Properties

Label 24.4.128...000.1
Degree $24$
Signature $[4, 10]$
Discriminant $1.280\times 10^{33}$
Root discriminant \(23.96\)
Ramified primes $2,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\GL(2,5)$ (as 24T1353)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 10*x^23 + 38*x^22 - 56*x^21 - 24*x^20 + 160*x^19 - 70*x^18 - 240*x^17 + 80*x^16 + 890*x^15 - 1180*x^14 - 940*x^13 + 3410*x^12 - 2300*x^11 - 1700*x^10 + 4040*x^9 - 2450*x^8 - 580*x^7 + 1810*x^6 - 1260*x^5 + 240*x^4 + 200*x^3 - 180*x^2 + 60*x - 10)
 
gp: K = bnfinit(y^24 - 10*y^23 + 38*y^22 - 56*y^21 - 24*y^20 + 160*y^19 - 70*y^18 - 240*y^17 + 80*y^16 + 890*y^15 - 1180*y^14 - 940*y^13 + 3410*y^12 - 2300*y^11 - 1700*y^10 + 4040*y^9 - 2450*y^8 - 580*y^7 + 1810*y^6 - 1260*y^5 + 240*y^4 + 200*y^3 - 180*y^2 + 60*y - 10, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 10*x^23 + 38*x^22 - 56*x^21 - 24*x^20 + 160*x^19 - 70*x^18 - 240*x^17 + 80*x^16 + 890*x^15 - 1180*x^14 - 940*x^13 + 3410*x^12 - 2300*x^11 - 1700*x^10 + 4040*x^9 - 2450*x^8 - 580*x^7 + 1810*x^6 - 1260*x^5 + 240*x^4 + 200*x^3 - 180*x^2 + 60*x - 10);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 10*x^23 + 38*x^22 - 56*x^21 - 24*x^20 + 160*x^19 - 70*x^18 - 240*x^17 + 80*x^16 + 890*x^15 - 1180*x^14 - 940*x^13 + 3410*x^12 - 2300*x^11 - 1700*x^10 + 4040*x^9 - 2450*x^8 - 580*x^7 + 1810*x^6 - 1260*x^5 + 240*x^4 + 200*x^3 - 180*x^2 + 60*x - 10)
 

\( x^{24} - 10 x^{23} + 38 x^{22} - 56 x^{21} - 24 x^{20} + 160 x^{19} - 70 x^{18} - 240 x^{17} + 80 x^{16} + \cdots - 10 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1280000000000000000000000000000000\) \(\medspace = 2^{38}\cdot 5^{31}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(23.96\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{19/12}5^{31/20}\approx 36.31067590725307$
Ramified primes:   \(2\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{52\!\cdots\!41}a^{23}+\frac{11\!\cdots\!86}{52\!\cdots\!41}a^{22}-\frac{11\!\cdots\!67}{52\!\cdots\!41}a^{21}-\frac{13\!\cdots\!97}{52\!\cdots\!41}a^{20}-\frac{14\!\cdots\!48}{52\!\cdots\!41}a^{19}+\frac{24\!\cdots\!15}{52\!\cdots\!41}a^{18}-\frac{35\!\cdots\!87}{52\!\cdots\!41}a^{17}-\frac{71\!\cdots\!15}{52\!\cdots\!41}a^{16}-\frac{11\!\cdots\!67}{52\!\cdots\!41}a^{15}+\frac{17\!\cdots\!11}{52\!\cdots\!41}a^{14}-\frac{25\!\cdots\!77}{13\!\cdots\!79}a^{13}+\frac{13\!\cdots\!99}{52\!\cdots\!41}a^{12}-\frac{65\!\cdots\!91}{52\!