Properties

Label 25.1.171...161.1
Degree $25$
Signature $[1, 12]$
Discriminant $1.718\times 10^{46}$
Root discriminant \(70.70\)
Ramified primes $11,131$
Class number $5$ (GRH)
Class group [5] (GRH)
Galois group $D_{25}$ (as 25T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^25 + 18*x^23 - 17*x^22 + 163*x^21 + 778*x^20 + 668*x^19 + 6093*x^18 + 8161*x^17 - 16824*x^16 + 24958*x^15 + 156175*x^14 + 317021*x^13 + 1220510*x^12 + 3228424*x^11 + 5166827*x^10 + 7607147*x^9 + 10396892*x^8 + 8655374*x^7 + 3386053*x^6 + 971637*x^5 + 379214*x^4 - 252700*x^3 + 96379*x^2 - 14488*x + 1088)
 
gp: K = bnfinit(y^25 + 18*y^23 - 17*y^22 + 163*y^21 + 778*y^20 + 668*y^19 + 6093*y^18 + 8161*y^17 - 16824*y^16 + 24958*y^15 + 156175*y^14 + 317021*y^13 + 1220510*y^12 + 3228424*y^11 + 5166827*y^10 + 7607147*y^9 + 10396892*y^8 + 8655374*y^7 + 3386053*y^6 + 971637*y^5 + 379214*y^4 - 252700*y^3 + 96379*y^2 - 14488*y + 1088, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^25 + 18*x^23 - 17*x^22 + 163*x^21 + 778*x^20 + 668*x^19 + 6093*x^18 + 8161*x^17 - 16824*x^16 + 24958*x^15 + 156175*x^14 + 317021*x^13 + 1220510*x^12 + 3228424*x^11 + 5166827*x^10 + 7607147*x^9 + 10396892*x^8 + 8655374*x^7 + 3386053*x^6 + 971637*x^5 + 379214*x^4 - 252700*x^3 + 96379*x^2 - 14488*x + 1088);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 + 18*x^23 - 17*x^22 + 163*x^21 + 778*x^20 + 668*x^19 + 6093*x^18 + 8161*x^17 - 16824*x^16 + 24958*x^15 + 156175*x^14 + 317021*x^13 + 1220510*x^12 + 3228424*x^11 + 5166827*x^10 + 7607147*x^9 + 10396892*x^8 + 8655374*x^7 + 3386053*x^6 + 971637*x^5 + 379214*x^4 - 252700*x^3 + 96379*x^2 - 14488*x + 1088)
 

\( x^{25} + 18 x^{23} - 17 x^{22} + 163 x^{21} + 778 x^{20} + 668 x^{19} + 6093 x^{18} + 8161 x^{17} + \cdots + 1088 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $25$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(17183405982116876392097404040231169905747048161\) \(\medspace = 11^{20}\cdot 131^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(70.70\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{4/5}131^{1/2}\approx 77.93809672288276$
Ramified primes:   \(11\), \(131\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{7}-\frac{1}{4}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{3}$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{7}-\frac{1}{8}a^{4}+\frac{1}{8}a$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{8}-\frac{1}{8}a^{5}+\frac{1}{8}a^{2}$, $\frac{1}{8}a^{12}-\frac{1}{8}a^{9}-\frac{1}{8}a^{6}+\frac{1}{8}a^{3}$, $\frac{1}{16}a^{13}-\frac{1}{16}a^{12}-\frac{1}{16}a^{11}-\frac{1}{16}a^{10}-\frac{1}{16}a^{9}-\frac{1}{16}a^{8}+\frac{1}{16}a^{7}-\frac{3}{16}a^{6}-\frac{3}{16}a^{5}-\frac{3}{16}a^{4}-\frac{3}{16}a^{3}-\frac{3}{16}a^{2}-\frac{3}{8}a$, $\frac{1}{32}a^{14}+\frac{1}{16}a^{8}-\frac{3}{32}a^{2}$, $\frac{1}{32}a^{15}+\frac{1}{16}a^{9}-\frac{3}{32}a^{3}$, $\frac{1}{64}a^{16}-\frac{1}{64}a^{15}-\frac{1}{64}a^{14}-\frac{1}{32}a^{13}-\frac{1}{32}a^{12}-\frac{1}{32}a^{11}+\frac{1}{16}a^{9}+\frac{1}{16}a^{8}+\frac{1}{32}a^{7}-\frac{