Properties

Label 25.1.397...641.1
Degree $25$
Signature $[1, 12]$
Discriminant $3.975\times 10^{43}$
Root discriminant \(55.46\)
Ramified primes $11,79$
Class number $5$ (GRH)
Class group [5] (GRH)
Galois group $D_{25}$ (as 25T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^25 - x^24 + 2*x^23 - 2*x^22 + 114*x^21 + 14*x^20 + 388*x^19 + 1085*x^18 + 7513*x^17 + 4819*x^16 + 1219*x^15 - 640*x^14 + 110085*x^13 + 396579*x^12 + 932255*x^11 + 3052375*x^10 + 5536096*x^9 + 12433767*x^8 + 17351055*x^7 + 27726417*x^6 + 30856797*x^5 + 36500635*x^4 + 30496620*x^3 + 26587890*x^2 + 14289723*x + 8362683)
 
gp: K = bnfinit(y^25 - y^24 + 2*y^23 - 2*y^22 + 114*y^21 + 14*y^20 + 388*y^19 + 1085*y^18 + 7513*y^17 + 4819*y^16 + 1219*y^15 - 640*y^14 + 110085*y^13 + 396579*y^12 + 932255*y^11 + 3052375*y^10 + 5536096*y^9 + 12433767*y^8 + 17351055*y^7 + 27726417*y^6 + 30856797*y^5 + 36500635*y^4 + 30496620*y^3 + 26587890*y^2 + 14289723*y + 8362683, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^25 - x^24 + 2*x^23 - 2*x^22 + 114*x^21 + 14*x^20 + 388*x^19 + 1085*x^18 + 7513*x^17 + 4819*x^16 + 1219*x^15 - 640*x^14 + 110085*x^13 + 396579*x^12 + 932255*x^11 + 3052375*x^10 + 5536096*x^9 + 12433767*x^8 + 17351055*x^7 + 27726417*x^6 + 30856797*x^5 + 36500635*x^4 + 30496620*x^3 + 26587890*x^2 + 14289723*x + 8362683);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - x^24 + 2*x^23 - 2*x^22 + 114*x^21 + 14*x^20 + 388*x^19 + 1085*x^18 + 7513*x^17 + 4819*x^16 + 1219*x^15 - 640*x^14 + 110085*x^13 + 396579*x^12 + 932255*x^11 + 3052375*x^10 + 5536096*x^9 + 12433767*x^8 + 17351055*x^7 + 27726417*x^6 + 30856797*x^5 + 36500635*x^4 + 30496620*x^3 + 26587890*x^2 + 14289723*x + 8362683)
 

\( x^{25} - x^{24} + 2 x^{23} - 2 x^{22} + 114 x^{21} + 14 x^{20} + 388 x^{19} + 1085 x^{18} + \cdots + 8362683 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $25$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(39753813747116100568718553941184504222638641\) \(\medspace = 11^{20}\cdot 79^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(55.46\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{4/5}79^{1/2}\approx 60.524009918848414$
Ramified primes:   \(11\), \(79\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{5}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{6}$, $\frac{1}{3}a^{15}-\frac{1}{3}a^{7}$, $\frac{1}{9}a^{16}+\frac{1}{9}a^{15}-\frac{1}{9}a^{14}-\frac{1}{9}a^{12}-\frac{1}{9}a^{11}+\frac{1}{9}a^{10}-\frac{1}{9}a^{8}+\frac{2}{9}a^{7}+\frac{4}{9}a^{6}-\frac{1}{3}a^{5}+\frac{1}{9}a^{4}-\frac{2}{9}a^{3}-\frac{4}{9}a^{2}+\frac{1}{3}a$, $\frac{1}{63}a^{17}-\frac{1}{63}a^{16}-\frac{1}{7}a^{15}+\frac{2}{63}a^{14}-\frac{10}{63}a^{13}-\frac{5}{63}a^{12}+\frac{1}{7}a^{11}+\frac{1}{9}a^{10}-\frac{1}{63}a^{9}-\frac{2}{9}a^{8}+\frac{5}{21}a^{7}-\frac{2}{63}a^{6}-\frac{2}{63}a^{5}-\frac{16}{63}a^{4}-\frac{8}{21}a^{3}-\frac{1}{9}a^{2}-\frac{2}{21}a$, $\frac{1}{189}a^{18}+\frac{4}{189}a^{16}+\frac{4}{27}a^{15}+\frac{20}{189}a^{14}+\frac{1}{7}a^{13}-\frac{31}{189}a^{12}+\frac{2}{189}a^{11}+\frac{20}{189}a^{10}-\frac{5}{63}a^{9}-\frac{76}{189}a^{8}+\frac{83}{189