\cdots\!41}a^{11}+\frac{35\!\cdots\!25}{52\!\cdots\!41}a^{10}-\frac{61\!\cdots\!85}{52\!\cdots\!41}a^{9}-\frac{21\!\cdots\!04}{52\!\cdots\!41}a^{8}-\frac{14\!\cdots\!12}{52\!\cdots\!41}a^{7}-\frac{22\!\cdots\!11}{52\!\cdots\!41}a^{6}+\frac{38\!\cdots\!45}{52\!\cdots\!41}a^{5}+\frac{60\!\cdots\!26}{52\!\cdots\!41}a^{4}+\frac{25\!\cdots\!17}{52\!\cdots\!41}a^{3}-\frac{16\!\cdots\!38}{52\!\cdots\!41}a^{2}+\frac{18\!\cdots\!04}{52\!\cdots\!41}a-\frac{19\!\cdots\!58}{52\!\cdots\!41}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{24\!\cdots\!09}{52\!\cdots\!41}a^{23}+\frac{25\!\cdots\!36}{52\!\cdots\!41}a^{22}-\frac{10\!\cdots\!91}{52\!\cdots\!41}a^{21}+\frac{15\!\cdots\!81}{52\!\cdots\!41}a^{20}+\frac{73\!\cdots\!95}{52\!\cdots\!41}a^{19}-\frac{52\!\cdots\!84}{52\!\cdots\!41}a^{18}+\frac{28\!\cdots\!06}{52\!\cdots\!41}a^{17}+\frac{80\!\cdots\!68}{52\!\cdots\!41}a^{16}-\frac{48\!\cdots\!16}{52\!\cdots\!41}a^{15}-\frac{26\!\cdots\!24}{52\!\cdots\!41}a^{14}+\frac{10\!\cdots\!82}{13\!\cdots\!79}a^{13}+\frac{29\!\cdots\!84}{52\!\cdots\!41}a^{12}-\frac{11\!\cdots\!93}{52\!\cdots\!41}a^{11}+\frac{69\!\cdots\!10}{52\!\cdots\!41}a^{10}+\frac{75\!\cdots\!84}{52\!\cdots\!41}a^{9}-\frac{14\!\cdots\!84}{52\!\cdots\!41}a^{8}+\frac{66\!\cdots\!26}{52\!\cdots\!41}a^{7}+\frac{41\!\cdots\!62}{52\!\cdots\!41}a^{6}-\frac{69\!\cdots\!80}{52\!\cdots\!41}a^{5}+\frac{33\!\cdots\!36}{52\!\cdots\!41}a^{4}-\frac{19\!\cdots\!22}{52\!\cdots\!41}a^{3}-\frac{94\!\cdots\!21}{52\!\cdots\!41}a^{2}+\frac{54\!\cdots\!70}{52\!\cdots\!41}a-\frac{15\!\cdots\!41}{52\!\cdots\!41}$, $\frac{13\!\cdots\!25}{52\!\cdots\!41}a^{23}+\frac{12\!\cdots\!68}{52\!\cdots\!41}a^{22}-\frac{41\!\cdots\!88}{52\!\cdots\!41}a^{21}+\frac{41\!\cdots\!21}{52\!\cdots\!41}a^{20}+\frac{77\!\cdots\!12}{52\!\cdots\!41}a^{19}-\frac{18\!\cdots\!06}{52\!\cdots\!41}a^{18}-\frac{34\!\cdots\!84}{52\!\cdots\!41}a^{17}+\frac{35\!\cdots\!11}{52\!\cdots\!41}a^{16}+\frac{10\!\cdots\!77}{52\!\cdots\!41}a^{15}-\frac{11\!\cdots\!61}{52\!\cdots\!41}a^{14}+\frac{20\!\cdots\!57}{13\!\cdots\!79}a^{13}+\frac{21\!\cdots\!01}{52\!\cdots\!41}a^{12}-\frac{36\!\cdots\!51}{52\!\cdots\!41}a^{11}+\frac{36\!\cdots\!38}{52\!\cdots\!41}a^{10}+\frac{38\!\cdots\!35}{52\!\cdots\!41}a^{9}-\frac{39\!\cdots\!27}{52\!\cdots\!41}a^{8}+\frac{28\!\cdots\!53}{52\!\cdots\!41}a^{7}+\frac{23\!\cdots\!34}{52\!\cdots\!41}a^{6}-\frac{17\!\cdots\!15}{52\!