\!\cdots\!67}a^{5}-\frac{42\!\cdots\!79}{10\!\cdots\!67}a^{4}-\frac{22\!\cdots\!60}{10\!\cdots\!67}a^{3}+\frac{53\!\cdots\!74}{10\!\cdots\!67}a^{2}+\frac{27\!\cdots\!68}{10\!\cdots\!67}a+\frac{31\!\cdots\!33}{10\!\cdots\!67}$, $\frac{21\!\cdots\!49}{21\!\cdots\!61}a^{21}-\frac{18\!\cdots\!82}{10\!\cdots\!67}a^{20}+\frac{46\!\cdots\!37}{10\!\cdots\!67}a^{19}+\frac{15\!\cdots\!57}{10\!\cdots\!67}a^{18}-\frac{12\!\cdots\!90}{10\!\cdots\!67}a^{17}+\frac{13\!\cdots\!55}{10\!\cdots\!67}a^{16}+\frac{19\!\cdots\!76}{10\!\cdots\!67}a^{15}+\frac{26\!\cdots\!27}{10\!\cdots\!67}a^{14}+\frac{22\!\cdots\!06}{10\!\cdots\!67}a^{13}+\frac{23\!\cdots\!82}{10\!\cdots\!67}a^{12}+\frac{11\!\cdots\!24}{10\!\cdots\!67}a^{11}+\frac{94\!\cdots\!65}{10\!\cdots\!67}a^{10}+\frac{10\!\cdots\!60}{10\!\cdots\!67}a^{9}-\frac{51\!\cdots\!49}{10\!\cdots\!67}a^{8}-\frac{16\!\cdots\!74}{10\!\cdots\!67}a^{7}-\frac{43\!\cdots\!94}{10\!\cdots\!67}a^{6}-\frac{14\!\cdots\!00}{10\!\cdots\!67}a^{5}-\frac{57\!\cdots\!96}{10\!\cdots\!67}a^{4}+\frac{35\!\cdots\!49}{10\!\cdots\!67}a^{3}+\frac{69\!\cdots\!78}{10\!\cdots\!67}a^{2}+\frac{76\!\cdots\!61}{10\!\cdots\!67}a+\frac{99\!\cdots\!26}{10\!\cdots\!67}$, $\frac{17\!\cdots\!00}{10\!\cdots\!67}a^{21}-\frac{50\!\cdots\!34}{10\!\cdots\!67}a^{20}+\frac{11\!\cdots\!81}{10\!\cdots\!67}a^{19}+\frac{19\!\cdots\!25}{10\!\cdots\!67}a^{18}-\frac{50\!\cdots\!50}{10\!\cdots\!67}a^{17}+\frac{26\!\cdots\!19}{10\!\cdots\!67}a^{16}-\frac{20\!\cdots\!31}{10\!\cdots\!67}a^{15}+\frac{40\!\cdots\!06}{10\!\cdots\!67}a^{14}-\frac{12\!\cdots\!68}{10\!\cdots\!67}a^{13}-\frac{11\!\cdots\!79}{10\!\cdots\!67}a^{12}-\frac{16\!\cdots\!19}{10\!\cdots\!67}a^{11}+\frac{25\!\cdots\!32}{10\!\cdots\!67}a^{10}-\frac{75\!\cdots\!46}{10\!\cdots\!67}a^{9}-\frac{90\!\cdots\!10}{10\!\cdots\!67}a^{8}+\frac{65\!\cdots\!83}{10\!\cdots\!67}a^{7}-\frac{39\!\cdots\!03}{10\!\cdots\!67}a^{6}+\frac{57\!\cdots\!18}{10\!\cdots\!67}a^{5}-\frac{11\!\cdots\!69}{10\!\cdots\!67}a^{4}+\frac{11\!\cdots\!07}{10\!\cdots\!67}a^{3}-\frac{49\!\cdots\!11}{10\!\cdots\!67}a^{2}+\frac{54\!\cdots\!57}{10\!\cdots\!67}a+\frac{35\!\cdots\!39}{10\!\cdots\!67}$, $\frac{36\!\cdots\!78}{10\!\cdots\!67}a^{21}-\frac{58\!\cdots\!14}{10\!\cdots\!67}a^{20}+\frac{16\!\cdots\!45}{10\!\cdots\!67}a^{19}+\frac{58\!\cdots\!93}{10\!\cdots\!67}a^{18}-\frac{26\!\cdots\!03}{10\!\cdots\!67}a^{17}+\frac{51\!\cdots\!83}{10\!\cdots\!67}a^{16}+\frac{19\!\cdots\!73}{10\!\cdots\!67}a^{15}+\frac{10\!\cdots\!38}{10\!\cdots\!67}a^{14}+\frac{10\!\cdots\!44}{10\!\cdots\!67}a^{13}+\frac{12\!\cdots\!90}{10\!\cdots\!67}a^{12}+\frac{80\!\cdots\!60}{10\!\cdots\!67}a^{11}+\frac{57\!\cdots\!42}{10\!\cdots\!67}a^{10}+\frac{15\!\cdots\!07}{10\!\cdots\!67}a^{9}-\frac{18\!\cdots\!27}{10\!\cdots\!67}a^{8}-\frac{11\!\cdots\!13}{10\!\cdots\!67}a^{7}-\frac{21\!\cdots\!04}{10\!\cdots\!67}a^{6}-\frac{53\!\cdots\!31}{10\!\cdots\!67}a^{5}-\frac{45\!\cdots\!71}{10\!\cdots\!67}a^{4}+\frac{14\!\cdots\!49}{10\!\cdots\!67}a^{3}+\frac{69\!\cdots\!04}{10\!\cdots\!67}a^{2}+\frac{59\!\cdots\!77}{10\!\cdots\!67}a+\frac{97\!\cdots\!32}{10\!