3}{32}a^{6}-\frac{3}{32}a^{5}-\frac{9}{64}a^{4}-\frac{11}{64}a^{3}-\frac{11}{64}a^{2}-\frac{1}{8}a$, $\frac{1}{64}a^{17}-\frac{1}{64}a^{14}+\frac{1}{32}a^{11}-\frac{1}{32}a^{8}-\frac{3}{64}a^{5}+\frac{3}{64}a^{2}$, $\frac{1}{64}a^{18}-\frac{1}{64}a^{15}+\frac{1}{32}a^{12}-\frac{1}{32}a^{9}-\frac{3}{64}a^{6}+\frac{3}{64}a^{3}$, $\frac{1}{128}a^{19}-\frac{1}{128}a^{18}-\frac{1}{128}a^{17}-\frac{1}{128}a^{16}+\frac{1}{128}a^{15}+\frac{1}{128}a^{14}-\frac{1}{64}a^{13}+\frac{1}{64}a^{12}+\frac{1}{64}a^{11}+\frac{1}{64}a^{10}+\frac{3}{64}a^{9}+\frac{3}{64}a^{8}-\frac{7}{128}a^{7}-\frac{17}{128}a^{6}-\frac{17}{128}a^{5}-\frac{17}{128}a^{4}+\frac{41}{128}a^{3}-\frac{23}{128}a^{2}-\frac{1}{16}a-\frac{1}{2}$, $\frac{1}{128}a^{20}+\frac{1}{128}a^{14}-\frac{1}{16}a^{12}-\frac{1}{16}a^{11}-\frac{1}{16}a^{10}-\frac{1}{16}a^{9}-\frac{13}{128}a^{8}-\frac{1}{16}a^{7}-\frac{3}{16}a^{6}-\frac{3}{16}a^{5}-\frac{3}{16}a^{4}+\frac{5}{16}a^{3}-\frac{21}{128}a^{2}-\frac{3}{16}a-\frac{1}{2}$, $\frac{1}{512}a^{21}-\frac{1}{512}a^{19}+\frac{1}{512}a^{18}+\frac{3}{512}a^{17}-\frac{3}{512}a^{16}-\frac{7}{512}a^{14}-\frac{3}{256}a^{13}+\frac{3}{256}a^{12}-\frac{11}{256}a^{11}+\frac{15}{256}a^{10}-\frac{35}{512}a^{9}-\frac{21}{256}a^{8}-\frac{1}{512}a^{7}+\frac{41}{512}a^{6}+\frac{3}{512}a^{5}-\frac{43}{512}a^{4}-\frac{119}{256}a^{3}+\frac{33}{512}a^{2}-\frac{1}{64}a+\frac{3}{8}$, $\frac{1}{512}a^{22}-\frac{1}{512}a^{20}+\frac{1}{512}a^{19}+\frac{3}{512}a^{18}-\frac{3}{512}a^{17}-\frac{7}{512}a^{15}-\frac{3}{256}a^{14}+\frac{3}{256}a^{13}-\frac{11}{256}a^{12}+\frac{15}{256}a^{11}+\frac{29}{512}a^{10}-\frac{21}{256}a^{9}-\frac{1}{512}a^{8}-\frac{23}{512}a^{7}+\frac{3}{512}a^{6}-\frac{43}{512}a^{5}-\frac{23}{256}a^{4}+\frac{33}{512}a^{3}-\frac{1}{64}a^{2}$, $\frac{1}{98311168}a^{23}-\frac{87863}{98311168}a^{22}+\frac{4107}{12288896}a^{21}+\frac{8619}{6144448}a^{20}-\frac{177013}{98311168}a^{19}+\frac{119809}{98311168}a^{18}+\frac{8805}{12288896}a^{17}+\frac{58391}{49155584}a^{16}+\frac{1031315}{98311168}a^{15}+\frac{505785}{98311168}a^{14}+\frac{13253}{49155584}a^{13}+\frac{2062479}{49155584}a^{12}+\frac{5088517}{98311168}a^{11}-\frac{4510119}{98311168}a^{10}-\frac{155597}{1585664}a^{9}+\frac{4544351}{49155584}a^{8}+\frac{11676163}{98311168}a^{7}+\frac{3163441}{98311168}a^{6}-\frac{4233359}{49155584}a^{5}-\frac{9707}{80848}a^{4}-\frac{34225717}{98311168}a^{3}+\frac{29441513}{98311168}a^{2}+\frac{3135647}{12288896}a-\frac{570141}{1536112}$, $\frac{1}{26\!\cdots\!36}a^{24}+\frac{10\!\cdots\!45}{26\!\cdots\!36}a^{23}+\frac{10\!\cdots\!39}{13\!\cdots\!68}a^{22}+\frac{22\!\cdots\!85}{66\!\cdots\!84}a^{21}-\frac{49\!\cdots\!39}{26\!\cdots\!36}a^{20}-\frac{36\!\cdots\!81}{26\!\cdots\!36}a^{19}+\frac{73\!\cdots\!25}{10\!\cdots\!28}a^{18}-\frac{31\!\cdots\!61}{66\!\cdots\!84}a^{17}-\frac{20\!\cdots\!09}{26\!\cdots\!36}a^{16}+\frac{32\!\cdots\!19}{26\!\cdots\!36}a^{15}+\frac{40\!\cdots\!79}{13\!\cdots\!68}a^{14}-\frac{12\!\cdots\!75}{13\!\cdots\!68}a^{13}+\frac{48\!\cdots\!85}{26\!\cdots\!36}a^{12}-\frac{11\!\cdots\!03}{26\!