\cdots\!41}a^{5}+\frac{32\!\cdots\!98}{52\!\cdots\!41}a^{4}+\frac{49\!\cdots\!28}{52\!\cdots\!41}a^{3}-\frac{25\!\cdots\!36}{52\!\cdots\!41}a^{2}+\frac{26\!\cdots\!77}{52\!\cdots\!41}a+\frac{25\!\cdots\!27}{52\!\cdots\!41}$, $\frac{10\!\cdots\!65}{52\!\cdots\!41}a^{23}-\frac{10\!\cdots\!71}{52\!\cdots\!41}a^{22}+\frac{38\!\cdots\!19}{52\!\cdots\!41}a^{21}-\frac{51\!\cdots\!92}{52\!\cdots\!41}a^{20}-\frac{38\!\cdots\!28}{52\!\cdots\!41}a^{19}+\frac{16\!\cdots\!55}{52\!\cdots\!41}a^{18}-\frac{32\!\cdots\!80}{52\!\cdots\!41}a^{17}-\frac{27\!\cdots\!36}{52\!\cdots\!41}a^{16}+\frac{18\!\cdots\!06}{52\!\cdots\!41}a^{15}+\frac{97\!\cdots\!22}{52\!\cdots\!41}a^{14}-\frac{27\!\cdots\!63}{13\!\cdots\!79}a^{13}-\frac{12\!\cdots\!02}{52\!\cdots\!41}a^{12}+\frac{33\!\cdots\!66}{52\!\cdots\!41}a^{11}-\frac{15\!\cdots\!78}{52\!\cdots\!41}a^{10}-\frac{22\!\cdots\!60}{52\!\cdots\!41}a^{9}+\frac{37\!\cdots\!97}{52\!\cdots\!41}a^{8}-\frac{15\!\cdots\!13}{52\!\cdots\!41}a^{7}-\frac{11\!\cdots\!04}{52\!\cdots\!41}a^{6}+\frac{16\!\cdots\!91}{52\!\cdots\!41}a^{5}-\frac{86\!\cdots\!71}{52\!\cdots\!41}a^{4}-\frac{21\!\cdots\!19}{52\!\cdots\!41}a^{3}+\frac{24\!\cdots\!42}{52\!\cdots\!41}a^{2}-\frac{11\!\cdots\!73}{52\!\cdots\!41}a+\frac{26\!\cdots\!39}{52\!\cdots\!41}$, $\frac{73\!\cdots\!18}{52\!\cdots\!41}a^{23}+\frac{59\!\cdots\!16}{52\!\cdots\!41}a^{22}-\frac{15\!\cdots\!91}{52\!\cdots\!41}a^{21}+\frac{44\!\cdots\!24}{52\!\cdots\!41}a^{20}+\frac{40\!\cdots\!93}{52\!\cdots\!41}a^{19}-\frac{37\!\cdots\!88}{52\!\cdots\!41}a^{18}-\frac{48\!\cdots\!66}{52\!\cdots\!41}a^{17}+\frac{40\!\cdots\!77}{52\!\cdots\!41}a^{16}+\frac{15\!\cdots\!66}{52\!\cdots\!41}a^{15}-\frac{29\!\cdots\!35}{52\!\cdots\!41}a^{14}-\frac{21\!\cdots\!40}{13\!\cdots\!79}a^{13}+\frac{70\!\cdots\!69}{52\!\cdots\!41}a^{12}-\frac{56\!\cdots\!77}{52\!\cdots\!41}a^{11}+\frac{16\!\cdots\!48}{52\!\cdots\!41}a^{10}+\frac{37\!\cdots\!77}{52\!\cdots\!41}a^{9}-\frac{13\!\cdots\!11}{52\!\cdots\!41}a^{8}+\frac{10\!\cdots\!24}{52\!\cdots\!41}a^{7}+\frac{52\!\cdots\!88}{52\!\cdots\!41}a^{6}-\frac{94\!\cdots\!25}{52\!\cdots\!41}a^{5}+\frac{10\!\cdots\!10}{52\!\cdots\!41}a^{4}+\frac{43\!\cdots\!87}{52\!\cdots\!41}a^{3}-\frac{86\!\cdots\!89}{52\!\cdots\!41}a^{2}+\frac{29\!\cdots\!95}{52\!\cdots\!41}a-\frac{29\!\cdots\!13}{52\!\cdots\!41}$, $\frac{57\!\cdots\!61}{52\!\cdots\!41}a^{23}-\frac{50\!\cdots\!79}{52\!\cdots\!41}a^{22}+\frac{14\!\cdots\!14}{52\!