Properties

Label 23.23.542...529.1
Degree $23$
Signature $[23, 0]$
Discriminant $5.427\times 10^{53}$
Root discriminant \(216.91\)
Ramified prime $277$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{23}$ (as 23T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^23 - x^22 - 132*x^21 + 269*x^20 + 6722*x^19 - 19118*x^18 - 167488*x^17 + 601226*x^16 + 2127300*x^15 - 9664345*x^14 - 12698450*x^13 + 83446410*x^12 + 19888027*x^11 - 390244377*x^10 + 110929757*x^9 + 994369765*x^8 - 511651057*x^7 - 1370318108*x^6 + 775297206*x^5 + 972267257*x^4 - 466392148*x^3 - 312747839*x^2 + 85444683*x + 38737459)
 
gp: K = bnfinit(y^23 - y^22 - 132*y^21 + 269*y^20 + 6722*y^19 - 19118*y^18 - 167488*y^17 + 601226*y^16 + 2127300*y^15 - 9664345*y^14 - 12698450*y^13 + 83446410*y^12 + 19888027*y^11 - 390244377*y^10 + 110929757*y^9 + 994369765*y^8 - 511651057*y^7 - 1370318108*y^6 + 775297206*y^5 + 972267257*y^4 - 466392148*y^3 - 312747839*y^2 + 85444683*y + 38737459, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^23 - x^22 - 132*x^21 + 269*x^20 + 6722*x^19 - 19118*x^18 - 167488*x^17 + 601226*x^16 + 2127300*x^15 - 9664345*x^14 - 12698450*x^13 + 83446410*x^12 + 19888027*x^11 - 390244377*x^10 + 110929757*x^9 + 994369765*x^8 - 511651057*x^7 - 1370318108*x^6 + 775297206*x^5 + 972267257*x^4 - 466392148*x^3 - 312747839*x^2 + 85444683*x + 38737459);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 - x^22 - 132*x^21 + 269*x^20 + 6722*x^19 - 19118*x^18 - 167488*x^17 + 601226*x^16 + 2127300*x^15 - 9664345*x^14 - 12698450*x^13 + 83446410*x^12 + 19888027*x^11 - 390244377*x^10 + 110929757*x^9 + 994369765*x^8 - 511651057*x^7 - 1370318108*x^6 + 775297206*x^5 + 972267257*x^4 - 466392148*x^3 - 312747839*x^2 + 85444683*x + 38737459)
 

\( x^{23} - x^{22} - 132 x^{21} + 269 x^{20} + 6722 x^{19} - 19118 x^{18} - 167488 x^{17} + 601226 x^{16} + \cdots + 38737459 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $23$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[23, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(542693874230042671882983450092579839839306394717839529\) \(\medspace = 277^{22}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(216.91\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $277^{22/23}\approx 216.9127081280127$
Ramified primes:   \(277\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $23$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(277\)
Dirichlet character group:    $\lbrace$$\chi_{277}(256,·)$, $\chi_{277}(1,·)$, $\chi_{277}(131,·)$, $\chi_{277}(69,·)$, $\chi_{277}(264,·)$, $\chi_{277}(201,·)$, $\chi_{277}(203,·)$, $\chi_{277}(16,·)$, $\chi_{277}(273,·)$, $\chi_{277}(19,·)$, $\chi_{277}(84,·)$, $\chi_{277}(213,·)$, $\chi_{277}(218,·)$, $\chi_{277}(155,·)$, $\chi_{277}(157,·)$, $\chi_{277}(30,·)$, $\chi_{277}(27,·)$, $\chi_{277}(164,·)$, $\chi_{277}(169,·)$, $\chi_{277}(236,·)$, $\chi_{277}(175,·)$, $\chi_{277}(211,·)$, $\chi_{277}(52,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{1013}a^{21}-\frac{327}{1013}a^{20}+\frac{367}{1013}a^{19}-\frac{421}{1013}a^{18}+\frac{41}{1013}a^{17}+\frac{47}{1013}a^{16}+\frac{142}{1013}a^{15}-\frac{32}{1013}a^{14}+\frac{25}{1013}a^{13}+\frac{362}{1013}a^{12}+\frac{486}{1013}a^{11}-\frac{251}{1013}a^{10}+\frac{278}{1013}a^{9}+\frac{316}{1013}a^{8}+\frac{389}{1013}a^{7}+\frac{398}{1013}a^{6}-\frac{431}{1013}a^{5}+\frac{57}{1013}a^{4}-\frac{132}{1013}a^{3}+\frac{212}{1013}a^{2}-\frac{227}{1013}a-\frac{415}{1013}$, $\frac{1}{46\!\cdots\!39}a^{22}-\frac{10\!\cdots\!58}{46\!\cdots\!39}a^{21}-\frac{92\!\cdots\!72}{46\!\cdots\!39}a^{20}-\frac{23\!