\cdots\!36}a^{11}+\frac{29\!\cdots\!55}{33\!\cdots\!92}a^{10}-\frac{11\!\cdots\!85}{13\!\cdots\!68}a^{9}+\frac{10\!\cdots\!59}{11\!\cdots\!32}a^{8}+\frac{21\!\cdots\!91}{26\!\cdots\!36}a^{7}-\frac{26\!\cdots\!03}{36\!\cdots\!76}a^{6}+\frac{12\!\cdots\!21}{70\!\cdots\!72}a^{5}+\frac{16\!\cdots\!63}{26\!\cdots\!36}a^{4}-\frac{24\!\cdots\!77}{26\!\cdots\!36}a^{3}+\frac{68\!\cdots\!01}{33\!\cdots\!92}a^{2}+\frac{15\!\cdots\!85}{41\!\cdots\!24}a+\frac{18\!\cdots\!34}{80\!\cdots\!93}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{5}$, which has order $5$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{21\!\cdots\!03}{96\!\cdots\!52}a^{24}-\frac{19\!\cdots\!65}{15\!\cdots\!32}a^{23}+\frac{62\!\cdots\!39}{15\!\cdots\!32}a^{22}-\frac{39\!\cdots\!91}{96\!\cdots\!52}a^{21}+\frac{14\!\cdots\!39}{38\!\cdots\!08}a^{20}+\frac{26\!\cdots\!69}{15\!\cdots\!32}a^{19}+\frac{16\!\cdots\!45}{11\!\cdots\!72}a^{18}+\frac{52\!\cdots\!45}{38\!\cdots\!08}a^{17}+\frac{13\!\cdots\!93}{77\!\cdots\!16}a^{16}-\frac{61\!\cdots\!07}{15\!\cdots\!32}a^{15}+\frac{88\!\cdots\!63}{15\!\cdots\!32}a^{14}+\frac{27\!\cdots\!63}{77\!\cdots\!16}a^{13}+\frac{53\!\cdots\!05}{77\!\cdots\!16}a^{12}+\frac{41\!\cdots\!07}{15\!\cdots\!32}a^{11}+\frac{67\!\cdots\!57}{94\!\cdots\!64}a^{10}+\frac{85\!\cdots\!83}{77\!\cdots\!16}a^{9}+\frac{53\!\cdots\!97}{33\!\cdots\!92}a^{8}+\frac{33\!\cdots\!29}{15\!\cdots\!32}a^{7}+\frac{11\!\cdots\!93}{66\!\cdots\!84}a^{6}+\frac{40\!\cdots\!57}{77\!\cdots\!16}a^{5}+\frac{12\!\cdots\!27}{19\!\cdots\!04}a^{4}+\frac{44\!\cdots\!81}{15\!\cdots\!32}a^{3}-\frac{11\!\cdots\!97}{15\!\cdots\!32}a^{2}+\frac{36\!\cdots\!17}{19\!\cdots\!04}a-\frac{29\!\cdots\!99}{14\!\cdots\!64}$, $\frac{91\!\cdots\!41}{81\!\cdots\!28}a^{24}+\frac{32\!\cdots\!63}{77\!\cdots\!16}a^{23}+\frac{31\!\cdots\!71}{15\!\cdots\!32}a^{22}-\frac{45\!\cdots\!83}{38\!\cdots\!08}a^{21}+\frac{27\!\cdots\!81}{15\!\cdots\!32}a^{20}+\frac{45\!\cdots\!51}{48\!\cdots\!76}a^{19}+\frac{12\!\cdots\!37}{11\!\cdots\!72}a^{18}+\frac{55\!\cdots\!99}{77\!\cdots\!16}a^{17}+\frac{18\!\cdots\!47}{15\!\cdots\!32}a^{16}-\frac{58\!\cdots\!21}{38\!\cdots\!08}a^{15}+\frac{33\!\cdots\!01}{15\!\cdots\!32}a^{14}+\frac{44\!\cdots\!53}{24\!\cdots\!88}a^{13}+\frac{65\!\cdots\!85}{15\!\cdots\!32}a^{12}+\frac{11\!\cdots\!45}{77\!\cdots\!16}a^{11}+\frac{39\!\cdots\!87}{94\!\cdots\!64}a^{10}+\frac{27\!\cdots\!93}{38\!\cdots\!08}a^{9}+\frac{72\!\cdots\!77}{66\!\cdots\!84}a^{8}+\frac{29\!\cdots\!67}{19\!\cdots\!04}a^{7}+\frac{96\!\cdots\!27}{66\!\cdots\!84}a^{6}+\frac{60\!\cdots\!29}{77\!\cdots\!16}a^{5}+\frac{23\!\cdots\!07}{81\!\cdots\!28}a^{4}+\frac{37\!\cdots\!95}{38\!\cdots\!08}a^{3}-\frac{88\!\cdots\!73}{15\!\cdots\!32}a^{2}+\frac{81\!\cdots\!85}{19\!\cdots\!04}a+\frac{10\!\cdots\!73}{14\!\cdots\!64}$, $\frac{72\!\cdots\!19}{66\!\cdots\!84}a^{24}+\frac{33\!\cdots\!67}{26\!\cdots\!36}a^{23}+\frac{52\!\cdots\!03}{26\!\cdots\!36}a^{22}-\frac{21\!\cdots\!77}{13\!\cdots\!68}a^{21}+\frac{18\!\cdots\!91}{10\!\cdots\!56}a^{20}+\frac{23\!\cdots\!07}{26\!