\cdots\!41}a^{21}-\frac{75\!\cdots\!61}{52\!\cdots\!41}a^{20}-\frac{43\!\cdots\!88}{52\!\cdots\!41}a^{19}+\frac{60\!\cdots\!40}{52\!\cdots\!41}a^{18}+\frac{63\!\cdots\!72}{52\!\cdots\!41}a^{17}-\frac{13\!\cdots\!89}{52\!\cdots\!41}a^{16}-\frac{13\!\cdots\!36}{52\!\cdots\!41}a^{15}+\frac{48\!\cdots\!59}{52\!\cdots\!41}a^{14}-\frac{58\!\cdots\!46}{13\!\cdots\!79}a^{13}-\frac{11\!\cdots\!61}{52\!\cdots\!41}a^{12}+\frac{98\!\cdots\!02}{52\!\cdots\!41}a^{11}+\frac{74\!\cdots\!56}{52\!\cdots\!41}a^{10}-\frac{16\!\cdots\!28}{52\!\cdots\!41}a^{9}+\frac{66\!\cdots\!81}{52\!\cdots\!41}a^{8}+\frac{72\!\cdots\!65}{52\!\cdots\!41}a^{7}-\frac{92\!\cdots\!22}{52\!\cdots\!41}a^{6}+\frac{20\!\cdots\!59}{52\!\cdots\!41}a^{5}+\frac{13\!\cdots\!49}{52\!\cdots\!41}a^{4}-\frac{21\!\cdots\!01}{52\!\cdots\!41}a^{3}+\frac{36\!\cdots\!02}{52\!\cdots\!41}a^{2}+\frac{17\!\cdots\!63}{52\!\cdots\!41}a-\frac{12\!\cdots\!39}{52\!\cdots\!41}$, $\frac{79\!\cdots\!16}{52\!\cdots\!41}a^{23}-\frac{75\!\cdots\!81}{52\!\cdots\!41}a^{22}+\frac{26\!\cdots\!35}{52\!\cdots\!41}a^{21}-\frac{29\!\cdots\!28}{52\!\cdots\!41}a^{20}-\frac{42\!\cdots\!43}{52\!\cdots\!41}a^{19}+\frac{12\!\cdots\!88}{52\!\cdots\!41}a^{18}-\frac{93\!\cdots\!40}{52\!\cdots\!41}a^{17}-\frac{21\!\cdots\!91}{52\!\cdots\!41}a^{16}-\frac{20\!\cdots\!70}{52\!\cdots\!41}a^{15}+\frac{74\!\cdots\!71}{52\!\cdots\!41}a^{14}-\frac{16\!\cdots\!77}{13\!\cdots\!79}a^{13}-\frac{12\!\cdots\!33}{52\!\cdots\!41}a^{12}+\frac{24\!\cdots\!50}{52\!\cdots\!41}a^{11}-\frac{61\!\cdots\!59}{52\!\cdots\!41}a^{10}-\frac{22\!\cdots\!76}{52\!\cdots\!41}a^{9}+\frac{27\!\cdots\!73}{52\!\cdots\!41}a^{8}-\frac{64\!\cdots\!49}{52\!\cdots\!41}a^{7}-\frac{13\!\cdots\!46}{52\!\cdots\!41}a^{6}+\frac{13\!\cdots\!37}{52\!\cdots\!41}a^{5}-\frac{49\!\cdots\!47}{52\!\cdots\!41}a^{4}-\frac{13\!\cdots\!79}{52\!\cdots\!41}a^{3}+\frac{20\!\cdots\!02}{52\!\cdots\!41}a^{2}-\frac{83\!\cdots\!13}{52\!\cdots\!41}a+\frac{97\!\cdots\!41}{52\!\cdots\!41}$, $\frac{10\!\cdots\!07}{52\!\cdots\!41}a^{23}+\frac{99\!\cdots\!09}{52\!\cdots\!41}a^{22}-\frac{32\!\cdots\!25}{52\!\cdots\!41}a^{21}+\frac{29\!\cdots\!03}{52\!\cdots\!41}a^{20}+\frac{62\!\cdots\!15}{52\!\cdots\!41}a^{19}-\frac{12\!\cdots\!02}{52\!\cdots\!41}a^{18}-\frac{69\!\cdots\!62}{52\!\cdots\!41}a^{17}+\frac{26\!\cdots\!93}{52\!\cdots\!41}a^{16}+\frac{17\!\cdots\!27}{52\!\cdots\!41}a^{15}-\frac{94\!\cdots\!65}{52\!