\cdots\!67}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 185058540.947 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{8}\cdot 185058540.947 \cdot 1}{2\cdot\sqrt{6168460699614248235671671923828125}}\cr\approx \mathstrut & 0.183151153351 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 + 5*x^20 + 14*x^19 - 14*x^18 + 142*x^17 - 5*x^16 + 272*x^15 + 173*x^14 + 218*x^13 + 72*x^12 + 64*x^11 - 24*x^10 - 523*x^9 - 90*x^8 - 459*x^7 + 102*x^6 - 56*x^5 + 85*x^4 + 4*x^3 + 7*x^2 - 4*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 - 2*x^21 + 5*x^20 + 14*x^19 - 14*x^18 + 142*x^17 - 5*x^16 + 272*x^15 + 173*x^14 + 218*x^13 + 72*x^12 + 64*x^11 - 24*x^10 - 523*x^9 - 90*x^8 - 459*x^7 + 102*x^6 - 56*x^5 + 85*x^4 + 4*x^3 + 7*x^2 - 4*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 - 2*x^21 + 5*x^20 + 14*x^19 - 14*x^18 + 142*x^17 - 5*x^16 + 272*x^15 + 173*x^14 + 218*x^13 + 72*x^12 + 64*x^11 - 24*x^10 - 523*x^9 - 90*x^8 - 459*x^7 + 102*x^6 - 56*x^5 + 85*x^4 + 4*x^3 + 7*x^2 - 4*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 2*x^21 + 5*x^20 + 14*x^19 - 14*x^18 + 142*x^17 - 5*x^16 + 272*x^15 + 173*x^14 + 218*x^13 + 72*x^12 + 64*x^11 - 24*x^10 - 523*x^9 - 90*x^8 - 459*x^7 + 102*x^6 - 56*x^5 + 85*x^4 + 4*x^3 + 7*x^2 - 4*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times \PSL(2,11)$ (as 22T13):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 1320
The 16 conjugacy class representatives for $C_2\times \PSL(2,11)$
Character table for $C_2\times \PSL(2,11)$

Intermediate fields

\(\Q(\sqrt{5}) \), 11.3.11239665258721.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 24 sibling: data not computed
Arithmetically equvalently siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $22$ ${\href{/padicField/3.10.0.1}{10} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }$ R ${\href{/padicField/7.10.0.1}{10} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ ${\href{/padicField/11.11.0.1}{11} }^{2}$ ${\href{/padicField/13.10.0.1}{10} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.10.0.1}{10} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.3.0.1}{3} }^{6}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.6.0.1}{6} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.11.0.1}{11} }^{2}$ ${\href{/padicField/37.6.0.1}{6} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.5.0.1}{5} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{11}$ ${\href{/padicField/53.2.0.1}{2} }^{11}$ ${\href{/padicField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.22.11.1$x^{22} + 220 x^{21} + 22055 x^{20} + 1331000 x^{19} + 53791375 x^{18} + 1531447500 x^{17} + 31435820625 x^{16} + 467679300000 x^{15} + 4991151206250 x^{14} + 37171668875000 x^{13} + 183624733943756 x^{12} + 553513923250726 x^{11} + 918123669784090 x^{10} + 929291725767350 x^{9} + 623894056087500 x^{8} + 292303912609500 x^{7} + 98324330218125 x^{6} + 25190924781000 x^{5} + 17099014728125 x^{4} + 90189081743750 x^{3} + 391939091809384 x^{2} + 906877245981448 x + 669277565422109$$2$$11$$11$22T1$[\ ]_{2}^{11}$
\(1831\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $6$$2$$3$$3$
Deg $6$$2$$3$$3$