\cdots\!36}a^{19}+\frac{16\!\cdots\!23}{20\!\cdots\!56}a^{18}+\frac{89\!\cdots\!63}{13\!\cdots\!68}a^{17}+\frac{63\!\cdots\!73}{66\!\cdots\!84}a^{16}-\frac{46\!\cdots\!35}{26\!\cdots\!36}a^{15}+\frac{34\!\cdots\!95}{14\!\cdots\!44}a^{14}+\frac{23\!\cdots\!53}{13\!\cdots\!68}a^{13}+\frac{48\!\cdots\!41}{13\!\cdots\!68}a^{12}+\frac{36\!\cdots\!31}{26\!\cdots\!36}a^{11}+\frac{97\!\cdots\!63}{26\!\cdots\!36}a^{10}+\frac{39\!\cdots\!43}{66\!\cdots\!84}a^{9}+\frac{51\!\cdots\!33}{57\!\cdots\!16}a^{8}+\frac{32\!\cdots\!39}{26\!\cdots\!36}a^{7}+\frac{12\!\cdots\!43}{11\!\cdots\!32}a^{6}+\frac{29\!\cdots\!73}{66\!\cdots\!84}a^{5}+\frac{16\!\cdots\!57}{13\!\cdots\!68}a^{4}+\frac{10\!\cdots\!09}{26\!\cdots\!36}a^{3}-\frac{76\!\cdots\!03}{26\!\cdots\!36}a^{2}+\frac{17\!\cdots\!03}{33\!\cdots\!92}a-\frac{80\!\cdots\!69}{24\!\cdots\!72}$, $\frac{66\!\cdots\!67}{42\!\cdots\!28}a^{24}+\frac{16\!\cdots\!03}{66\!\cdots\!84}a^{23}+\frac{37\!\cdots\!91}{13\!\cdots\!68}a^{22}-\frac{29\!\cdots\!95}{13\!\cdots\!68}a^{21}+\frac{32\!\cdots\!01}{13\!\cdots\!68}a^{20}+\frac{87\!\cdots\!19}{70\!\cdots\!72}a^{19}+\frac{15\!\cdots\!23}{12\!\cdots\!16}a^{18}+\frac{12\!\cdots\!67}{13\!\cdots\!68}a^{17}+\frac{93\!\cdots\!41}{66\!\cdots\!84}a^{16}-\frac{16\!\cdots\!15}{66\!\cdots\!84}a^{15}+\frac{57\!\cdots\!57}{16\!\cdots\!96}a^{14}+\frac{16\!\cdots\!59}{66\!\cdots\!84}a^{13}+\frac{70\!\cdots\!13}{13\!\cdots\!68}a^{12}+\frac{32\!\cdots\!53}{16\!\cdots\!96}a^{11}+\frac{70\!\cdots\!95}{13\!\cdots\!68}a^{10}+\frac{37\!\cdots\!39}{42\!\cdots\!28}a^{9}+\frac{75\!\cdots\!51}{57\!\cdots\!16}a^{8}+\frac{23\!\cdots\!17}{13\!\cdots\!68}a^{7}+\frac{45\!\cdots\!03}{28\!\cdots\!08}a^{6}+\frac{95\!\cdots\!51}{13\!\cdots\!68}a^{5}+\frac{34\!\cdots\!81}{16\!\cdots\!96}a^{4}+\frac{21\!\cdots\!19}{33\!\cdots\!92}a^{3}-\frac{24\!\cdots\!43}{66\!\cdots\!84}a^{2}+\frac{52\!\cdots\!91}{83\!\cdots\!48}a-\frac{19\!\cdots\!49}{61\!\cdots\!68}$, $\frac{28\!\cdots\!43}{83\!\cdots\!48}a^{24}-\frac{14\!\cdots\!11}{26\!\cdots\!36}a^{23}+\frac{16\!\cdots\!57}{26\!\cdots\!36}a^{22}-\frac{22\!\cdots\!81}{33\!\cdots\!92}a^{21}+\frac{37\!\cdots\!49}{66\!\cdots\!84}a^{20}+\frac{67\!\cdots\!07}{26\!\cdots\!36}a^{19}+\frac{37\!\cdots\!27}{20\!\cdots\!56}a^{18}+\frac{13\!\cdots\!35}{66\!\cdots\!84}a^{17}+\frac{32\!\cdots\!55}{13\!\cdots\!68}a^{16}-\frac{16\!\cdots\!49}{26\!\cdots\!36}a^{15}+\frac{24\!\cdots\!41}{26\!\cdots\!36}a^{14}+\frac{68\!\cdots\!45}{13\!\cdots\!68}a^{13}+\frac{13\!\cdots\!23}{13\!\cdots\!68}a^{12}+\frac{64\!\cdots\!31}{16\!\cdots\!72}a^{11}+\frac{27\!\cdots\!45}{26\!\cdots\!36}a^{10}+\frac{20\!\cdots\!65}{13\!\cdots\!68}a^{9}+\frac{13\!\cdots\!71}{57\!\cdots\!16}a^{8}+\frac{80\!\cdots\!27}{26\!\cdots\!36}a^{7}+\frac{26\!\cdots\!95}{11\!\cdots\!32}a^{6}+\frac{67\!\cdots\!23}{13\!\cdots\!68}a^{5}-\frac{18\!\cdots\!89}{16\!\cdots\!96}a^{4}+\frac{98\!\cdots\!91}{26\!\cdots\!36}a^{3}-\frac{33\!\cdots\!23}{26\!\cdots\!36}a^{2}+\frac{12\!\cdots\!91}{33\!\cdots\!92}a-\frac{15\!\cdots\!13}{24\!\cdots\!72}$, $\frac{46\!\cdots\!67}{66\!