}a^{7}+\frac{73}{189}a^{6}+\frac{29}{63}a^{5}-\frac{68}{189}a^{4}-\frac{59}{189}a^{3}-\frac{2}{63}a^{2}-\frac{10}{21}a$, $\frac{1}{189}a^{19}+\frac{1}{189}a^{17}+\frac{10}{189}a^{16}+\frac{26}{189}a^{15}-\frac{1}{9}a^{14}-\frac{1}{189}a^{13}-\frac{25}{189}a^{12}+\frac{2}{27}a^{11}+\frac{2}{63}a^{10}-\frac{10}{189}a^{9}-\frac{43}{189}a^{8}-\frac{2}{27}a^{7}+\frac{8}{21}a^{6}+\frac{1}{189}a^{5}+\frac{31}{189}a^{4}-\frac{3}{7}a^{3}-\frac{16}{63}a^{2}+\frac{3}{7}a$, $\frac{1}{189}a^{20}+\frac{1}{189}a^{17}+\frac{10}{189}a^{16}+\frac{11}{189}a^{15}-\frac{2}{21}a^{14}-\frac{25}{189}a^{13}-\frac{5}{63}a^{12}+\frac{1}{27}a^{11}+\frac{4}{63}a^{10}-\frac{19}{189}a^{9}+\frac{20}{189}a^{8}+\frac{1}{189}a^{7}+\frac{17}{63}a^{6}+\frac{88}{189}a^{5}+\frac{47}{189}a^{4}+\frac{17}{189}a^{3}-\frac{3}{7}a^{2}+\frac{3}{7}a$, $\frac{1}{202419}a^{21}+\frac{338}{202419}a^{20}-\frac{277}{202419}a^{19}-\frac{283}{202419}a^{18}-\frac{1030}{202419}a^{17}-\frac{1388}{202419}a^{16}+\frac{2150}{22491}a^{15}+\frac{13330}{202419}a^{14}+\frac{23000}{202419}a^{13}+\frac{2836}{202419}a^{12}+\frac{3386}{28917}a^{11}-\frac{21932}{202419}a^{10}+\frac{67}{28917}a^{9}-\frac{92800}{202419}a^{8}+\frac{10684}{67473}a^{7}+\frac{47249}{202419}a^{6}+\frac{24953}{67473}a^{5}-\frac{5881}{67473}a^{4}+\frac{74411}{202419}a^{3}-\frac{19415}{67473}a^{2}-\frac{382}{3213}a+\frac{76}{153}$, $\frac{1}{202419}a^{22}+\frac{76}{202419}a^{20}+\frac{166}{202419}a^{19}+\frac{376}{202419}a^{18}-\frac{1}{153}a^{17}-\frac{2024}{202419}a^{16}-\frac{7793}{202419}a^{15}+\frac{3287}{22491}a^{14}-\frac{4637}{67473}a^{13}+\frac{520}{7497}a^{12}-\frac{5591}{67473}a^{11}+\frac{24656}{202419}a^{10}+\frac{5476}{67473}a^{9}-\frac{77167}{202419}a^{8}-\frac{38842}{202419}a^{7}-\frac{49858}{202419}a^{6}+\frac{28045}{67473}a^{5}-\frac{2221}{28917}a^{4}-\frac{13306}{28917}a^{3}-\frac{1087}{3969}a^{2}+\frac{356}{3213}a+\frac{16}{153}$, $\frac{1}{729530018721}a^{23}-\frac{95852}{729530018721}a^{22}+\frac{261827}{243176672907}a^{21}+\frac{459687686}{243176672907}a^{20}-\frac{284785286}{243176672907}a^{19}+\frac{1306593212}{729530018721}a^{18}-\frac{5611969978}{729530018721}a^{17}-\frac{25219645763}{729530018721}a^{16}-\frac{108810494885}{729530018721}a^{15}-\frac{538356223}{14888367729}a^{14}-\frac{114150653060}{729530018721}a^{13}+\frac{97799404604}{729530018721}a^{12}-\frac{1095833686}{27019630323}a^{11}+\frac{92964379549}{729530018721}a^{10}-\frac{114494775386}{729530018721}a^{9}-\frac{71001930508}{729530018721}a^{8}+\frac{177466984888}{729530018721}a^{7}+\frac{80485093946}{243176672907}a^{6}+\frac{225045443864}{729530018721}a^{5}-\frac{340496355662}{729530018721}a^{4}+\frac{67766877001}{243176672907}a^{3}-\frac{4022517235}{11579841567}a^{2}-\frac{1347646736}{3859947189}a-\frac{90407237}{183807009}$, $\frac{1}{22\!\cdots\!51}a^{24}+\frac{22\!\cdots\!20}{75\!\cdots\!17}a^{23}-\frac{76\!\cdots\!87}{22\!\cdots\!51}a^{22}+\frac{14\!\cdots\!42}{84\!\cdots\!13}a^{21}+\frac{18\!\cdots\!64}{75\!\cdots\!17}a^{20}-\frac{46\!\cdots\!28}{32\!\cdots\!93}a^{19}+\frac{27\!\cdots\!46}{84\!\cdots\!13}a^{18}-\frac{93\!