\cdots\!41}a^{14}+\frac{10\!\cdots\!78}{13\!\cdots\!79}a^{13}+\frac{17\!\cdots\!39}{52\!\cdots\!41}a^{12}-\frac{22\!\cdots\!97}{52\!\cdots\!41}a^{11}-\frac{39\!\cdots\!20}{52\!\cdots\!41}a^{10}+\frac{26\!\cdots\!84}{52\!\cdots\!41}a^{9}-\frac{17\!\cdots\!51}{52\!\cdots\!41}a^{8}-\frac{52\!\cdots\!80}{52\!\cdots\!41}a^{7}+\frac{14\!\cdots\!23}{52\!\cdots\!41}a^{6}-\frac{55\!\cdots\!62}{52\!\cdots\!41}a^{5}-\frac{71\!\cdots\!77}{52\!\cdots\!41}a^{4}+\frac{31\!\cdots\!28}{52\!\cdots\!41}a^{3}-\frac{10\!\cdots\!91}{52\!\cdots\!41}a^{2}-\frac{39\!\cdots\!41}{52\!\cdots\!41}a+\frac{18\!\cdots\!59}{52\!\cdots\!41}$, $\frac{54\!\cdots\!90}{52\!\cdots\!41}a^{23}-\frac{59\!\cdots\!07}{52\!\cdots\!41}a^{22}+\frac{25\!\cdots\!65}{52\!\cdots\!41}a^{21}-\frac{46\!\cdots\!84}{52\!\cdots\!41}a^{20}+\frac{89\!\cdots\!87}{52\!\cdots\!41}a^{19}+\frac{12\!\cdots\!48}{52\!\cdots\!41}a^{18}-\frac{10\!\cdots\!04}{52\!\cdots\!41}a^{17}-\frac{15\!\cdots\!66}{52\!\cdots\!41}a^{16}+\frac{18\!\cdots\!23}{52\!\cdots\!41}a^{15}+\frac{55\!\cdots\!86}{52\!\cdots\!41}a^{14}-\frac{29\!\cdots\!93}{13\!\cdots\!79}a^{13}-\frac{28\!\cdots\!95}{52\!\cdots\!41}a^{12}+\frac{27\!\cdots\!49}{52\!\cdots\!41}a^{11}-\frac{25\!\cdots\!57}{52\!\cdots\!41}a^{10}-\frac{10\!\cdots\!51}{52\!\cdots\!41}a^{9}+\frac{37\!\cdots\!92}{52\!\cdots\!41}a^{8}-\frac{26\!\cdots\!89}{52\!\cdots\!41}a^{7}-\frac{33\!\cdots\!77}{52\!\cdots\!41}a^{6}+\frac{18\!\cdots\!84}{52\!\cdots\!41}a^{5}-\frac{13\!\cdots\!57}{52\!\cdots\!41}a^{4}+\frac{29\!\cdots\!11}{52\!\cdots\!41}a^{3}+\frac{26\!\cdots\!01}{52\!\cdots\!41}a^{2}-\frac{20\!\cdots\!81}{52\!\cdots\!41}a+\frac{61\!\cdots\!43}{52\!\cdots\!41}$, $\frac{71\!\cdots\!17}{52\!\cdots\!41}a^{23}+\frac{66\!\cdots\!89}{52\!\cdots\!41}a^{22}-\frac{22\!\cdots\!05}{52\!\cdots\!41}a^{21}+\frac{23\!\cdots\!32}{52\!\cdots\!41}a^{20}+\frac{38\!\cdots\!42}{52\!\cdots\!41}a^{19}-\frac{94\!\cdots\!44}{52\!\cdots\!41}a^{18}-\frac{26\!\cdots\!50}{52\!\cdots\!41}a^{17}+\frac{18\!\cdots\!58}{52\!\cdots\!41}a^{16}+\frac{69\!\cdots\!32}{52\!\cdots\!41}a^{15}-\frac{65\!\cdots\!36}{52\!\cdots\!41}a^{14}+\frac{10\!\cdots\!68}{13\!\cdots\!79}a^{13}+\frac{11\!\cdots\!80}{52\!\cdots\!41}a^{12}-\frac{18\!\cdots\!41}{52\!\cdots\!41}a^{11}+\frac{43\!\cdots\!17}{52\!\cdots\!41}a^{10}+\frac{19\!\cdots\!04}{52\!\cdots\!41}a^{9}-\frac{16\!\cdots\!47}{52\!\cdots\!41}a^{8}-\frac{17\!\cdots\!58}{52\!\cdots\!41}a^{7}+\frac{10\!