\cdots\!84}a^{24}+\frac{14\!\cdots\!49}{13\!\cdots\!68}a^{23}+\frac{16\!\cdots\!03}{13\!\cdots\!68}a^{22}-\frac{33\!\cdots\!89}{33\!\cdots\!92}a^{21}+\frac{75\!\cdots\!11}{66\!\cdots\!84}a^{20}+\frac{75\!\cdots\!87}{13\!\cdots\!68}a^{19}+\frac{57\!\cdots\!01}{10\!\cdots\!28}a^{18}+\frac{72\!\cdots\!33}{16\!\cdots\!96}a^{17}+\frac{53\!\cdots\!13}{83\!\cdots\!48}a^{16}-\frac{14\!\cdots\!97}{13\!\cdots\!68}a^{15}+\frac{20\!\cdots\!27}{13\!\cdots\!68}a^{14}+\frac{74\!\cdots\!73}{66\!\cdots\!84}a^{13}+\frac{10\!\cdots\!41}{41\!\cdots\!24}a^{12}+\frac{11\!\cdots\!97}{13\!\cdots\!68}a^{11}+\frac{32\!\cdots\!91}{13\!\cdots\!68}a^{10}+\frac{26\!\cdots\!99}{66\!\cdots\!84}a^{9}+\frac{21\!\cdots\!15}{36\!\cdots\!76}a^{8}+\frac{10\!\cdots\!39}{13\!\cdots\!68}a^{7}+\frac{42\!\cdots\!13}{57\!\cdots\!16}a^{6}+\frac{23\!\cdots\!89}{66\!\cdots\!84}a^{5}+\frac{78\!\cdots\!67}{66\!\cdots\!84}a^{4}+\frac{55\!\cdots\!23}{13\!\cdots\!68}a^{3}-\frac{16\!\cdots\!61}{13\!\cdots\!68}a^{2}+\frac{69\!\cdots\!09}{16\!\cdots\!96}a-\frac{27\!\cdots\!59}{12\!\cdots\!36}$, $\frac{14\!\cdots\!23}{16\!\cdots\!96}a^{24}+\frac{70\!\cdots\!81}{26\!\cdots\!36}a^{23}+\frac{13\!\cdots\!09}{85\!\cdots\!56}a^{22}-\frac{13\!\cdots\!31}{13\!\cdots\!68}a^{21}+\frac{18\!\cdots\!85}{13\!\cdots\!68}a^{20}+\frac{19\!\cdots\!43}{26\!\cdots\!36}a^{19}+\frac{16\!\cdots\!03}{20\!\cdots\!56}a^{18}+\frac{37\!\cdots\!99}{66\!\cdots\!84}a^{17}+\frac{29\!\cdots\!41}{33\!\cdots\!92}a^{16}-\frac{31\!\cdots\!79}{26\!\cdots\!36}a^{15}+\frac{47\!\cdots\!19}{26\!\cdots\!36}a^{14}+\frac{18\!\cdots\!69}{13\!\cdots\!68}a^{13}+\frac{22\!\cdots\!53}{70\!\cdots\!72}a^{12}+\frac{31\!\cdots\!17}{26\!\cdots\!36}a^{11}+\frac{85\!\cdots\!03}{26\!\cdots\!36}a^{10}+\frac{92\!\cdots\!59}{16\!\cdots\!96}a^{9}+\frac{24\!\cdots\!95}{28\!\cdots\!08}a^{8}+\frac{31\!\cdots\!95}{26\!\cdots\!36}a^{7}+\frac{12\!\cdots\!15}{11\!\cdots\!32}a^{6}+\frac{83\!\cdots\!35}{13\!\cdots\!68}a^{5}+\frac{32\!\cdots\!07}{13\!\cdots\!68}a^{4}+\frac{22\!\cdots\!81}{26\!\cdots\!36}a^{3}-\frac{39\!\cdots\!01}{26\!\cdots\!36}a^{2}+\frac{87\!\cdots\!93}{33\!\cdots\!92}a+\frac{15\!\cdots\!29}{24\!\cdots\!72}$, $\frac{33\!\cdots\!93}{26\!\cdots\!36}a^{24}-\frac{10\!\cdots\!23}{13\!\cdots\!68}a^{23}+\frac{63\!\cdots\!07}{26\!\cdots\!36}a^{22}-\frac{40\!\cdots\!85}{10\!\cdots\!32}a^{21}+\frac{65\!\cdots\!53}{26\!\cdots\!36}a^{20}+\frac{10\!\cdots\!01}{13\!\cdots\!68}a^{19}+\frac{11\!\cdots\!01}{20\!\cdots\!56}a^{18}+\frac{50\!\cdots\!63}{66\!\cdots\!84}a^{17}+\frac{14\!\cdots\!29}{26\!\cdots\!36}a^{16}-\frac{25\!\cdots\!47}{13\!\cdots\!68}a^{15}+\frac{11\!\cdots\!11}{26\!\cdots\!36}a^{14}+\frac{10\!\cdots\!31}{66\!\cdots\!84}a^{13}+\frac{89\!\cdots\!27}{26\!\cdots\!36}a^{12}+\frac{18\!\cdots\!81}{13\!\cdots\!68}a^{11}+\frac{46\!\cdots\!59}{14\!\cdots\!44}a^{10}+\frac{34\!\cdots\!95}{66\!\cdots\!84}a^{9}+\frac{92\!\cdots\!53}{11\!\cdots\!32}a^{8}+\frac{14\!\cdots\!17}{13\!\cdots\!68}a^{7}+\frac{31\!\cdots\!53}{37\!\cdots\!72}a^{6}+\frac{13\!\cdots\!41}{33\!\cdots\!92}a^{5}+\frac{17\!