\cdots\!56}{32\!\cdots\!93}a^{17}+\frac{58\!\cdots\!11}{10\!\cdots\!73}a^{16}+\frac{33\!\cdots\!36}{22\!\cdots\!51}a^{15}+\frac{69\!\cdots\!36}{22\!\cdots\!51}a^{14}-\frac{78\!\cdots\!58}{22\!\cdots\!51}a^{13}-\frac{16\!\cdots\!55}{22\!\cdots\!51}a^{12}+\frac{30\!\cdots\!55}{22\!\cdots\!51}a^{11}+\frac{61\!\cdots\!77}{44\!\cdots\!01}a^{10}-\frac{19\!\cdots\!40}{22\!\cdots\!51}a^{9}+\frac{36\!\cdots\!64}{22\!\cdots\!51}a^{8}-\frac{39\!\cdots\!28}{22\!\cdots\!51}a^{7}-\frac{10\!\cdots\!58}{22\!\cdots\!51}a^{6}+\frac{24\!\cdots\!73}{22\!\cdots\!51}a^{5}+\frac{20\!\cdots\!65}{22\!\cdots\!51}a^{4}-\frac{26\!\cdots\!41}{75\!\cdots\!17}a^{3}+\frac{10\!\cdots\!40}{36\!\cdots\!77}a^{2}-\frac{10\!\cdots\!26}{17\!\cdots\!37}a-\frac{83\!\cdots\!11}{22\!\cdots\!81}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{5}$, which has order $5$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{13\!\cdots\!10}{32\!\cdots\!93}a^{24}-\frac{40\!\cdots\!56}{10\!\cdots\!31}a^{23}+\frac{67\!\cdots\!94}{32\!\cdots\!93}a^{22}-\frac{87\!\cdots\!60}{40\!\cdots\!53}a^{21}+\frac{64\!\cdots\!44}{13\!\cdots\!89}a^{20}+\frac{45\!\cdots\!13}{46\!\cdots\!99}a^{19}+\frac{34\!\cdots\!87}{36\!\cdots\!77}a^{18}+\frac{20\!\cdots\!11}{46\!\cdots\!99}a^{17}+\frac{10\!\cdots\!65}{36\!\cdots\!77}a^{16}+\frac{52\!\cdots\!33}{32\!\cdots\!93}a^{15}-\frac{11\!\cdots\!01}{32\!\cdots\!93}a^{14}-\frac{73\!\cdots\!00}{32\!\cdots\!93}a^{13}+\frac{16\!\cdots\!56}{32\!\cdots\!93}a^{12}+\frac{55\!\cdots\!54}{32\!\cdots\!93}a^{11}+\frac{21\!\cdots\!78}{63\!\cdots\!43}a^{10}+\frac{34\!\cdots\!85}{32\!\cdots\!93}a^{9}+\frac{63\!\cdots\!68}{32\!\cdots\!93}a^{8}+\frac{12\!\cdots\!79}{32\!\cdots\!93}a^{7}+\frac{16\!\cdots\!11}{32\!\cdots\!93}a^{6}+\frac{23\!\cdots\!53}{32\!\cdots\!93}a^{5}+\frac{29\!\cdots\!96}{41\!\cdots\!67}a^{4}+\frac{80\!\cdots\!45}{10\!\cdots\!31}a^{3}+\frac{28\!\cdots\!11}{51\!\cdots\!11}a^{2}+\frac{84\!\cdots\!04}{24\!\cdots\!91}a+\frac{16\!\cdots\!51}{11\!\cdots\!71}$, $\frac{15\!\cdots\!00}{32\!\cdots\!93}a^{24}-\frac{75\!\cdots\!08}{10\!\cdots\!31}a^{23}+\frac{32\!\cdots\!60}{32\!\cdots\!93}a^{22}-\frac{22\!\cdots\!16}{40\!\cdots\!53}a^{21}+\frac{58\!\cdots\!86}{10\!\cdots\!31}a^{20}-\frac{68\!\cdots\!89}{46\!\cdots\!99}a^{19}+\frac{59\!\cdots\!95}{36\!\cdots\!77}a^{18}+\frac{24\!\cdots\!33}{46\!\cdots\!99}a^{17}+\frac{11\!\cdots\!09}{36\!\cdots\!77}a^{16}+\frac{24\!\cdots\!67}{32\!\cdots\!93}a^{15}-\frac{10\!\cdots\!91}{87\!\cdots\!89}a^{14}+\frac{65\!\cdots\!06}{32\!\cdots\!93}a^{13}+\frac{16\!\cdots\!12}{32\!\cdots\!93}a^{12}+\frac{53\!\cdots\!26}{32\!\cdots\!93}a^{11}+\frac{23\!\cdots\!45}{63\!\cdots\!43}a^{10}+\frac{42\!\cdots\!88}{32\!\cdots\!93}a^{9}+\frac{65\!\cdots\!57}{32\!\cdots\!93}a^{8}+\frac{14\!\cdots\!75}{32\!\cdots\!93}a^{7}+\frac{19\!\cdots\!12}{32\!\cdots\!93}a^{6}+\frac{28\!\cdots\!89}{32\!\cdots\!93}a^{5}+\frac{28\!\cdots\!51}{32\!\cdots\!93}a^{4}+\frac{96\!\cdots\!42}{10\!\cdots\!31}a^{3}+\frac{33\!\cdots\!89}{51\!\cdots\!11}a^{2}+\frac{11\!\cdots\!43}{24\!\cdots\!91}a+\frac{15\!\cdots\!14}{11\!\cdots\!71}$, $\frac{47\!\cdots\!42}{22\!