\cdots\!96}{46\!\cdots\!39}a^{19}-\frac{74\!\cdots\!77}{46\!\cdots\!39}a^{18}-\frac{12\!\cdots\!54}{46\!\cdots\!39}a^{17}+\frac{14\!\cdots\!81}{46\!\cdots\!39}a^{16}-\frac{16\!\cdots\!07}{46\!\cdots\!39}a^{15}-\frac{18\!\cdots\!47}{46\!\cdots\!39}a^{14}+\frac{49\!\cdots\!19}{46\!\cdots\!39}a^{13}-\frac{19\!\cdots\!88}{46\!\cdots\!39}a^{12}-\frac{81\!\cdots\!32}{46\!\cdots\!39}a^{11}-\frac{83\!\cdots\!49}{46\!\cdots\!39}a^{10}+\frac{22\!\cdots\!92}{46\!\cdots\!39}a^{9}-\frac{57\!\cdots\!16}{46\!\cdots\!39}a^{8}+\frac{12\!\cdots\!77}{46\!\cdots\!39}a^{7}-\frac{59\!\cdots\!77}{46\!\cdots\!39}a^{6}-\frac{17\!\cdots\!94}{46\!\cdots\!39}a^{5}+\frac{27\!\cdots\!92}{46\!\cdots\!39}a^{4}-\frac{13\!\cdots\!34}{46\!\cdots\!39}a^{3}-\frac{19\!\cdots\!70}{46\!\cdots\!39}a^{2}+\frac{18\!\cdots\!91}{46\!\cdots\!39}a-\frac{56\!\cdots\!73}{46\!\cdots\!39}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $22$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{20\!\cdots\!02}{46\!\cdots\!39}a^{22}-\frac{14\!\cdots\!98}{46\!\cdots\!39}a^{21}-\frac{26\!\cdots\!28}{46\!\cdots\!39}a^{20}+\frac{47\!\cdots\!05}{46\!\cdots\!39}a^{19}+\frac{13\!\cdots\!50}{46\!\cdots\!39}a^{18}-\frac{34\!\cdots\!84}{45\!\cdots\!03}a^{17}-\frac{33\!\cdots\!89}{46\!\cdots\!39}a^{16}+\frac{11\!\cdots\!65}{46\!\cdots\!39}a^{15}+\frac{42\!\cdots\!54}{46\!\cdots\!39}a^{14}-\frac{17\!\cdots\!86}{46\!\cdots\!39}a^{13}-\frac{24\!\cdots\!10}{46\!\cdots\!39}a^{12}+\frac{14\!\cdots\!75}{46\!\cdots\!39}a^{11}+\frac{35\!\cdots\!77}{46\!\cdots\!39}a^{10}-\frac{66\!\cdots\!37}{46\!\cdots\!39}a^{9}+\frac{23\!\cdots\!04}{46\!\cdots\!39}a^{8}+\frac{15\!\cdots\!41}{46\!\cdots\!39}a^{7}-\frac{10\!\cdots\!98}{46\!\cdots\!39}a^{6}-\frac{17\!\cdots\!70}{46\!\cdots\!39}a^{5}+\frac{14\!\cdots\!45}{46\!\cdots\!39}a^{4}+\frac{78\!\cdots\!71}{46\!\cdots\!39}a^{3}-\frac{74\!\cdots\!63}{46\!\cdots\!39}a^{2}-\frac{48\!\cdots\!28}{46\!\cdots\!39}a+\frac{73\!\cdots\!44}{46\!\cdots\!39}$, $\frac{19\!\cdots\!41}{46\!\cdots\!39}a^{22}+\frac{49\!\cdots\!59}{46\!\cdots\!39}a^{21}-\frac{25\!\cdots\!01}{46\!\cdots\!39}a^{20}+\frac{19\!\cdots\!28}{46\!\cdots\!39}a^{19}+\frac{13\!\cdots\!50}{46\!\cdots\!39}a^{18}-\frac{20\!\cdots\!40}{46\!\cdots\!39}a^{17}-\frac{35\!\cdots\!35}{46\!\cdots\!39}a^{16}+\frac{73\!\cdots\!36}{46\!\cdots\!39}a^{15}+\frac{51\!\cdots\!91}{46\!\cdots\!39}a^{14}-\frac{12\!\cdots\!49}{46\!\cdots\!39}a^{13}-\frac{41\!\cdots\!51}{46\!\cdots\!39}a^{12}+\frac{11\!\cdots\!97}{46\!\cdots\!39}a^{11}+\frac{18\!\cdots\!13}{46\!\cdots\!39}a^{10}-\frac{58\!\cdots\!16}{46\!\cdots\!39}a^{9}-\frac{45\!\cdots\!95}{46\!\cdots\!39}a^{8}+\frac{15\!\cdots\!23}{46\!\cdots\!39}a^{7}+\frac{60\!\cdots\!20}{46\!\cdots\!39}a^{6}-\frac{20\!\cdots\!77}{46\!\cdots\!39}a^{5}-\frac{48\!\cdots\!06}{46\!\cdots\!39}a^{4}+\frac{11\!\cdots\!63}{46\!\cdots\!39}a^{3}+\frac{22\!\cdots\!15}{46\!\cdots\!39}a^{2}-\frac{20\!\cdots\!49}{46\!\cdots\!39}a-\frac{53\!\cdots\!20}{46\!\cdots\!39}$, $\frac{48\!\cdots\!01}{46\!\cdots\!39}a^{22}+\frac{47\!\cdots\!55}{46\!\cdots\!39}a^{21}-\frac{62\!\cdots\!53}{46\!\cdots\!39}a^{20}+\frac{71\!\cdots\!57}{46\!\cdots\!39}a^{19}+\frac{32\!\cdots\!55}{46\!\cdots\!39}a^{18}-\frac{29\!\cdots\!71}{46\!\cdots\!39}a^{17}-\frac{85\!\cdots\!33}{46\!\cdots\!39}a^{16}+\frac{12\!\cdots\!15}{46\!\cdots\!39}a^{15}+\frac{12\!\cdots\!31}{46\!\cdots\!39}a^{14}-\frac{22\!\cdots\!88}{46\!\cdots\!39}a^{13}-\frac{10\!\cdots\!16}{46\!\cdots\!39}a^{12}+\frac{20\!\cdots\!00}{46\!\cdots\!39}a^{11}+\frac{45\!\cdots\!47}{46\!\cdots\!39}a^{10}-\frac{10\!\cdots\!72}{46\!\cdots\!39}a^{9}-\frac{11\!