\cdots\!21}{85\!\cdots\!56}a^{4}+\frac{10\!\cdots\!13}{13\!\cdots\!68}a^{3}+\frac{33\!\cdots\!43}{14\!\cdots\!44}a^{2}+\frac{50\!\cdots\!19}{33\!\cdots\!92}a+\frac{17\!\cdots\!99}{24\!\cdots\!72}$, $\frac{27\!\cdots\!17}{72\!\cdots\!28}a^{24}-\frac{34\!\cdots\!25}{72\!\cdots\!28}a^{23}+\frac{24\!\cdots\!95}{36\!\cdots\!64}a^{22}-\frac{53\!\cdots\!63}{36\!\cdots\!64}a^{21}+\frac{48\!\cdots\!59}{72\!\cdots\!28}a^{20}+\frac{15\!\cdots\!49}{72\!\cdots\!28}a^{19}-\frac{94\!\cdots\!61}{68\!\cdots\!36}a^{18}+\frac{84\!\cdots\!97}{45\!\cdots\!08}a^{17}+\frac{64\!\cdots\!85}{72\!\cdots\!28}a^{16}-\frac{79\!\cdots\!61}{72\!\cdots\!28}a^{15}+\frac{58\!\cdots\!35}{36\!\cdots\!64}a^{14}+\frac{17\!\cdots\!23}{36\!\cdots\!64}a^{13}+\frac{30\!\cdots\!33}{72\!\cdots\!28}a^{12}+\frac{20\!\cdots\!79}{72\!\cdots\!28}a^{11}+\frac{10\!\cdots\!13}{18\!\cdots\!32}a^{10}+\frac{46\!\cdots\!47}{18\!\cdots\!32}a^{9}-\frac{18\!\cdots\!55}{31\!\cdots\!36}a^{8}-\frac{27\!\cdots\!63}{72\!\cdots\!28}a^{7}-\frac{42\!\cdots\!33}{15\!\cdots\!68}a^{6}-\frac{15\!\cdots\!05}{36\!\cdots\!64}a^{5}-\frac{18\!\cdots\!11}{72\!\cdots\!28}a^{4}-\frac{64\!\cdots\!49}{72\!\cdots\!28}a^{3}-\frac{82\!\cdots\!53}{18\!\cdots\!32}a^{2}+\frac{67\!\cdots\!75}{72\!\cdots\!84}a-\frac{41\!\cdots\!65}{16\!\cdots\!64}$, $\frac{94\!\cdots\!11}{26\!\cdots\!36}a^{24}+\frac{12\!\cdots\!81}{26\!\cdots\!36}a^{23}+\frac{13\!\cdots\!83}{21\!\cdots\!64}a^{22}-\frac{66\!\cdots\!07}{13\!\cdots\!68}a^{21}+\frac{15\!\cdots\!35}{26\!\cdots\!36}a^{20}+\frac{76\!\cdots\!09}{26\!\cdots\!36}a^{19}+\frac{26\!\cdots\!03}{10\!\cdots\!28}a^{18}+\frac{29\!\cdots\!51}{13\!\cdots\!68}a^{17}+\frac{85\!\cdots\!95}{26\!\cdots\!36}a^{16}-\frac{78\!\cdots\!59}{14\!\cdots\!44}a^{15}+\frac{12\!\cdots\!41}{13\!\cdots\!68}a^{14}+\frac{73\!\cdots\!43}{13\!\cdots\!68}a^{13}+\frac{31\!\cdots\!79}{26\!\cdots\!36}a^{12}+\frac{64\!\cdots\!75}{14\!\cdots\!44}a^{11}+\frac{16\!\cdots\!31}{13\!\cdots\!68}a^{10}+\frac{13\!\cdots\!15}{66\!\cdots\!84}a^{9}+\frac{35\!\cdots\!13}{11\!\cdots\!32}a^{8}+\frac{11\!\cdots\!77}{26\!\cdots\!36}a^{7}+\frac{55\!\cdots\!31}{14\!\cdots\!04}a^{6}+\frac{17\!\cdots\!57}{83\!\cdots\!48}a^{5}+\frac{22\!\cdots\!35}{26\!\cdots\!36}a^{4}+\frac{55\!\cdots\!15}{26\!\cdots\!36}a^{3}+\frac{69\!\cdots\!25}{33\!\cdots\!92}a^{2}-\frac{34\!\cdots\!27}{41\!\cdots\!24}a+\frac{26\!\cdots\!45}{15\!\cdots\!67}$, $\frac{62\!\cdots\!53}{14\!\cdots\!44}a^{24}+\frac{18\!\cdots\!81}{26\!\cdots\!36}a^{23}+\frac{10\!\cdots\!87}{13\!\cdots\!68}a^{22}-\frac{42\!\cdots\!75}{66\!\cdots\!84}a^{21}+\frac{19\!\cdots\!33}{26\!\cdots\!36}a^{20}+\frac{95\!\cdots\!73}{26\!\cdots\!36}a^{19}+\frac{36\!\cdots\!11}{10\!\cdots\!28}a^{18}+\frac{37\!\cdots\!97}{13\!\cdots\!68}a^{17}+\frac{10\!\cdots\!65}{26\!\cdots\!36}a^{16}-\frac{18\!\cdots\!51}{26\!\cdots\!36}a^{15}+\frac{67\!\cdots\!03}{66\!\cdots\!84}a^{14}+\frac{95\!\cdots\!63}{13\!\cdots\!68}a^{13}+\frac{40\!\cdots\!79}{26\!\cdots\!36}a^{12}+\frac{15\!\cdots\!77}{26\!\cdots\!36}a^{11}+\frac{10\!\cdots\!03}{66\!\cdots\!84}a^{10}+\frac{34\!