\cdots\!51}a^{24}-\frac{13\!\cdots\!62}{75\!\cdots\!17}a^{23}+\frac{40\!\cdots\!16}{22\!\cdots\!51}a^{22}+\frac{12\!\cdots\!75}{84\!\cdots\!13}a^{21}+\frac{85\!\cdots\!91}{75\!\cdots\!17}a^{20}-\frac{16\!\cdots\!04}{87\!\cdots\!89}a^{19}-\frac{42\!\cdots\!99}{25\!\cdots\!39}a^{18}-\frac{10\!\cdots\!46}{41\!\cdots\!67}a^{17}-\frac{44\!\cdots\!19}{25\!\cdots\!39}a^{16}-\frac{26\!\cdots\!09}{22\!\cdots\!51}a^{15}-\frac{10\!\cdots\!73}{22\!\cdots\!51}a^{14}+\frac{48\!\cdots\!47}{22\!\cdots\!51}a^{13}+\frac{16\!\cdots\!55}{22\!\cdots\!51}a^{12}-\frac{47\!\cdots\!19}{22\!\cdots\!51}a^{11}-\frac{29\!\cdots\!85}{44\!\cdots\!01}a^{10}-\frac{25\!\cdots\!10}{22\!\cdots\!51}a^{9}-\frac{86\!\cdots\!88}{22\!\cdots\!51}a^{8}-\frac{15\!\cdots\!25}{22\!\cdots\!51}a^{7}-\frac{77\!\cdots\!75}{61\!\cdots\!23}a^{6}-\frac{36\!\cdots\!09}{22\!\cdots\!51}a^{5}-\frac{44\!\cdots\!23}{22\!\cdots\!51}a^{4}-\frac{14\!\cdots\!54}{75\!\cdots\!17}a^{3}-\frac{62\!\cdots\!71}{36\!\cdots\!77}a^{2}-\frac{15\!\cdots\!12}{17\!\cdots\!37}a-\frac{24\!\cdots\!58}{81\!\cdots\!97}$, $\frac{18\!\cdots\!42}{75\!\cdots\!17}a^{24}-\frac{32\!\cdots\!65}{25\!\cdots\!39}a^{23}+\frac{19\!\cdots\!12}{75\!\cdots\!17}a^{22}-\frac{90\!\cdots\!16}{93\!\cdots\!57}a^{21}+\frac{67\!\cdots\!92}{25\!\cdots\!39}a^{20}+\frac{18\!\cdots\!31}{10\!\cdots\!31}a^{19}+\frac{69\!\cdots\!13}{84\!\cdots\!13}a^{18}+\frac{33\!\cdots\!88}{10\!\cdots\!31}a^{17}+\frac{19\!\cdots\!99}{10\!\cdots\!47}a^{16}+\frac{14\!\cdots\!76}{75\!\cdots\!17}a^{15}+\frac{40\!\cdots\!46}{75\!\cdots\!17}a^{14}-\frac{37\!\cdots\!14}{75\!\cdots\!17}a^{13}+\frac{18\!\cdots\!92}{75\!\cdots\!17}a^{12}+\frac{80\!\cdots\!43}{75\!\cdots\!17}a^{11}+\frac{38\!\cdots\!42}{14\!\cdots\!67}a^{10}+\frac{61\!\cdots\!40}{75\!\cdots\!17}a^{9}+\frac{11\!\cdots\!98}{75\!\cdots\!17}a^{8}+\frac{24\!\cdots\!94}{75\!\cdots\!17}a^{7}+\frac{37\!\cdots\!78}{75\!\cdots\!17}a^{6}+\frac{52\!\cdots\!21}{75\!\cdots\!17}a^{5}+\frac{58\!\cdots\!48}{75\!\cdots\!17}a^{4}+\frac{19\!\cdots\!89}{25\!\cdots\!39}a^{3}+\frac{75\!\cdots\!16}{12\!\cdots\!59}a^{2}+\frac{22\!\cdots\!58}{57\!\cdots\!79}a+\frac{37\!\cdots\!59}{27\!\cdots\!99}$, $\frac{49\!\cdots\!19}{46\!\cdots\!99}a^{24}-\frac{13\!\cdots\!01}{15\!\cdots\!33}a^{23}+\frac{89\!\cdots\!19}{46\!\cdots\!99}a^{22}-\frac{56\!\cdots\!21}{17\!\cdots\!37}a^{21}+\frac{18\!\cdots\!31}{15\!\cdots\!33}a^{20}+\frac{17\!\cdots\!54}{46\!\cdots\!99}a^{19}+\frac{30\!\cdots\!51}{73\!\cdots\!73}a^{18}+\frac{48\!\cdots\!85}{46\!\cdots\!99}a^{17}+\frac{40\!\cdots\!46}{51\!\cdots\!11}a^{16}+\frac{29\!\cdots\!01}{46\!\cdots\!99}a^{15}+\frac{47\!\cdots\!67}{46\!\cdots\!99}a^{14}-\frac{60\!\cdots\!31}{46\!\cdots\!99}a^{13}+\frac{66\!\cdots\!09}{66\!\cdots\!57}a^{12}+\frac{30\!\cdots\!14}{66\!\cdots\!57}a^{11}+\frac{99\!\cdots\!26}{90\!\cdots\!49}a^{10}+\frac{14\!\cdots\!52}{46\!\cdots\!99}a^{9}+\frac{25\!\cdots\!68}{46\!\cdots\!99}a^{8}+\frac{57\!\cdots\!33}{46\!\cdots\!99}a^{7}+\frac{74\!\cdots\!97}{46\!\cdots\!99}a^{6}+\frac{10\!\cdots\!89}{46\!\cdots\!99}a^{5}+\frac{10\!\cdots\!02}{46\!\cdots\!99}a^{4}+\frac{53\!\cdots\!40}{22\!