Properties

Label 26.26.127...693.1
Degree $26$
Signature $[26, 0]$
Discriminant $1.279\times 10^{43}$
Root discriminant \(45.49\)
Ramified prime $53$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 - 25*x^24 + 24*x^23 + 276*x^22 - 253*x^21 - 1771*x^20 + 1540*x^19 + 7315*x^18 - 5985*x^17 - 20349*x^16 + 15504*x^15 + 38760*x^14 - 27132*x^13 - 50388*x^12 + 31824*x^11 + 43758*x^10 - 24310*x^9 - 24310*x^8 + 11440*x^7 + 8008*x^6 - 3003*x^5 - 1365*x^4 + 364*x^3 + 91*x^2 - 13*x - 1)
 
gp: K = bnfinit(y^26 - y^25 - 25*y^24 + 24*y^23 + 276*y^22 - 253*y^21 - 1771*y^20 + 1540*y^19 + 7315*y^18 - 5985*y^17 - 20349*y^16 + 15504*y^15 + 38760*y^14 - 27132*y^13 - 50388*y^12 + 31824*y^11 + 43758*y^10 - 24310*y^9 - 24310*y^8 + 11440*y^7 + 8008*y^6 - 3003*y^5 - 1365*y^4 + 364*y^3 + 91*y^2 - 13*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - x^25 - 25*x^24 + 24*x^23 + 276*x^22 - 253*x^21 - 1771*x^20 + 1540*x^19 + 7315*x^18 - 5985*x^17 - 20349*x^16 + 15504*x^15 + 38760*x^14 - 27132*x^13 - 50388*x^12 + 31824*x^11 + 43758*x^10 - 24310*x^9 - 24310*x^8 + 11440*x^7 + 8008*x^6 - 3003*x^5 - 1365*x^4 + 364*x^3 + 91*x^2 - 13*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - x^25 - 25*x^24 + 24*x^23 + 276*x^22 - 253*x^21 - 1771*x^20 + 1540*x^19 + 7315*x^18 - 5985*x^17 - 20349*x^16 + 15504*x^15 + 38760*x^14 - 27132*x^13 - 50388*x^12 + 31824*x^11 + 43758*x^10 - 24310*x^9 - 24310*x^8 + 11440*x^7 + 8008*x^6 - 3003*x^5 - 1365*x^4 + 364*x^3 + 91*x^2 - 13*x - 1)
 