\cdots\!81}{13\!\cdots\!68}a^{9}+\frac{44\!\cdots\!59}{11\!\cdots\!32}a^{8}+\frac{13\!\cdots\!81}{26\!\cdots\!36}a^{7}+\frac{67\!\cdots\!07}{14\!\cdots\!04}a^{6}+\frac{14\!\cdots\!05}{66\!\cdots\!84}a^{5}+\frac{10\!\cdots\!31}{14\!\cdots\!44}a^{4}+\frac{71\!\cdots\!77}{26\!\cdots\!36}a^{3}-\frac{10\!\cdots\!53}{13\!\cdots\!68}a^{2}+\frac{45\!\cdots\!17}{16\!\cdots\!96}a-\frac{18\!\cdots\!59}{12\!\cdots\!36}$, $\frac{11\!\cdots\!89}{13\!\cdots\!68}a^{24}+\frac{22\!\cdots\!05}{14\!\cdots\!44}a^{23}+\frac{39\!\cdots\!55}{26\!\cdots\!36}a^{22}-\frac{75\!\cdots\!55}{66\!\cdots\!84}a^{21}+\frac{88\!\cdots\!73}{66\!\cdots\!84}a^{20}+\frac{17\!\cdots\!87}{26\!\cdots\!36}a^{19}+\frac{13\!\cdots\!85}{20\!\cdots\!56}a^{18}+\frac{36\!\cdots\!83}{70\!\cdots\!72}a^{17}+\frac{25\!\cdots\!01}{33\!\cdots\!92}a^{16}-\frac{33\!\cdots\!77}{26\!\cdots\!36}a^{15}+\frac{48\!\cdots\!69}{26\!\cdots\!36}a^{14}+\frac{17\!\cdots\!05}{13\!\cdots\!68}a^{13}+\frac{19\!\cdots\!21}{66\!\cdots\!84}a^{12}+\frac{28\!\cdots\!79}{26\!\cdots\!36}a^{11}+\frac{76\!\cdots\!71}{26\!\cdots\!36}a^{10}+\frac{64\!\cdots\!15}{13\!\cdots\!68}a^{9}+\frac{41\!\cdots\!15}{57\!\cdots\!16}a^{8}+\frac{26\!\cdots\!55}{26\!\cdots\!36}a^{7}+\frac{10\!\cdots\!33}{11\!\cdots\!32}a^{6}+\frac{14\!\cdots\!61}{33\!\cdots\!92}a^{5}+\frac{20\!\cdots\!87}{13\!\cdots\!68}a^{4}+\frac{14\!\cdots\!39}{26\!\cdots\!36}a^{3}-\frac{35\!\cdots\!15}{26\!\cdots\!36}a^{2}+\frac{81\!\cdots\!69}{17\!\cdots\!68}a-\frac{44\!\cdots\!39}{15\!\cdots\!44}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 79672132715035.66 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{12}\cdot 79672132715035.66 \cdot 5}{2\cdot\sqrt{17183405982116876392097404040231169905747048161}}\cr\approx \mathstrut & 11.5048309581894 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^25 + 18*x^23 - 17*x^22 + 163*x^21 + 778*x^20 + 668*x^19 + 6093*x^18 + 8161*x^17 - 16824*x^16 + 24958*x^15 + 156175*x^14 + 317021*x^13 + 1220510*x^12 + 3228424*x^11 + 5166827*x^10 + 7607147*x^9 + 10396892*x^8 + 8655374*x^7 + 3386053*x^6 + 971637*x^5 + 379214*x^4 - 252700*x^3 + 96379*x^2 - 14488*x + 1088)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^25 + 18*x^23 - 17*x^22 + 163*x^21 + 778*x^20 + 668*x^19 + 6093*x^18 + 8161*x^17 - 16824*x^16 + 24958*x^15 + 156175*x^14 + 317021*x^13 + 1220510*x^12 + 3228424*x^11 + 5166827*x^10 + 7607147*x^9 + 10396892*x^8 + 8655374*x^7 + 3386053*x^6 + 971637*x^5 + 379214*x^4 - 252700*x^3 + 96379*x^2 - 14488*x + 1088, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^25 + 18*x^23 - 17*x^22 + 163*x^21 + 778*x^20 + 668*x^19 + 6093*x^18 + 8161*x^17 - 16824*x^16 + 24958*x^15 + 156175*x^14 + 317021*x^13 + 1220510*x^12 + 3228424*x^11 + 5166827*x^10 + 7607147*x^9 + 10396892*x^8 + 8655374*x^7 + 3386053*x^6 + 971637*x^5 + 379214*x^4 - 252700*x^3 + 96379*x^2 - 14488*x + 1088);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 + 18*x^23 - 17*x^22 + 163*x^21 + 778*x^20 + 668*x^19 + 6093*x^18 + 8161*x^17 - 16824*x^16 + 24958*x^15 + 156175*x^14 + 317021*x^13 + 1220510*x^12 + 3228424*x^11 + 5166827*x^10 + 7607147*x^9 + 10396892*x^8 + 8655374*x^7 + 3386053*x^6 + 971637*x^5 + 379214*x^4 - 252700*x^3 + 96379*x^2 - 14488*x + 1088);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{25}$ (as 25T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 50