\cdots\!07}{46\!\cdots\!39}a^{8}+\frac{24\!\cdots\!98}{46\!\cdots\!39}a^{7}+\frac{17\!\cdots\!48}{46\!\cdots\!39}a^{6}-\frac{31\!\cdots\!85}{46\!\cdots\!39}a^{5}-\frac{14\!\cdots\!41}{46\!\cdots\!39}a^{4}+\frac{17\!\cdots\!07}{46\!\cdots\!39}a^{3}+\frac{59\!\cdots\!04}{46\!\cdots\!39}a^{2}-\frac{32\!\cdots\!58}{46\!\cdots\!39}a-\frac{10\!\cdots\!39}{46\!\cdots\!39}$, $\frac{11\!\cdots\!86}{46\!\cdots\!39}a^{22}-\frac{80\!\cdots\!63}{46\!\cdots\!39}a^{21}-\frac{14\!\cdots\!86}{46\!\cdots\!39}a^{20}+\frac{26\!\cdots\!39}{46\!\cdots\!39}a^{19}+\frac{74\!\cdots\!90}{46\!\cdots\!39}a^{18}-\frac{19\!\cdots\!83}{46\!\cdots\!39}a^{17}-\frac{18\!\cdots\!15}{46\!\cdots\!39}a^{16}+\frac{59\!\cdots\!91}{46\!\cdots\!39}a^{15}+\frac{22\!\cdots\!76}{46\!\cdots\!39}a^{14}-\frac{93\!\cdots\!55}{46\!\cdots\!39}a^{13}-\frac{12\!\cdots\!41}{46\!\cdots\!39}a^{12}+\frac{74\!\cdots\!07}{46\!\cdots\!39}a^{11}+\frac{14\!\cdots\!57}{46\!\cdots\!39}a^{10}-\frac{30\!\cdots\!18}{46\!\cdots\!39}a^{9}+\frac{11\!\cdots\!07}{46\!\cdots\!39}a^{8}+\frac{59\!\cdots\!70}{46\!\cdots\!39}a^{7}-\frac{39\!\cdots\!08}{46\!\cdots\!39}a^{6}-\frac{48\!\cdots\!40}{46\!\cdots\!39}a^{5}+\frac{41\!\cdots\!94}{46\!\cdots\!39}a^{4}+\frac{96\!\cdots\!27}{46\!\cdots\!39}a^{3}-\frac{12\!\cdots\!94}{46\!\cdots\!39}a^{2}+\frac{19\!\cdots\!41}{46\!\cdots\!39}a+\frac{11\!\cdots\!91}{46\!\cdots\!39}$, $\frac{70\!\cdots\!35}{46\!\cdots\!39}a^{22}-\frac{13\!\cdots\!83}{46\!\cdots\!39}a^{21}-\frac{93\!\cdots\!68}{46\!\cdots\!39}a^{20}+\frac{27\!\cdots\!77}{46\!\cdots\!39}a^{19}+\frac{46\!\cdots\!44}{46\!\cdots\!39}a^{18}-\frac{17\!\cdots\!25}{46\!\cdots\!39}a^{17}-\frac{11\!\cdots\!56}{46\!\cdots\!39}a^{16}+\frac{53\!\cdots\!30}{46\!\cdots\!39}a^{15}+\frac{12\!\cdots\!36}{46\!\cdots\!39}a^{14}-\frac{82\!\cdots\!40}{46\!\cdots\!39}a^{13}-\frac{45\!\cdots\!18}{46\!\cdots\!39}a^{12}+\frac{68\!\cdots\!96}{46\!\cdots\!39}a^{11}-\frac{23\!\cdots\!01}{46\!\cdots\!39}a^{10}-\frac{30\!\cdots\!20}{46\!\cdots\!39}a^{9}+\frac{24\!\cdots\!19}{46\!\cdots\!39}a^{8}+\frac{69\!\cdots\!36}{46\!\cdots\!39}a^{7}-\frac{75\!\cdots\!71}{46\!\cdots\!39}a^{6}-\frac{80\!\cdots\!18}{46\!\cdots\!39}a^{5}+\frac{10\!\cdots\!54}{46\!\cdots\!39}a^{4}+\frac{41\!\cdots\!35}{46\!\cdots\!39}a^{3}-\frac{56\!\cdots\!28}{46\!\cdots\!39}a^{2}-\frac{60\!\cdots\!03}{46\!\cdots\!39}a+\frac{98\!\cdots\!78}{46\!\cdots\!39}$, $\frac{29\!\cdots\!56}{46\!\cdots\!39}a^{22}-\frac{99\!\cdots\!73}{46\!\cdots\!39}a^{21}-\frac{38\!\cdots\!61}{46\!\cdots\!39}a^{20}+\frac{17\!\cdots\!71}{46\!\cdots\!39}a^{19}+\frac{18\!\cdots\!09}{46\!\cdots\!39}a^{18}-\frac{10\!\cdots\!51}{46\!\cdots\!39}a^{17}-\frac{37\!\cdots\!01}{46\!\cdots\!39}a^{16}+\frac{28\!\cdots\!94}{46\!\cdots\!39}a^{15}+\frac{27\!\cdots\!39}{46\!\cdots\!39}a^{14}-\frac{42\!\cdots\!81}{46\!\cdots\!39}a^{13}+\frac{17\!\cdots\!98}{46\!\cdots\!39}a^{12}+\frac{32\!\cdots\!65}{46\!\cdots\!39}a^{11}-\frac{38\!\cdots\!68}{46\!\cdots\!39}a^{10}-\frac{12\!\cdots\!87}{46\!\cdots\!39}a^{9}+\frac{21\!\cdots\!43}{46\!\cdots\!39}a^{8}+\frac{22\!\cdots\!02}{46\!\cdots\!39}a^{7}-\frac{49\!\cdots\!83}{46\!\cdots\!39}a^{6}-\frac{16\!\cdots\!07}{46\!\cdots\!39}a^{5}+\frac{49\!\cdots\!09}{46\!\cdots\!39}a^{4}+\frac{33\!\cdots\!50}{46\!\cdots\!39}a^{3}-\frac{17\!\cdots\!02}{46\!\cdots\!39}a^{2}-\frac{56\!\cdots\!79}{46\!\cdots\!39}a+\frac{24\!\cdots\!11}{46\!\cdots\!39}$, $\frac{39\!\cdots\!03}{46\!\cdots\!39}a^{22}+\frac{12\!\cdots\!51}{46\!\cdots\!39}a^{21}-\frac{49\!\cdots\!77}{46\!\cdots\!39}a^{20}-\frac{96\!\cdots\!16}{46\!\cdots\!39}a^{19}+\frac{25\!\cdots\!46}{46\!\cdots\!39}a^{18}+\frac{26\!