\cdots\!19}a^{3}+\frac{91\!\cdots\!83}{51\!\cdots\!11}a^{2}+\frac{30\!\cdots\!07}{24\!\cdots\!91}a+\frac{21\!\cdots\!87}{11\!\cdots\!71}$, $\frac{33\!\cdots\!36}{22\!\cdots\!51}a^{24}-\frac{67\!\cdots\!36}{75\!\cdots\!17}a^{23}+\frac{32\!\cdots\!67}{22\!\cdots\!51}a^{22}-\frac{96\!\cdots\!31}{84\!\cdots\!13}a^{21}+\frac{12\!\cdots\!68}{75\!\cdots\!17}a^{20}-\frac{26\!\cdots\!78}{32\!\cdots\!93}a^{19}+\frac{22\!\cdots\!12}{25\!\cdots\!39}a^{18}-\frac{26\!\cdots\!61}{32\!\cdots\!93}a^{17}+\frac{78\!\cdots\!42}{25\!\cdots\!39}a^{16}-\frac{95\!\cdots\!21}{22\!\cdots\!51}a^{15}+\frac{64\!\cdots\!07}{22\!\cdots\!51}a^{14}+\frac{15\!\cdots\!41}{22\!\cdots\!51}a^{13}+\frac{26\!\cdots\!20}{22\!\cdots\!51}a^{12}-\frac{70\!\cdots\!45}{22\!\cdots\!51}a^{11}-\frac{46\!\cdots\!36}{44\!\cdots\!01}a^{10}+\frac{47\!\cdots\!94}{22\!\cdots\!51}a^{9}-\frac{19\!\cdots\!29}{22\!\cdots\!51}a^{8}-\frac{17\!\cdots\!43}{22\!\cdots\!51}a^{7}-\frac{61\!\cdots\!42}{22\!\cdots\!51}a^{6}-\frac{58\!\cdots\!91}{22\!\cdots\!51}a^{5}-\frac{11\!\cdots\!75}{22\!\cdots\!51}a^{4}-\frac{31\!\cdots\!37}{75\!\cdots\!17}a^{3}-\frac{17\!\cdots\!95}{36\!\cdots\!77}a^{2}-\frac{48\!\cdots\!57}{17\!\cdots\!37}a-\frac{64\!\cdots\!80}{22\!\cdots\!81}$, $\frac{11\!\cdots\!85}{22\!\cdots\!51}a^{24}+\frac{70\!\cdots\!46}{75\!\cdots\!17}a^{23}-\frac{24\!\cdots\!93}{22\!\cdots\!51}a^{22}+\frac{15\!\cdots\!45}{84\!\cdots\!13}a^{21}+\frac{43\!\cdots\!52}{75\!\cdots\!17}a^{20}+\frac{55\!\cdots\!08}{32\!\cdots\!93}a^{19}+\frac{37\!\cdots\!72}{25\!\cdots\!39}a^{18}+\frac{33\!\cdots\!14}{32\!\cdots\!93}a^{17}+\frac{13\!\cdots\!64}{25\!\cdots\!39}a^{16}+\frac{27\!\cdots\!53}{22\!\cdots\!51}a^{15}+\frac{43\!\cdots\!70}{22\!\cdots\!51}a^{14}-\frac{13\!\cdots\!24}{22\!\cdots\!51}a^{13}+\frac{13\!\cdots\!38}{22\!\cdots\!51}a^{12}+\frac{81\!\cdots\!25}{22\!\cdots\!51}a^{11}+\frac{43\!\cdots\!59}{44\!\cdots\!01}a^{10}+\frac{59\!\cdots\!09}{22\!\cdots\!51}a^{9}+\frac{14\!\cdots\!81}{22\!\cdots\!51}a^{8}+\frac{27\!\cdots\!72}{22\!\cdots\!51}a^{7}+\frac{48\!\cdots\!99}{22\!\cdots\!51}a^{6}+\frac{66\!\cdots\!35}{22\!\cdots\!51}a^{5}+\frac{86\!\cdots\!38}{22\!\cdots\!51}a^{4}+\frac{28\!\cdots\!95}{75\!\cdots\!17}a^{3}+\frac{12\!\cdots\!13}{36\!\cdots\!77}a^{2}+\frac{35\!\cdots\!31}{17\!\cdots\!37}a+\frac{78\!\cdots\!45}{81\!\cdots\!97}$, $\frac{59\!\cdots\!41}{22\!\cdots\!51}a^{24}-\frac{62\!\cdots\!33}{20\!\cdots\!41}a^{23}+\frac{14\!\cdots\!59}{22\!\cdots\!51}a^{22}-\frac{29\!\cdots\!58}{28\!\cdots\!71}a^{21}+\frac{23\!\cdots\!88}{75\!\cdots\!17}a^{20}-\frac{27\!\cdots\!13}{32\!\cdots\!93}a^{19}+\frac{27\!\cdots\!13}{25\!\cdots\!39}a^{18}+\frac{76\!\cdots\!85}{32\!\cdots\!93}a^{17}+\frac{49\!\cdots\!27}{25\!\cdots\!39}a^{16}+\frac{23\!\cdots\!36}{22\!\cdots\!51}a^{15}+\frac{58\!\cdots\!19}{22\!\cdots\!51}a^{14}-\frac{46\!\cdots\!07}{22\!\cdots\!51}a^{13}+\frac{64\!\cdots\!06}{22\!\cdots\!51}a^{12}+\frac{24\!\cdots\!68}{22\!\cdots\!51}a^{11}+\frac{10\!\cdots\!05}{44\!\cdots\!01}a^{10}+\frac{17\!\cdots\!64}{22\!\cdots\!51}a^{9}+\frac{29\!\cdots\!98}{22\!\cdots\!51}a^{8}+\frac{70\!\cdots\!89}{22\!\cdots\!51}a^{7}+\frac{84\!