\( x^{26} - x^{25} - 25 x^{24} + 24 x^{23} + 276 x^{22} - 253 x^{21} - 1771 x^{20} + 1540 x^{19} + 7315 x^{18} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[26, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(12790771483610519443342791266451996229460693\) \(\medspace = 53^{25}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.49\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $53^{25/26}\approx 45.494360736359816$
Ramified primes:   \(53\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{53}) \)
$\card{ \Gal(K/\Q) }$:  $26$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(53\)
Dirichlet character group:    $\lbrace$$\chi_{53}(1,·)$, $\chi_{53}(4,·)$, $\chi_{53}(6,·)$, $\chi_{53}(7,·)$, $\chi_{53}(9,·)$, $\chi_{53}(10,·)$, $\chi_{53}(11,·)$, $\chi_{53}(13,·)$, $\chi_{53}(15,·)$, $\chi_{53}(16,·)$, $\chi_{53}(17,·)$, $\chi_{53}(24,·)$, $\chi_{53}(25,·)$, $\chi_{53}(28,·)$, $\chi_{53}(29,·)$, $\chi_{53}(36,·)$, $\chi_{53}(37,·)$, $\chi_{53}(38,·)$, $\chi_{53}(40,·)$, $\chi_{53}(42,·)$, $\chi_{53}(43,·)$, $\chi_{53}(44,·)$, $\chi_{53}(46,·)$, $\chi_{53}(47,·)$, $\chi_{53}(49,·)$, $\chi_{53}(52,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $25$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{14}-14a^{12}+77a^{10}-210a^{8}+294a^{6}-196a^{4}+49a^{2}-2$, $a^{6}-6a^{4}+9a^{2}-2$, $a^{12}-12a^{10}+54a^{8}-112a^{6}+105a^{4}-36a^{2}+2$, $a^{24}-24a^{22}+252a^{20}-1520a^{18}+5814a^{16}-14688a^{14}+24752a^{12}-27456a^{10}+19305a^{8}-8008a^{6}+1716a^{4}-144a^{2}+2$, $a^{5}-5a^{3}+5a$, $a^{10}-10a^{8}+35a^{6}-50a^{4}+25a^{2}-2$, $a^{16}-16a^{14}+104a^{12}-352a^{10}+660a^{8}-672a^{6}+336a^{4}-64a^{2}+2$, $a^{21}-21a^{19}+189a^{17}-952a^{15}+2940a^{13}-5732a^{11}-a^{10}+6996a^{9}+10a^{8}-5104a^{7}-35a^{6}+2002a^{5}+50a^{4}-330a^{3}-25a^{2}+10a+1$, $a^{25}-25a^{23}-a^{22}+275a^{21}+22a^{20}-1750a^{19}-209a^{18}+7125a^{17}+1122a^{16}-19380a^{15}-3740a^{14}+35700a^{13}+8008a^{12}-44200a^{11}-11011a^{10}+35750a^{9}+9438a^{8}-17875a^{7}-4719a^{6}+5005a^{5}+1210a^{4}-650a^{3}-121a^{2}+25a+2$, $a^{3}-3a$, $a^{24}-24a^{22}+252a^{20}-1520a^{18}+5814a^{16}-14688a^{14}+24752a^{12}-27456a^{10}+19305a^{8}-8008a^{6}-a^{5}+1716a^{4}+5a^{3}-144a^{2}-5a+3$, $a^{24}-24a^{22}+252a^{20}-1520a^{18}+5814a^{16}-14688a^{14}+24753a^{12}-27468a^{10}+19359a^{8}-8120a^{6}+1821a^{4}-180a^{2}+5$, $a^{8}-8a^{6}+20a^{4}-16a^{2}+2$, $a^{23}-23a^{21}+230a^{19}-1311a^{17}-a^{16}+4692a^{15}+15a^{14}-10948a^{13}-90a^{12}+16744a^{11}+275a^{10}-16444a^{9}-450a^{8}+9859a^{7}+378a^{6}-3269a^{5}-140a^{4}+490a^{3}+15a^{2}-21a-1$, $a^{21}-21a^{19}+189a^{17}-952a^{15}+2940a^{13}-5733a^{11}+7007a^{9}-5148a^{7}+2079a^{5}-385a^{3}+21a$, $a^{5}-5a^{3}+5a-1$, $a^{8}-8a^{6}+20a^{4}-16a^{2}+3$, $a^{4}-4a^{2}+3$, $a^{5}-4a^{3}+3a$, $a^{24}-24a^{22}+252a^{20}-a^{19}-1520a^{18}+19a^{17}+5814a^{16}-152a^{15}-14687a^{14}+665a^{13}+24738a^{12}-1729a^{11}-27378a^{10}+2717a^{9}+19085a^{8}-2508a^{7}-7679a^{6}+1253a^{5}+1470a^{4}-280a^{3}-70a^{2}+14a-1$, $a^{20}-20a^{18}+170a^{16}-800a^{14}+2275a^{12}-4004a^{10}+4290a^{8}-2640a^{6}+825