\cdots\!77}{46\!\cdots\!39}a^{17}-\frac{67\!\cdots\!04}{46\!\cdots\!39}a^{16}-\frac{27\!\cdots\!75}{46\!\cdots\!39}a^{15}+\frac{10\!\cdots\!43}{46\!\cdots\!39}a^{14}-\frac{24\!\cdots\!08}{46\!\cdots\!39}a^{13}-\frac{91\!\cdots\!04}{46\!\cdots\!39}a^{12}+\frac{25\!\cdots\!06}{46\!\cdots\!39}a^{11}+\frac{48\!\cdots\!38}{46\!\cdots\!39}a^{10}-\frac{18\!\cdots\!98}{46\!\cdots\!39}a^{9}-\frac{15\!\cdots\!03}{46\!\cdots\!39}a^{8}+\frac{58\!\cdots\!83}{46\!\cdots\!39}a^{7}+\frac{28\!\cdots\!24}{46\!\cdots\!39}a^{6}-\frac{94\!\cdots\!24}{46\!\cdots\!39}a^{5}-\frac{27\!\cdots\!32}{46\!\cdots\!39}a^{4}+\frac{76\!\cdots\!49}{46\!\cdots\!39}a^{3}+\frac{12\!\cdots\!44}{46\!\cdots\!39}a^{2}-\frac{26\!\cdots\!20}{46\!\cdots\!39}a-\frac{14\!\cdots\!16}{46\!\cdots\!39}$, $\frac{13\!\cdots\!44}{46\!\cdots\!39}a^{22}+\frac{45\!\cdots\!40}{46\!\cdots\!39}a^{21}-\frac{17\!\cdots\!55}{46\!\cdots\!39}a^{20}+\frac{11\!\cdots\!86}{46\!\cdots\!39}a^{19}+\frac{91\!\cdots\!61}{46\!\cdots\!39}a^{18}-\frac{12\!\cdots\!87}{46\!\cdots\!39}a^{17}-\frac{24\!\cdots\!92}{46\!\cdots\!39}a^{16}+\frac{46\!\cdots\!22}{46\!\cdots\!39}a^{15}+\frac{35\!\cdots\!79}{46\!\cdots\!39}a^{14}-\frac{79\!\cdots\!15}{46\!\cdots\!39}a^{13}-\frac{29\!\cdots\!19}{46\!\cdots\!39}a^{12}+\frac{71\!\cdots\!65}{46\!\cdots\!39}a^{11}+\frac{13\!\cdots\!31}{46\!\cdots\!39}a^{10}-\frac{34\!\cdots\!93}{46\!\cdots\!39}a^{9}-\frac{36\!\cdots\!23}{46\!\cdots\!39}a^{8}+\frac{87\!\cdots\!06}{46\!\cdots\!39}a^{7}+\frac{60\!\cdots\!82}{46\!\cdots\!39}a^{6}-\frac{11\!\cdots\!61}{46\!\cdots\!39}a^{5}-\frac{60\!\cdots\!25}{46\!\cdots\!39}a^{4}+\frac{74\!\cdots\!46}{46\!\cdots\!39}a^{3}+\frac{32\!\cdots\!02}{46\!\cdots\!39}a^{2}-\frac{16\!\cdots\!83}{46\!\cdots\!39}a-\frac{63\!\cdots\!60}{46\!\cdots\!39}$, $\frac{60\!\cdots\!95}{46\!\cdots\!39}a^{22}+\frac{13\!\cdots\!47}{46\!\cdots\!39}a^{21}-\frac{76\!\cdots\!19}{46\!\cdots\!39}a^{20}-\frac{88\!\cdots\!93}{46\!\cdots\!39}a^{19}+\frac{39\!\cdots\!43}{46\!\cdots\!39}a^{18}+\frac{11\!\cdots\!28}{46\!\cdots\!39}a^{17}-\frac{10\!\cdots\!06}{46\!\cdots\!39}a^{16}+\frac{33\!\cdots\!48}{46\!\cdots\!39}a^{15}+\frac{15\!\cdots\!34}{46\!\cdots\!39}a^{14}-\frac{10\!\cdots\!74}{46\!\cdots\!39}a^{13}-\frac{13\!\cdots\!30}{46\!\cdots\!39}a^{12}+\frac{12\!\cdots\!80}{46\!\cdots\!39}a^{11}+\frac{65\!\cdots\!03}{46\!\cdots\!39}a^{10}-\frac{62\!\cdots\!75}{46\!\cdots\!39}a^{9}-\frac{19\!\cdots\!59}{46\!\cdots\!39}a^{8}+\frac{16\!\cdots\!85}{46\!\cdots\!39}a^{7}+\frac{32\!\cdots\!68}{46\!\cdots\!39}a^{6}-\frac{20\!\cdots\!67}{46\!\cdots\!39}a^{5}-\frac{30\!\cdots\!84}{46\!\cdots\!39}a^{4}+\frac{11\!\cdots\!16}{46\!\cdots\!39}a^{3}+\frac{13\!\cdots\!67}{46\!\cdots\!39}a^{2}-\frac{20\!\cdots\!40}{46\!\cdots\!39}a-\frac{20\!\cdots\!82}{46\!\cdots\!39}$, $\frac{26\!\cdots\!87}{46\!\cdots\!39}a^{22}-\frac{23\!\cdots\!20}{46\!\cdots\!39}a^{21}-\frac{34\!\cdots\!83}{46\!\cdots\!39}a^{20}+\frac{66\!\cdots\!96}{46\!\cdots\!39}a^{19}+\frac{17\!\cdots\!91}{46\!\cdots\!39}a^{18}-\frac{47\!\cdots\!61}{46\!\cdots\!39}a^{17}-\frac{44\!\cdots\!04}{46\!\cdots\!39}a^{16}+\frac{14\!\cdots\!03}{46\!\cdots\!39}a^{15}+\frac{56\!\cdots\!78}{46\!\cdots\!39}a^{14}-\frac{23\!\cdots\!70}{46\!\cdots\!39}a^{13}-\frac{35\!\cdots\!89}{46\!\cdots\!39}a^{12}+\frac{20\!\cdots\!85}{46\!\cdots\!39}a^{11}+\frac{79\!\cdots\!61}{46\!\cdots\!39}a^{10}-\frac{89\!\cdots\!35}{46\!\cdots\!39}a^{9}+\frac{75\!\cdots\!58}{46\!\cdots\!39}a^{8}+\frac{21\!\cdots\!82}{46\!\cdots\!39}a^{7}-\frac{49\!\cdots\!38}{46\!\cdots\!39}a^{6}-\frac{27\!\cdots\!77}{46\!\cdots\!39}a^{5}+\frac{43\!