\cdots\!80}{52\!\cdots\!41}a^{6}-\frac{54\!\cdots\!42}{52\!\cdots\!41}a^{5}-\frac{10\!\cdots\!82}{52\!\cdots\!41}a^{4}+\frac{19\!\cdots\!88}{52\!\cdots\!41}a^{3}-\frac{78\!\cdots\!71}{52\!\cdots\!41}a^{2}+\frac{73\!\cdots\!70}{52\!\cdots\!41}a+\frac{81\!\cdots\!27}{52\!\cdots\!41}$, $\frac{34\!\cdots\!12}{52\!\cdots\!41}a^{23}-\frac{34\!\cdots\!32}{52\!\cdots\!41}a^{22}+\frac{13\!\cdots\!90}{52\!\cdots\!41}a^{21}-\frac{21\!\cdots\!23}{52\!\cdots\!41}a^{20}-\frac{45\!\cdots\!28}{52\!\cdots\!41}a^{19}+\frac{50\!\cdots\!10}{52\!\cdots\!41}a^{18}-\frac{21\!\cdots\!39}{52\!\cdots\!41}a^{17}-\frac{81\!\cdots\!35}{52\!\cdots\!41}a^{16}+\frac{22\!\cdots\!74}{52\!\cdots\!41}a^{15}+\frac{30\!\cdots\!53}{52\!\cdots\!41}a^{14}-\frac{11\!\cdots\!86}{13\!\cdots\!79}a^{13}-\frac{27\!\cdots\!63}{52\!\cdots\!41}a^{12}+\frac{10\!\cdots\!83}{52\!\cdots\!41}a^{11}-\frac{77\!\cdots\!89}{52\!\cdots\!41}a^{10}-\frac{43\!\cdots\!23}{52\!\cdots\!41}a^{9}+\frac{11\!\cdots\!68}{52\!\cdots\!41}a^{8}-\frac{70\!\cdots\!67}{52\!\cdots\!41}a^{7}-\frac{12\!\cdots\!38}{52\!\cdots\!41}a^{6}+\frac{43\!\cdots\!35}{52\!\cdots\!41}a^{5}-\frac{28\!\cdots\!72}{52\!\cdots\!41}a^{4}+\frac{42\!\cdots\!35}{52\!\cdots\!41}a^{3}+\frac{57\!\cdots\!56}{52\!\cdots\!41}a^{2}-\frac{33\!\cdots\!10}{52\!\cdots\!41}a+\frac{11\!\cdots\!17}{52\!\cdots\!41}$, $\frac{88\!\cdots\!05}{52\!\cdots\!41}a^{23}-\frac{88\!\cdots\!68}{52\!\cdots\!41}a^{22}+\frac{33\!\cdots\!22}{52\!\cdots\!41}a^{21}-\frac{46\!\cdots\!63}{52\!\cdots\!41}a^{20}-\frac{28\!\cdots\!41}{52\!\cdots\!41}a^{19}+\frac{14\!\cdots\!54}{52\!\cdots\!41}a^{18}-\frac{46\!\cdots\!32}{52\!\cdots\!41}a^{17}-\frac{23\!\cdots\!02}{52\!\cdots\!41}a^{16}+\frac{46\!\cdots\!55}{52\!\cdots\!41}a^{15}+\frac{83\!\cdots\!09}{52\!\cdots\!41}a^{14}-\frac{25\!\cdots\!83}{13\!\cdots\!79}a^{13}-\frac{10\!\cdots\!34}{52\!\cdots\!41}a^{12}+\frac{30\!\cdots\!12}{52\!\cdots\!41}a^{11}-\frac{16\!\cdots\!87}{52\!\cdots\!41}a^{10}-\frac{18\!\cdots\!22}{52\!\cdots\!41}a^{9}+\frac{34\!\cdots\!68}{52\!\cdots\!41}a^{8}-\frac{16\!\cdots\!37}{52\!\cdots\!41}a^{7}-\frac{78\!\cdots\!55}{52\!\cdots\!41}a^{6}+\frac{14\!\cdots\!72}{52\!\cdots\!41}a^{5}-\frac{85\!\cdots\!62}{52\!\cdots\!41}a^{4}+\frac{12\!\cdots\!14}{52\!\cdots\!41}a^{3}+\frac{16\!\cdots\!17}{52\!\cdots\!41}a^{2}-\frac{91\!\cdots\!13}{52\!\cdots\!41}a+\frac{23\!\cdots\!77}{52\!\cdots\!41}$, $\frac{25\!\cdots\!77}{52\!\cdots\!41}a^{23}-\frac{19\!