The 14 conjugacy class representatives for $D_{25}$
Character table for $D_{25}$

Intermediate fields

5.1.17161.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{12}{,}\,{\href{/padicField/2.1.0.1}{1} }$ $25$ $25$ $25$ R $25$ ${\href{/padicField/17.2.0.1}{2} }^{12}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.2.0.1}{2} }^{12}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.2.0.1}{2} }^{12}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.2.0.1}{2} }^{12}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.2.0.1}{2} }^{12}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.2.0.1}{2} }^{12}{,}\,{\href{/padicField/37.1.0.1}{1} }$ $25$ $25$ ${\href{/padicField/47.2.0.1}{2} }^{12}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.5.0.1}{5} }^{5}$ $25$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display Deg $25$$5$$5$$20$
\(131\) Copy content Toggle raw display $\Q_{131}$$x + 129$$1$$1$$0$Trivial$[\ ]$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.131.2t1.a.a$1$ $ 131 $ \(\Q(\sqrt{-131}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.131.5t2.a.b$2$ $ 131 $ 5.1.17161.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.131.5t2.a.a$2$ $ 131 $ 5.1.17161.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.15851.25t4.a.j$2$ $ 11^{2} \cdot 131 $ 25.1.17183405982116876392097404040231169905747048161.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.15851.25t4.a.e$2$ $ 11^{2} \cdot 131 $ 25.1.17183405982116876392097404040231169905747048161.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.15851.25t4.a.a$2$ $ 11^{2} \cdot 131 $ 25.1.17183405982116876392097404040231169905747048161.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.15851.25t4.a.b$2$ $ 11^{2} \cdot 131 $ 25.1.17183405982116876392097404040231169905747048161.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.15851.25t4.a.d$2$ $ 11^{2} \cdot 131 $ 25.1.17183405982116876392097404040231169905747048161.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.15851.25t4.a.c$2$ $ 11^{2} \cdot 131 $ 25.1.17183405982116876392097404040231169905747048161.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.15851.25t4.a.i$2$ $ 11^{2} \cdot 131 $ 25.1.17183405982116876392097404040231169905747048161.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.15851.25t4.a.g$2$ $ 11^{2} \cdot 131 $ 25.1.17183405982116876392097404040231169905747048161.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.15851.25t4.a.h$2$ $ 11^{2} \cdot 131 $ 25.1.17183405982116876392097404040231169905747048161.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.15851.25t4.a.f$2$ $ 11^{2} \cdot 131 $ 25.1.17183405982116876392097404040231169905747048161.1 $D_{25}$ (as 25T4) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.