\cdots\!60}{46\!\cdots\!39}a^{4}+\frac{18\!\cdots\!73}{46\!\cdots\!39}a^{3}+\frac{62\!\cdots\!91}{46\!\cdots\!39}a^{2}-\frac{46\!\cdots\!96}{46\!\cdots\!39}a-\frac{10\!\cdots\!74}{46\!\cdots\!39}$, $\frac{26\!\cdots\!68}{46\!\cdots\!39}a^{22}-\frac{63\!\cdots\!03}{46\!\cdots\!39}a^{21}-\frac{35\!\cdots\!31}{46\!\cdots\!39}a^{20}+\frac{11\!\cdots\!28}{46\!\cdots\!39}a^{19}+\frac{17\!\cdots\!23}{46\!\cdots\!39}a^{18}-\frac{73\!\cdots\!20}{46\!\cdots\!39}a^{17}-\frac{41\!\cdots\!86}{46\!\cdots\!39}a^{16}+\frac{21\!\cdots\!98}{46\!\cdots\!39}a^{15}+\frac{46\!\cdots\!35}{46\!\cdots\!39}a^{14}-\frac{32\!\cdots\!37}{46\!\cdots\!39}a^{13}-\frac{17\!\cdots\!33}{46\!\cdots\!39}a^{12}+\frac{27\!\cdots\!03}{46\!\cdots\!39}a^{11}-\frac{90\!\cdots\!67}{46\!\cdots\!39}a^{10}-\frac{11\!\cdots\!69}{46\!\cdots\!39}a^{9}+\frac{92\!\cdots\!23}{46\!\cdots\!39}a^{8}+\frac{26\!\cdots\!34}{46\!\cdots\!39}a^{7}-\frac{27\!\cdots\!63}{46\!\cdots\!39}a^{6}-\frac{29\!\cdots\!87}{46\!\cdots\!39}a^{5}+\frac{34\!\cdots\!44}{46\!\cdots\!39}a^{4}+\frac{12\!\cdots\!83}{46\!\cdots\!39}a^{3}-\frac{17\!\cdots\!86}{46\!\cdots\!39}a^{2}-\frac{50\!\cdots\!22}{46\!\cdots\!39}a+\frac{17\!\cdots\!90}{46\!\cdots\!39}$, $\frac{12\!\cdots\!82}{46\!\cdots\!39}a^{22}-\frac{18\!\cdots\!21}{46\!\cdots\!39}a^{21}-\frac{17\!\cdots\!42}{46\!\cdots\!39}a^{20}+\frac{19\!\cdots\!75}{46\!\cdots\!39}a^{19}+\frac{89\!\cdots\!73}{46\!\cdots\!39}a^{18}-\frac{16\!\cdots\!59}{46\!\cdots\!39}a^{17}-\frac{23\!\cdots\!91}{46\!\cdots\!39}a^{16}+\frac{54\!\cdots\!81}{46\!\cdots\!39}a^{15}+\frac{34\!\cdots\!56}{46\!\cdots\!39}a^{14}-\frac{90\!\cdots\!51}{46\!\cdots\!39}a^{13}-\frac{27\!\cdots\!51}{46\!\cdots\!39}a^{12}+\frac{79\!\cdots\!16}{46\!\cdots\!39}a^{11}+\frac{12\!\cdots\!90}{46\!\cdots\!39}a^{10}-\frac{37\!\cdots\!03}{46\!\cdots\!39}a^{9}-\frac{32\!\cdots\!72}{46\!\cdots\!39}a^{8}+\frac{97\!\cdots\!66}{46\!\cdots\!39}a^{7}+\frac{53\!\cdots\!89}{46\!\cdots\!39}a^{6}-\frac{13\!\cdots\!01}{46\!\cdots\!39}a^{5}-\frac{57\!\cdots\!32}{46\!\cdots\!39}a^{4}+\frac{90\!\cdots\!38}{46\!\cdots\!39}a^{3}+\frac{33\!\cdots\!94}{46\!\cdots\!39}a^{2}-\frac{18\!\cdots\!85}{46\!\cdots\!39}a-\frac{68\!\cdots\!33}{46\!\cdots\!39}$, $\frac{68\!\cdots\!76}{46\!\cdots\!39}a^{22}+\frac{79\!\cdots\!07}{46\!\cdots\!39}a^{21}-\frac{86\!\cdots\!41}{46\!\cdots\!39}a^{20}-\frac{24\!\cdots\!38}{46\!\cdots\!39}a^{19}+\frac{43\!\cdots\!29}{46\!\cdots\!39}a^{18}-\frac{35\!\cdots\!92}{46\!\cdots\!39}a^{17}-\frac{11\!\cdots\!86}{46\!\cdots\!39}a^{16}+\frac{16\!\cdots\!47}{46\!\cdots\!39}a^{15}+\frac{15\!\cdots\!57}{46\!\cdots\!39}a^{14}-\frac{29\!\cdots\!69}{46\!\cdots\!39}a^{13}-\frac{11\!\cdots\!13}{46\!\cdots\!39}a^{12}+\frac{25\!\cdots\!44}{46\!\cdots\!39}a^{11}+\frac{45\!\cdots\!30}{46\!\cdots\!39}a^{10}-\frac{11\!\cdots\!81}{46\!\cdots\!39}a^{9}-\frac{88\!\cdots\!98}{46\!\cdots\!39}a^{8}+\frac{26\!\cdots\!79}{46\!\cdots\!39}a^{7}+\frac{85\!\cdots\!12}{46\!\cdots\!39}a^{6}-\frac{28\!\cdots\!98}{46\!\cdots\!39}a^{5}-\frac{47\!\cdots\!18}{46\!\cdots\!39}a^{4}+\frac{12\!\cdots\!56}{46\!\cdots\!39}a^{3}+\frac{24\!\cdots\!73}{46\!\cdots\!39}a^{2}-\frac{18\!\cdots\!25}{46\!\cdots\!39}a-\frac{47\!\cdots\!13}{46\!\cdots\!39}$, $\frac{26\!\cdots\!44}{46\!\cdots\!39}a^{22}-\frac{75\!\cdots\!75}{46\!\cdots\!39}a^{21}-\frac{34\!\cdots\!99}{46\!\cdots\!39}a^{20}+\frac{46\!\cdots\!81}{46\!\cdots\!39}a^{19}+\frac{17\!\cdots\!93}{46\!\cdots\!39}a^{18}-\frac{37\!\cdots\!42}{46\!\cdots\!39}a^{17}-\frac{44\!\cdots\!22}{46\!\cdots\!39}a^{16}+\frac{12\!\cdots\!46}{46\!\cdots\!39}a^{15}+\frac{58\!\cdots\!54}{46\!\cdots\!39}a^{14}-\frac{20\!