\cdots\!06}{22\!\cdots\!51}a^{6}+\frac{14\!\cdots\!90}{22\!\cdots\!51}a^{5}+\frac{14\!\cdots\!70}{22\!\cdots\!51}a^{4}+\frac{52\!\cdots\!01}{75\!\cdots\!17}a^{3}+\frac{19\!\cdots\!34}{36\!\cdots\!77}a^{2}+\frac{65\!\cdots\!33}{17\!\cdots\!37}a+\frac{20\!\cdots\!13}{81\!\cdots\!97}$, $\frac{34\!\cdots\!34}{22\!\cdots\!51}a^{24}-\frac{19\!\cdots\!47}{75\!\cdots\!17}a^{23}+\frac{57\!\cdots\!32}{22\!\cdots\!51}a^{22}-\frac{25\!\cdots\!39}{84\!\cdots\!13}a^{21}+\frac{12\!\cdots\!56}{75\!\cdots\!17}a^{20}-\frac{33\!\cdots\!27}{32\!\cdots\!93}a^{19}+\frac{32\!\cdots\!78}{84\!\cdots\!13}a^{18}+\frac{40\!\cdots\!65}{32\!\cdots\!93}a^{17}+\frac{89\!\cdots\!26}{93\!\cdots\!57}a^{16}-\frac{57\!\cdots\!86}{22\!\cdots\!51}a^{15}-\frac{32\!\cdots\!83}{22\!\cdots\!51}a^{14}-\frac{89\!\cdots\!57}{22\!\cdots\!51}a^{13}+\frac{40\!\cdots\!43}{22\!\cdots\!51}a^{12}+\frac{10\!\cdots\!97}{22\!\cdots\!51}a^{11}+\frac{34\!\cdots\!10}{44\!\cdots\!01}a^{10}+\frac{67\!\cdots\!40}{22\!\cdots\!51}a^{9}+\frac{87\!\cdots\!87}{22\!\cdots\!51}a^{8}+\frac{20\!\cdots\!59}{22\!\cdots\!51}a^{7}+\frac{14\!\cdots\!81}{22\!\cdots\!51}a^{6}+\frac{21\!\cdots\!49}{22\!\cdots\!51}a^{5}+\frac{57\!\cdots\!39}{22\!\cdots\!51}a^{4}+\frac{11\!\cdots\!77}{75\!\cdots\!17}a^{3}-\frac{31\!\cdots\!95}{36\!\cdots\!77}a^{2}-\frac{13\!\cdots\!93}{17\!\cdots\!37}a-\frac{72\!\cdots\!65}{81\!\cdots\!97}$, $\frac{52\!\cdots\!41}{22\!\cdots\!51}a^{24}-\frac{34\!\cdots\!42}{75\!\cdots\!17}a^{23}+\frac{16\!\cdots\!43}{22\!\cdots\!51}a^{22}-\frac{54\!\cdots\!41}{84\!\cdots\!13}a^{21}+\frac{19\!\cdots\!24}{75\!\cdots\!17}a^{20}-\frac{65\!\cdots\!13}{32\!\cdots\!93}a^{19}+\frac{22\!\cdots\!43}{25\!\cdots\!39}a^{18}+\frac{65\!\cdots\!52}{32\!\cdots\!93}a^{17}+\frac{36\!\cdots\!64}{25\!\cdots\!39}a^{16}-\frac{70\!\cdots\!68}{22\!\cdots\!51}a^{15}-\frac{70\!\cdots\!04}{22\!\cdots\!51}a^{14}+\frac{39\!\cdots\!30}{22\!\cdots\!51}a^{13}+\frac{53\!\cdots\!72}{22\!\cdots\!51}a^{12}+\frac{15\!\cdots\!77}{22\!\cdots\!51}a^{11}+\frac{58\!\cdots\!90}{44\!\cdots\!01}a^{10}+\frac{12\!\cdots\!89}{22\!\cdots\!51}a^{9}+\frac{16\!\cdots\!81}{22\!\cdots\!51}a^{8}+\frac{43\!\cdots\!12}{22\!\cdots\!51}a^{7}+\frac{49\!\cdots\!77}{22\!\cdots\!51}a^{6}+\frac{83\!\cdots\!51}{22\!\cdots\!51}a^{5}+\frac{97\!\cdots\!59}{22\!\cdots\!51}a^{4}+\frac{29\!\cdots\!71}{75\!\cdots\!17}a^{3}+\frac{16\!\cdots\!26}{36\!\cdots\!77}a^{2}+\frac{31\!\cdots\!18}{17\!\cdots\!37}a+\frac{22\!\cdots\!51}{81\!\cdots\!97}$, $\frac{11\!\cdots\!15}{22\!\cdots\!51}a^{24}-\frac{11\!\cdots\!05}{75\!\cdots\!17}a^{23}+\frac{44\!\cdots\!40}{22\!\cdots\!51}a^{22}-\frac{54\!\cdots\!91}{84\!\cdots\!13}a^{21}+\frac{43\!\cdots\!87}{75\!\cdots\!17}a^{20}+\frac{15\!\cdots\!58}{32\!\cdots\!93}a^{19}+\frac{38\!\cdots\!14}{25\!\cdots\!39}a^{18}+\frac{19\!\cdots\!08}{32\!\cdots\!93}a^{17}+\frac{10\!\cdots\!77}{25\!\cdots\!39}a^{16}+\frac{10\!\cdots\!67}{22\!\cdots\!51}a^{15}-\frac{44\!\cdots\!25}{22\!\cdots\!51}a^{14}-\frac{18\!\cdots\!38}{22\!\cdots\!51}a^{13}+\frac{11\!\cdots\!26}{22\!\cdots\!51}a^{12}+\frac{56\!\cdots\!86}{22\!\cdots\!51}a^{11}+\frac{26\!