\cdots\!91}{52\!\cdots\!41}a^{22}+\frac{43\!\cdots\!95}{52\!\cdots\!41}a^{21}+\frac{47\!\cdots\!56}{52\!\cdots\!41}a^{20}-\frac{29\!\cdots\!95}{52\!\cdots\!41}a^{19}+\frac{19\!\cdots\!35}{52\!\cdots\!41}a^{18}+\frac{58\!\cdots\!52}{52\!\cdots\!41}a^{17}-\frac{65\!\cdots\!65}{52\!\cdots\!41}a^{16}-\frac{11\!\cdots\!39}{52\!\cdots\!41}a^{15}+\frac{21\!\cdots\!32}{52\!\cdots\!41}a^{14}+\frac{50\!\cdots\!88}{13\!\cdots\!79}a^{13}-\frac{69\!\cdots\!13}{52\!\cdots\!41}a^{12}+\frac{17\!\cdots\!06}{52\!\cdots\!41}a^{11}+\frac{97\!\cdots\!73}{52\!\cdots\!41}a^{10}-\frac{10\!\cdots\!36}{52\!\cdots\!41}a^{9}-\frac{12\!\cdots\!43}{52\!\cdots\!41}a^{8}+\frac{99\!\cdots\!92}{52\!\cdots\!41}a^{7}-\frac{64\!\cdots\!12}{52\!\cdots\!41}a^{6}-\frac{12\!\cdots\!92}{52\!\cdots\!41}a^{5}+\frac{31\!\cdots\!75}{52\!\cdots\!41}a^{4}-\frac{20\!\cdots\!45}{52\!\cdots\!41}a^{3}-\frac{10\!\cdots\!96}{52\!\cdots\!41}a^{2}+\frac{35\!\cdots\!37}{52\!\cdots\!41}a-\frac{16\!\cdots\!63}{52\!\cdots\!41}$, $\frac{22\!\cdots\!59}{52\!\cdots\!41}a^{23}-\frac{21\!\cdots\!46}{52\!\cdots\!41}a^{22}+\frac{76\!\cdots\!72}{52\!\cdots\!41}a^{21}-\frac{93\!\cdots\!95}{52\!\cdots\!41}a^{20}-\frac{98\!\cdots\!68}{52\!\cdots\!41}a^{19}+\frac{33\!\cdots\!91}{52\!\cdots\!41}a^{18}-\frac{24\!\cdots\!84}{52\!\cdots\!41}a^{17}-\frac{58\!\cdots\!16}{52\!\cdots\!41}a^{16}-\frac{29\!\cdots\!29}{52\!\cdots\!41}a^{15}+\frac{20\!\cdots\!14}{52\!\cdots\!41}a^{14}-\frac{49\!\cdots\!48}{13\!\cdots\!79}a^{13}-\frac{30\!\cdots\!04}{52\!\cdots\!41}a^{12}+\frac{67\!\cdots\!56}{52\!\cdots\!41}a^{11}-\frac{23\!\cdots\!72}{52\!\cdots\!41}a^{10}-\frac{55\!\cdots\!80}{52\!\cdots\!41}a^{9}+\frac{73\!\cdots\!45}{52\!\cdots\!41}a^{8}-\frac{22\!\cdots\!34}{52\!\cdots\!41}a^{7}-\frac{29\!\cdots\!07}{52\!\cdots\!41}a^{6}+\frac{32\!\cdots\!26}{52\!\cdots\!41}a^{5}-\frac{13\!\cdots\!53}{52\!\cdots\!41}a^{4}-\frac{26\!\cdots\!76}{52\!\cdots\!41}a^{3}+\frac{47\!\cdots\!32}{52\!\cdots\!41}a^{2}-\frac{19\!\cdots\!70}{52\!\cdots\!41}a+\frac{17\!\cdots\!61}{52\!\cdots\!41}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 20547515.71936001 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{10}\cdot 20547515.71936001 \cdot 1}{2\cdot\sqrt{1280000000000000000000000000000000}}\cr\approx \mathstrut & 0.440598492731830 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 - 10*x^23 + 38*x^22 - 56*x^21 - 24*x^20 + 160*x^19 - 70*x^18 - 