\cdots\!61}{46\!\cdots\!39}a^{13}-\frac{40\!\cdots\!51}{46\!\cdots\!39}a^{12}+\frac{17\!\cdots\!89}{46\!\cdots\!39}a^{11}+\frac{12\!\cdots\!39}{46\!\cdots\!39}a^{10}-\frac{79\!\cdots\!23}{46\!\cdots\!39}a^{9}-\frac{10\!\cdots\!99}{46\!\cdots\!39}a^{8}+\frac{19\!\cdots\!54}{46\!\cdots\!39}a^{7}-\frac{16\!\cdots\!24}{46\!\cdots\!39}a^{6}-\frac{24\!\cdots\!32}{46\!\cdots\!39}a^{5}+\frac{20\!\cdots\!31}{46\!\cdots\!39}a^{4}+\frac{14\!\cdots\!99}{46\!\cdots\!39}a^{3}+\frac{98\!\cdots\!45}{46\!\cdots\!39}a^{2}-\frac{27\!\cdots\!33}{46\!\cdots\!39}a-\frac{56\!\cdots\!68}{46\!\cdots\!39}$, $\frac{17\!\cdots\!23}{46\!\cdots\!39}a^{22}+\frac{12\!\cdots\!80}{46\!\cdots\!39}a^{21}-\frac{23\!\cdots\!64}{46\!\cdots\!39}a^{20}+\frac{83\!\cdots\!08}{46\!\cdots\!39}a^{19}+\frac{12\!\cdots\!50}{46\!\cdots\!39}a^{18}-\frac{13\!\cdots\!39}{46\!\cdots\!39}a^{17}-\frac{32\!\cdots\!72}{46\!\cdots\!39}a^{16}+\frac{52\!\cdots\!04}{46\!\cdots\!39}a^{15}+\frac{46\!\cdots\!91}{46\!\cdots\!39}a^{14}-\frac{92\!\cdots\!23}{46\!\cdots\!39}a^{13}-\frac{38\!\cdots\!37}{46\!\cdots\!39}a^{12}+\frac{83\!\cdots\!83}{46\!\cdots\!39}a^{11}+\frac{17\!\cdots\!18}{46\!\cdots\!39}a^{10}-\frac{39\!\cdots\!00}{46\!\cdots\!39}a^{9}-\frac{47\!\cdots\!21}{46\!\cdots\!39}a^{8}+\frac{97\!\cdots\!60}{46\!\cdots\!39}a^{7}+\frac{74\!\cdots\!11}{46\!\cdots\!39}a^{6}-\frac{12\!\cdots\!55}{46\!\cdots\!39}a^{5}-\frac{64\!\cdots\!48}{46\!\cdots\!39}a^{4}+\frac{65\!\cdots\!63}{46\!\cdots\!39}a^{3}+\frac{25\!\cdots\!86}{46\!\cdots\!39}a^{2}-\frac{11\!\cdots\!21}{46\!\cdots\!39}a-\frac{38\!\cdots\!98}{46\!\cdots\!39}$, $\frac{79\!\cdots\!80}{46\!\cdots\!39}a^{22}-\frac{45\!\cdots\!83}{46\!\cdots\!39}a^{21}-\frac{10\!\cdots\!13}{46\!\cdots\!39}a^{20}+\frac{16\!\cdots\!21}{46\!\cdots\!39}a^{19}+\frac{53\!\cdots\!75}{46\!\cdots\!39}a^{18}-\frac{12\!\cdots\!81}{46\!\cdots\!39}a^{17}-\frac{13\!\cdots\!92}{46\!\cdots\!39}a^{16}+\frac{40\!\cdots\!66}{46\!\cdots\!39}a^{15}+\frac{18\!\cdots\!99}{46\!\cdots\!39}a^{14}-\frac{66\!\cdots\!40}{46\!\cdots\!39}a^{13}-\frac{12\!\cdots\!84}{46\!\cdots\!39}a^{12}+\frac{57\!\cdots\!49}{46\!\cdots\!39}a^{11}+\frac{39\!\cdots\!34}{46\!\cdots\!39}a^{10}-\frac{26\!\cdots\!83}{46\!\cdots\!39}a^{9}-\frac{30\!\cdots\!02}{46\!\cdots\!39}a^{8}+\frac{63\!\cdots\!90}{46\!\cdots\!39}a^{7}-\frac{84\!\cdots\!80}{46\!\cdots\!39}a^{6}-\frac{75\!\cdots\!16}{46\!\cdots\!39}a^{5}+\frac{16\!\cdots\!78}{46\!\cdots\!39}a^{4}+\frac{34\!\cdots\!71}{46\!\cdots\!39}a^{3}-\frac{10\!\cdots\!50}{46\!\cdots\!39}a^{2}-\frac{28\!\cdots\!94}{46\!\cdots\!39}a+\frac{11\!\cdots\!87}{46\!\cdots\!39}$, $\frac{10\!\cdots\!05}{46\!\cdots\!39}a^{22}-\frac{13\!\cdots\!69}{46\!\cdots\!39}a^{21}-\frac{13\!\cdots\!74}{46\!\cdots\!39}a^{20}+\frac{14\!\cdots\!66}{46\!\cdots\!39}a^{19}+\frac{70\!\cdots\!11}{46\!\cdots\!39}a^{18}-\frac{12\!\cdots\!78}{46\!\cdots\!39}a^{17}-\frac{18\!\cdots\!25}{46\!\cdots\!39}a^{16}+\frac{43\!\cdots\!33}{46\!\cdots\!39}a^{15}+\frac{26\!\cdots\!72}{46\!\cdots\!39}a^{14}-\frac{74\!\cdots\!52}{46\!\cdots\!39}a^{13}-\frac{21\!\cdots\!58}{46\!\cdots\!39}a^{12}+\frac{67\!\cdots\!15}{46\!\cdots\!39}a^{11}+\frac{92\!\cdots\!05}{46\!\cdots\!39}a^{10}-\frac{33\!\cdots\!08}{46\!\cdots\!39}a^{9}-\frac{22\!\cdots\!06}{46\!\cdots\!39}a^{8}+\frac{93\!\cdots\!53}{46\!\cdots\!39}a^{7}+\frac{36\!\cdots\!07}{46\!\cdots\!39}a^{6}-\frac{14\!\cdots\!60}{46\!\cdots\!39}a^{5}-\frac{42\!\cdots\!60}{46\!\cdots\!39}a^{4}+\frac{10\!\cdots\!56}{46\!\cdots\!39}a^{3}+\frac{33\!\cdots\!71}{46\!\cdots\!39}a^{2}-\frac{29\!\cdots\!96}{46\!\cdots\!39}a-\frac{10\!\cdots\!07}{46\!