\cdots\!65}{44\!\cdots\!01}a^{10}+\frac{37\!\cdots\!82}{22\!\cdots\!51}a^{9}+\frac{71\!\cdots\!63}{22\!\cdots\!51}a^{8}+\frac{14\!\cdots\!44}{22\!\cdots\!51}a^{7}+\frac{19\!\cdots\!67}{22\!\cdots\!51}a^{6}+\frac{24\!\cdots\!61}{22\!\cdots\!51}a^{5}+\frac{22\!\cdots\!60}{22\!\cdots\!51}a^{4}+\frac{57\!\cdots\!01}{75\!\cdots\!17}a^{3}+\frac{12\!\cdots\!58}{36\!\cdots\!77}a^{2}+\frac{10\!\cdots\!90}{17\!\cdots\!37}a-\frac{60\!\cdots\!85}{81\!\cdots\!97}$, $\frac{16\!\cdots\!57}{13\!\cdots\!03}a^{24}-\frac{12\!\cdots\!89}{44\!\cdots\!01}a^{23}+\frac{41\!\cdots\!82}{13\!\cdots\!03}a^{22}-\frac{24\!\cdots\!23}{54\!\cdots\!21}a^{21}+\frac{64\!\cdots\!29}{44\!\cdots\!01}a^{20}-\frac{32\!\cdots\!60}{19\!\cdots\!29}a^{19}+\frac{30\!\cdots\!81}{87\!\cdots\!51}a^{18}+\frac{13\!\cdots\!97}{19\!\cdots\!29}a^{17}+\frac{11\!\cdots\!62}{14\!\cdots\!67}a^{16}-\frac{96\!\cdots\!57}{13\!\cdots\!03}a^{15}-\frac{46\!\cdots\!22}{36\!\cdots\!19}a^{14}-\frac{31\!\cdots\!42}{13\!\cdots\!03}a^{13}+\frac{21\!\cdots\!00}{13\!\cdots\!03}a^{12}+\frac{25\!\cdots\!06}{78\!\cdots\!59}a^{11}+\frac{16\!\cdots\!00}{44\!\cdots\!01}a^{10}+\frac{24\!\cdots\!14}{13\!\cdots\!03}a^{9}+\frac{18\!\cdots\!57}{13\!\cdots\!03}a^{8}+\frac{63\!\cdots\!41}{13\!\cdots\!03}a^{7}-\frac{13\!\cdots\!64}{13\!\cdots\!03}a^{6}+\frac{25\!\cdots\!73}{13\!\cdots\!03}a^{5}-\frac{10\!\cdots\!23}{13\!\cdots\!03}a^{4}-\frac{11\!\cdots\!77}{44\!\cdots\!01}a^{3}-\frac{28\!\cdots\!09}{21\!\cdots\!81}a^{2}-\frac{81\!\cdots\!76}{10\!\cdots\!61}a-\frac{52\!\cdots\!86}{48\!\cdots\!41}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 508763901267.4053 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{12}\cdot 508763901267.4053 \cdot 5}{2\cdot\sqrt{39753813747116100568718553941184504222638641}}\cr\approx \mathstrut & 1.52740889068023 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^25 - x^24 + 2*x^23 - 2*x^22 + 114*x^21 + 14*x^20 + 388*x^19 + 1085*x^18 + 7513*x^17 + 4819*x^16 + 1219*x^15 - 640*x^14 + 110085*x^13 + 396579*x^12 + 932255*x^11 + 3052375*x^10 + 5536096*x^9 + 12433767*x^8 + 17351055*x^7 + 27726417*x^6 + 30856797*x^5 + 36500635*x^4 + 30496620*x^3 + 26587890*x^2 + 14289723*x + 8362683)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^25 - x^24 + 2*x^23 - 2*x^22 + 114*x^21 + 14*x^20 + 388*x^19 + 1085*x^18 + 7513*x^17 + 4819*x^16 + 1219*x^15 - 640*x^14 + 110085*x^13 + 396579*x^12 + 932255*x^11 + 3052375*x^10 + 5536096*x^9 + 12433767*x^8 + 17351055*x^7 + 27726417*x^6 + 30856797*x^5 + 36500635*x^4 + 30496620*x^3 + 26587890*x^2 + 14289723*x + 8362683, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^25 - x^24 + 2*x^23 - 2*x^22 + 114*x^21 + 14*x^20 + 388*x^19 + 1085*x^18 + 7513*x^17 + 4819*x^16 + 1219*x^15 - 640*x^14 + 110085*x^13 + 396579*x^12 + 932255*x^11 + 3052375*x^10 + 5536096*x^9 + 12433767*x^8 + 17351055*x^7 + 27726417*x^6 + 30856797*x^5 + 36500635*x^4 + 30496620*x^3 + 26587890*x^2 + 14289723*x + 8362683);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - x^24 + 2*x^23 - 2*x^22 + 114*x^21 + 14*x^20 + 388*x^19 + 1085*x^18 + 7513*x^17 + 4819*x^16 + 1219*x^15 - 640*x^14 + 110085*x^13 + 396579*x^12 + 932255*x^11 + 3052375*x^10 + 5536096*x^9 + 12433767*x^8 + 17351055*x^7 + 27726417*x^6 + 30856797*x^5 + 36500635*x^4 + 30496620*x^3 + 26587890*x^2 + 14289723*x + 8362683);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{25}$ (as 25T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 50