a^{4}-100a^{2}+2$, $a^{24}-24a^{22}+252a^{20}-a^{19}-1520a^{18}+19a^{17}+5814a^{16}-152a^{15}-14688a^{14}+665a^{13}+24752a^{12}-1729a^{11}-27456a^{10}+2717a^{9}+19305a^{8}-2508a^{7}-8008a^{6}+1253a^{5}+1716a^{4}-280a^{3}-144a^{2}+14a+3$, $a^{20}-a^{19}-19a^{18}+18a^{17}+153a^{16}-136a^{15}-681a^{14}+561a^{13}+1833a^{12}-1377a^{11}-3069a^{10}+2057a^{9}+3168a^{8}-1836a^{7}-1926a^{6}+918a^{5}+621a^{4}-221a^{3}-82a^{2}+16a+1$, $a^{12}-12a^{10}+54a^{8}-112a^{6}+105a^{4}-36a^{2}+3$, $a^{24}-24a^{22}+252a^{20}-1520a^{18}+5814a^{16}-14688a^{14}+24752a^{12}-27456a^{10}+19305a^{8}-8008a^{6}+1716a^{4}-144a^{2}+3$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 14915851505236.459 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{26}\cdot(2\pi)^{0}\cdot 14915851505236.459 \cdot 1}{2\cdot\sqrt{12790771483610519443342791266451996229460693}}\cr\approx \mathstrut & 0.139942482145618 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 - 25*x^24 + 24*x^23 + 276*x^22 - 253*x^21 - 1771*x^20 + 1540*x^19 + 7315*x^18 - 5985*x^17 - 20349*x^16 + 15504*x^15 + 38760*x^14 - 27132*x^13 - 50388*x^12 + 31824*x^11 + 43758*x^10 - 24310*x^9 - 24310*x^8 + 11440*x^7 + 8008*x^6 - 3003*x^5 - 1365*x^4 + 364*x^3 + 91*x^2 - 13*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 - x^25 - 25*x^24 + 24*x^23 + 276*x^22 - 253*x^21 - 1771*x^20 + 1540*x^19 + 7315*x^18 - 5985*x^17 - 20349*x^16 + 15504*x^15 + 38760*x^14 - 27132*x^13 - 50388*x^12 + 31824*x^11 + 43758*x^10 - 24310*x^9 - 24310*x^8 + 11440*x^7 + 8008*x^6 - 3003*x^5 - 1365*x^4 + 364*x^3 + 91*x^2 - 13*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 - x^25 - 25*x^24 + 24*x^23 + 276*x^22 - 253*x^21 - 1771*x^20 + 1540*x^19 + 7315*x^18 - 5985*x^17 - 20349*x^16 + 15504*x^15 + 38760*x^14 - 27132*x^13 - 50388*x^12 + 31824*x^11 + 43758*x^10 - 24310*x^9 - 24310*x^8 + 11440*x^7 + 8008*x^6 - 3003*x^5 - 1365*x^4 + 364*x^3 + 91*x^2 - 13*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - x^25 - 25*x^24 + 24*x^23 + 276*x^22 - 253*x^21 - 1771*x^20 + 1540*x^19 + 7315*x^18 - 5985*x^17 - 20349*x^16 + 15504*x^15 + 38760*x^14 - 27132*x^13 - 50388*x^12 + 31824*x^11 + 43758*x^10 - 24310*x^9 - 24310*x^8 + 11440*x^7 + 8008*x^6 - 3003*x^5 - 1365*x^4 + 364*x^3 + 91*x^2 - 13*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{26}$ (as 26T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$

Intermediate fields

\(\Q(\sqrt{53}) \), 13.13.491258904256726154641.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $26$ $26$ $26$ ${\href{/padicField/7.13.0.1}{13} }^{2}$ ${\href{/padicField/11.13.0.1}{13} }^{2}$ ${\href{/padicField/13.13.0.1}{13} }^{2}$ ${\href{/padicField/17.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/23.2.0.1}{2} }^{13}$ ${\href{/padicField/29.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/37.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/43.13.0.1}{13} }^{2}$ ${\href{/padicField/47.13.0.1}{13} }^{2}$ R ${\href{/padicField/59.13.0.1}{13} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(53\) Copy content Toggle raw display Deg $26$$26$$1$$25$