\cdots\!39}$, $\frac{62\!\cdots\!87}{46\!\cdots\!39}a^{22}-\frac{18\!\cdots\!25}{46\!\cdots\!39}a^{21}-\frac{81\!\cdots\!94}{46\!\cdots\!39}a^{20}+\frac{32\!\cdots\!18}{46\!\cdots\!39}a^{19}+\frac{39\!\cdots\!46}{46\!\cdots\!39}a^{18}-\frac{19\!\cdots\!55}{46\!\cdots\!39}a^{17}-\frac{86\!\cdots\!90}{46\!\cdots\!39}a^{16}+\frac{55\!\cdots\!88}{46\!\cdots\!39}a^{15}+\frac{74\!\cdots\!13}{46\!\cdots\!39}a^{14}-\frac{81\!\cdots\!28}{46\!\cdots\!39}a^{13}+\frac{11\!\cdots\!14}{46\!\cdots\!39}a^{12}+\frac{62\!\cdots\!62}{46\!\cdots\!39}a^{11}-\frac{60\!\cdots\!04}{46\!\cdots\!39}a^{10}-\frac{23\!\cdots\!12}{46\!\cdots\!39}a^{9}+\frac{36\!\cdots\!33}{46\!\cdots\!39}a^{8}+\frac{41\!\cdots\!85}{46\!\cdots\!39}a^{7}-\frac{86\!\cdots\!54}{46\!\cdots\!39}a^{6}-\frac{24\!\cdots\!11}{46\!\cdots\!39}a^{5}+\frac{88\!\cdots\!96}{46\!\cdots\!39}a^{4}-\frac{40\!\cdots\!44}{46\!\cdots\!39}a^{3}-\frac{33\!\cdots\!54}{46\!\cdots\!39}a^{2}+\frac{26\!\cdots\!53}{46\!\cdots\!39}a+\frac{43\!\cdots\!50}{46\!\cdots\!39}$, $\frac{14\!\cdots\!02}{46\!\cdots\!39}a^{22}+\frac{38\!\cdots\!69}{46\!\cdots\!39}a^{21}-\frac{18\!\cdots\!80}{46\!\cdots\!39}a^{20}+\frac{15\!\cdots\!72}{46\!\cdots\!39}a^{19}+\frac{97\!\cdots\!80}{46\!\cdots\!39}a^{18}-\frac{15\!\cdots\!81}{46\!\cdots\!39}a^{17}-\frac{25\!\cdots\!78}{46\!\cdots\!39}a^{16}+\frac{54\!\cdots\!06}{46\!\cdots\!39}a^{15}+\frac{35\!\cdots\!11}{46\!\cdots\!39}a^{14}-\frac{90\!\cdots\!21}{46\!\cdots\!39}a^{13}-\frac{26\!\cdots\!93}{46\!\cdots\!39}a^{12}+\frac{78\!\cdots\!67}{46\!\cdots\!39}a^{11}+\frac{10\!\cdots\!45}{46\!\cdots\!39}a^{10}-\frac{35\!\cdots\!82}{46\!\cdots\!39}a^{9}-\frac{22\!\cdots\!04}{46\!\cdots\!39}a^{8}+\frac{84\!\cdots\!35}{46\!\cdots\!39}a^{7}+\frac{29\!\cdots\!54}{46\!\cdots\!39}a^{6}-\frac{98\!\cdots\!41}{46\!\cdots\!39}a^{5}-\frac{27\!\cdots\!99}{46\!\cdots\!39}a^{4}+\frac{50\!\cdots\!06}{46\!\cdots\!39}a^{3}+\frac{13\!\cdots\!43}{46\!\cdots\!39}a^{2}-\frac{83\!\cdots\!17}{46\!\cdots\!39}a-\frac{25\!\cdots\!69}{46\!\cdots\!39}$, $\frac{23\!\cdots\!26}{46\!\cdots\!39}a^{22}+\frac{53\!\cdots\!03}{46\!\cdots\!39}a^{21}-\frac{28\!\cdots\!15}{46\!\cdots\!39}a^{20}-\frac{33\!\cdots\!86}{46\!\cdots\!39}a^{19}+\frac{14\!\cdots\!61}{46\!\cdots\!39}a^{18}+\frac{39\!\cdots\!87}{46\!\cdots\!39}a^{17}-\frac{38\!\cdots\!55}{46\!\cdots\!39}a^{16}+\frac{13\!\cdots\!78}{46\!\cdots\!39}a^{15}+\frac{55\!\cdots\!56}{46\!\cdots\!39}a^{14}-\frac{42\!\cdots\!37}{46\!\cdots\!39}a^{13}-\frac{45\!\cdots\!89}{46\!\cdots\!39}a^{12}+\frac{45\!\cdots\!62}{46\!\cdots\!39}a^{11}+\frac{21\!\cdots\!88}{46\!\cdots\!39}a^{10}-\frac{22\!\cdots\!61}{46\!\cdots\!39}a^{9}-\frac{55\!\cdots\!86}{46\!\cdots\!39}a^{8}+\frac{56\!\cdots\!45}{46\!\cdots\!39}a^{7}+\frac{80\!\cdots\!83}{46\!\cdots\!39}a^{6}-\frac{69\!\cdots\!03}{46\!\cdots\!39}a^{5}-\frac{61\!\cdots\!51}{46\!\cdots\!39}a^{4}+\frac{37\!\cdots\!62}{46\!\cdots\!39}a^{3}+\frac{20\!\cdots\!79}{46\!\cdots\!39}a^{2}-\frac{63\!\cdots\!53}{46\!\cdots\!39}a-\frac{26\!\cdots\!46}{46\!\cdots\!39}$, $\frac{16\!\cdots\!23}{46\!\cdots\!39}a^{22}+\frac{11\!\cdots\!41}{46\!\cdots\!39}a^{21}-\frac{21\!\cdots\!61}{46\!\cdots\!39}a^{20}+\frac{20\!\cdots\!79}{46\!\cdots\!39}a^{19}+\frac{11\!\cdots\!60}{46\!\cdots\!39}a^{18}-\frac{19\!\cdots\!64}{46\!\cdots\!39}a^{17}-\frac{29\!\cdots\!95}{46\!\cdots\!39}a^{16}+\frac{67\!\cdots\!22}{46\!\cdots\!39}a^{15}+\frac{41\!\cdots\!63}{46\!\cdots\!39}a^{14}-\frac{11\!\cdots\!00}{46\!\cdots\!39}a^{13}-\frac{32\!\cdots\!25}{46\!\cdots\!39}a^{12}+\frac{10\!\cdots\!59}{46\!\cdots\!39}a^{11}+\frac{13\!\cdots\!04}{46\!