The 14 conjugacy class representatives for $D_{25}$
Character table for $D_{25}$

Intermediate fields

5.1.6241.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $25$ ${\href{/padicField/3.2.0.1}{2} }^{12}{,}\,{\href{/padicField/3.1.0.1}{1} }$ $25$ ${\href{/padicField/7.2.0.1}{2} }^{12}{,}\,{\href{/padicField/7.1.0.1}{1} }$ R $25$ ${\href{/padicField/17.2.0.1}{2} }^{12}{,}\,{\href{/padicField/17.1.0.1}{1} }$ $25$ $25$ ${\href{/padicField/29.2.0.1}{2} }^{12}{,}\,{\href{/padicField/29.1.0.1}{1} }$ $25$ ${\href{/padicField/37.2.0.1}{2} }^{12}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.2.0.1}{2} }^{12}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{12}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.2.0.1}{2} }^{12}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.2.0.1}{2} }^{12}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.2.0.1}{2} }^{12}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display Deg $25$$5$$5$$20$
\(79\) Copy content Toggle raw display $\Q_{79}$$x + 76$$1$$1$$0$Trivial$[\ ]$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.79.2t1.a.a$1$ $ 79 $ \(\Q(\sqrt{-79}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.79.5t2.a.a$2$ $ 79 $ 5.1.6241.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.79.5t2.a.b$2$ $ 79 $ 5.1.6241.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.9559.25t4.a.d$2$ $ 11^{2} \cdot 79 $ 25.1.39753813747116100568718553941184504222638641.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.9559.25t4.a.f$2$ $ 11^{2} \cdot 79 $ 25.1.39753813747116100568718553941184504222638641.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.9559.25t4.a.g$2$ $ 11^{2} \cdot 79 $ 25.1.39753813747116100568718553941184504222638641.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.9559.25t4.a.a$2$ $ 11^{2} \cdot 79 $ 25.1.39753813747116100568718553941184504222638641.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.9559.25t4.a.b$2$ $ 11^{2} \cdot 79 $ 25.1.39753813747116100568718553941184504222638641.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.9559.25t4.a.h$2$ $ 11^{2} \cdot 79 $ 25.1.39753813747116100568718553941184504222638641.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.9559.25t4.a.c$2$ $ 11^{2} \cdot 79 $ 25.1.39753813747116100568718553941184504222638641.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.9559.25t4.a.e$2$ $ 11^{2} \cdot 79 $ 25.1.39753813747116100568718553941184504222638641.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.9559.25t4.a.j$2$ $ 11^{2} \cdot 79 $ 25.1.39753813747116100568718553941184504222638641.1 $D_{25}$ (as 25T4) $1$ $0$
* 2.9559.25t4.a.i$2$ $ 11^{2} \cdot 79 $ 25.1.39753813747116100568718553941184504222638641.1 $D_{25}$ (as 25T4) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.