240*x^17 + 80*x^16 + 890*x^15 - 1180*x^14 - 940*x^13 + 3410*x^12 - 2300*x^11 - 1700*x^10 + 4040*x^9 - 2450*x^8 - 580*x^7 + 1810*x^6 - 1260*x^5 + 240*x^4 + 200*x^3 - 180*x^2 + 60*x - 10)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 - 10*x^23 + 38*x^22 - 56*x^21 - 24*x^20 + 160*x^19 - 70*x^18 - 240*x^17 + 80*x^16 + 890*x^15 - 1180*x^14 - 940*x^13 + 3410*x^12 - 2300*x^11 - 1700*x^10 + 4040*x^9 - 2450*x^8 - 580*x^7 + 1810*x^6 - 1260*x^5 + 240*x^4 + 200*x^3 - 180*x^2 + 60*x - 10, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 - 10*x^23 + 38*x^22 - 56*x^21 - 24*x^20 + 160*x^19 - 70*x^18 - 240*x^17 + 80*x^16 + 890*x^15 - 1180*x^14 - 940*x^13 + 3410*x^12 - 2300*x^11 - 1700*x^10 + 4040*x^9 - 2450*x^8 - 580*x^7 + 1810*x^6 - 1260*x^5 + 240*x^4 + 200*x^3 - 180*x^2 + 60*x - 10);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 10*x^23 + 38*x^22 - 56*x^21 - 24*x^20 + 160*x^19 - 70*x^18 - 240*x^17 + 80*x^16 + 890*x^15 - 1180*x^14 - 940*x^13 + 3410*x^12 - 2300*x^11 - 1700*x^10 + 4040*x^9 - 2450*x^8 - 580*x^7 + 1810*x^6 - 1260*x^5 + 240*x^4 + 200*x^3 - 180*x^2 + 60*x - 10);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\GL(2,5)$ (as 24T1353):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 480
The 24 conjugacy class representatives for $\GL(2,5)$
Character table for $\GL(2,5)$

Intermediate fields

6.2.5000000.1, 12.4.500000000000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 24 siblings: 24.4.32000000000000000000000000000000000.1, 24.4.32000000000000000000000000000000000.2
Arithmetically equvalently sibling: 24.4.1280000000000000000000000000000000.2
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $24$ R ${\href{/padicField/7.4.0.1}{4} }^{5}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.3.0.1}{3} }^{8}$ ${\href{/padicField/13.4.0.1}{4} }^{5}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{3}$ $20{,}\,{\href{/padicField/19.4.0.1}{4} }$ $24$ ${\href{/padicField/29.12.0.1}{12} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{6}$ $24$ ${\href{/padicField/41.5.0.1}{5} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ $24$ ${\href{/padicField/53.4.0.1}{4} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ ${\href{/padicField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $24$$24$$1$$38$
\(5\) Copy content Toggle raw display 5.4.0.1$x^{4} + 4 x^{2} + 4 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $20$$20$$1$$31$