\cdots\!39}a^{10}-\frac{49\!\cdots\!80}{46\!\cdots\!39}a^{9}-\frac{32\!\cdots\!02}{46\!\cdots\!39}a^{8}+\frac{13\!\cdots\!77}{46\!\cdots\!39}a^{7}+\frac{42\!\cdots\!04}{46\!\cdots\!39}a^{6}-\frac{17\!\cdots\!39}{46\!\cdots\!39}a^{5}-\frac{34\!\cdots\!74}{46\!\cdots\!39}a^{4}+\frac{10\!\cdots\!68}{46\!\cdots\!39}a^{3}+\frac{11\!\cdots\!19}{46\!\cdots\!39}a^{2}-\frac{18\!\cdots\!83}{46\!\cdots\!39}a-\frac{16\!\cdots\!09}{46\!\cdots\!39}$, $\frac{25\!\cdots\!83}{46\!\cdots\!39}a^{22}+\frac{93\!\cdots\!38}{46\!\cdots\!39}a^{21}-\frac{31\!\cdots\!70}{46\!\cdots\!39}a^{20}-\frac{79\!\cdots\!40}{46\!\cdots\!39}a^{19}+\frac{16\!\cdots\!89}{46\!\cdots\!39}a^{18}+\frac{25\!\cdots\!95}{46\!\cdots\!39}a^{17}-\frac{43\!\cdots\!47}{46\!\cdots\!39}a^{16}-\frac{39\!\cdots\!40}{46\!\cdots\!39}a^{15}+\frac{66\!\cdots\!82}{46\!\cdots\!39}a^{14}+\frac{28\!\cdots\!01}{46\!\cdots\!39}a^{13}-\frac{61\!\cdots\!78}{46\!\cdots\!39}a^{12}-\frac{80\!\cdots\!37}{46\!\cdots\!39}a^{11}+\frac{33\!\cdots\!35}{46\!\cdots\!39}a^{10}-\frac{11\!\cdots\!08}{46\!\cdots\!39}a^{9}-\frac{10\!\cdots\!83}{46\!\cdots\!39}a^{8}+\frac{12\!\cdots\!45}{46\!\cdots\!39}a^{7}+\frac{20\!\cdots\!72}{46\!\cdots\!39}a^{6}-\frac{27\!\cdots\!59}{46\!\cdots\!39}a^{5}-\frac{19\!\cdots\!76}{46\!\cdots\!39}a^{4}+\frac{27\!\cdots\!15}{46\!\cdots\!39}a^{3}+\frac{86\!\cdots\!21}{46\!\cdots\!39}a^{2}-\frac{11\!\cdots\!38}{46\!\cdots\!39}a-\frac{10\!\cdots\!41}{46\!\cdots\!39}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 17443707994029808000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{23}\cdot(2\pi)^{0}\cdot 17443707994029808000 \cdot 1}{2\cdot\sqrt{542693874230042671882983450092579839839306394717839529}}\cr\approx \mathstrut & 0.0993164649374737 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^23 - x^22 - 132*x^21 + 269*x^20 + 6722*x^19 - 19118*x^18 - 167488*x^17 + 601226*x^16 + 2127300*x^15 - 9664345*x^14 - 12698450*x^13 + 83446410*x^12 + 19888027*x^11 - 390244377*x^10 + 110929757*x^9 + 994369765*x^8 - 511651057*x^7 - 1370318108*x^6 + 775297206*x^5 + 972267257*x^4 - 466392148*x^3 - 312747839*x^2 + 85444683*x + 38737459)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^23 - x^22 - 132*x^21 + 269*x^20 + 6722*x^19 - 19118*x^18 - 167488*x^17 + 601226*x^16 + 2127300*x^15 - 9664345*x^14 - 12698450*x^13 + 83446410*x^12 + 19888027*x^11 - 390244377*x^10 + 110929757*x^9 + 994369765*x^8 - 511651057*x^7 - 1370318108*x^6 + 775297206*x^5 + 972267257*x^4 - 466392148*x^3 - 312747839*x^2 + 85444683*x + 38737459, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^23 - x^22 - 132*x^21 + 269*x^20 + 6722*x^19 - 19118*x^18 - 167488*x^17 + 601226*x^16 + 2127300*x^15 - 9664345*x^14 - 12698450*x^13 + 83446410*x^12 + 19888027*x^11 - 390244377*x^10 + 110929757*x^9 + 994369765*x^8 - 511651057*x^7 - 1370318108*x^6 + 775297206*x^5 + 972267257*x^4 - 466392148*x^3 - 312747839*x^2 + 85444683*x + 38737459);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 - x^22 - 132*x^21 + 269*x^20 + 6722*x^19 - 19118*x^18 - 167488*x^17 + 601226*x^16 + 2127300*x^15 - 9664345*x^14 - 12698450*x^13 + 83446410*x^12 + 19888027*x^11 - 390244377*x^10 + 110929757*x^9 + 994369765*x^8 - 511651057*x^7 - 1370318108*x^6 + 775297206*x^5 + 972267257*x^4 - 466392148*x^3 - 312747839*x^2 + 85444683*x + 38737459);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{23}$ (as 23T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 23
The 23 conjugacy class representatives for $C_{23}$
Character table for $C_{23}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(277\) Copy content Toggle raw display Deg $23$$23$$1$$22$