Properties

Label 27.1.363...239.1
Degree $27$
Signature $[1, 13]$
Discriminant $-3.640\times 10^{42}$
Root discriminant \(37.70\)
Ramified prime $1879$
Class number $4$ (GRH)
Class group [4] (GRH)
Galois group $D_{27}$ (as 27T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 2*x^26 + x^25 + 18*x^24 + 107*x^23 + 180*x^22 + 332*x^21 + 290*x^20 + 295*x^19 - 179*x^18 - 772*x^17 - 1774*x^16 - 2092*x^15 - 2320*x^14 - 811*x^13 + 489*x^12 + 3551*x^11 + 5424*x^10 + 7617*x^9 + 6962*x^8 + 6380*x^7 + 2824*x^6 + 2291*x^5 - 521*x^4 + 623*x^3 - 221*x^2 + 207*x - 1)
 
gp: K = bnfinit(y^27 - 2*y^26 + y^25 + 18*y^24 + 107*y^23 + 180*y^22 + 332*y^21 + 290*y^20 + 295*y^19 - 179*y^18 - 772*y^17 - 1774*y^16 - 2092*y^15 - 2320*y^14 - 811*y^13 + 489*y^12 + 3551*y^11 + 5424*y^10 + 7617*y^9 + 6962*y^8 + 6380*y^7 + 2824*y^6 + 2291*y^5 - 521*y^4 + 623*y^3 - 221*y^2 + 207*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 2*x^26 + x^25 + 18*x^24 + 107*x^23 + 180*x^22 + 332*x^21 + 290*x^20 + 295*x^19 - 179*x^18 - 772*x^17 - 1774*x^16 - 2092*x^15 - 2320*x^14 - 811*x^13 + 489*x^12 + 3551*x^11 + 5424*x^10 + 7617*x^9 + 6962*x^8 + 6380*x^7 + 2824*x^6 + 2291*x^5 - 521*x^4 + 623*x^3 - 221*x^2 + 207*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 2*x^26 + x^25 + 18*x^24 + 107*x^23 + 180*x^22 + 332*x^21 + 290*x^20 + 295*x^19 - 179*x^18 - 772*x^17 - 1774*x^16 - 2092*x^15 - 2320*x^14 - 811*x^13 + 489*x^12 + 3551*x^11 + 5424*x^10 + 7617*x^9 + 6962*x^8 + 6380*x^7 + 2824*x^6 + 2291*x^5 - 521*x^4 + 623*x^3 - 221*x^2 + 207*x - 1)
 

\( x^{27} - 2 x^{26} + x^{25} + 18 x^{24} + 107 x^{23} + 180 x^{22} + 332 x^{21} + 290 x^{20} + 295 x^{19} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-3639553781467035763182087002112051895733239\) \(\medspace = -\,1879^{13}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(37.70\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $1879^{1/2}\approx 43.347433603386484$
Ramified primes:   \(1879\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1879}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{4}$, $\frac{1}{9}a^{13}-\frac{1}{9}a^{11}-\frac{1}{9}a^{10}+\frac{1}{9}a^{9}-\frac{1}{9}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{9}a^{5}-\frac{1}{3}a^{4}+\frac{4}{9}a^{3}+\frac{4}{9}a^{2}-\frac{1}{9}a+\frac{4}{9}$, $\frac{1}{9}a^{14}-\frac{1}{9}a^{12}-\frac{1}{9}a^{11}+\frac{1}{9}a^{10}-\frac{1}{9}a^{9}-\frac{1}{3}a^{7}-\frac{1}{9}a^{6}-\frac{1}{3}a^{5}+\frac{4}{9}a^{4}+\frac{4}{9}a^{3}-\frac{1}{9}a^{2}+\frac{4}{9}a-\frac{1}{3}$, $\frac{1}{9}a^{15}-\frac{1}{9}a^{12}+\frac{1}{9}a^{10}+\frac{1}{9}a^{9}-\frac{1}{9}a^{8}-\frac{4}{9}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{9}a^{4}+\frac{1}{3}a^{3}-\frac{4}{9}a^{2}-\frac{4}{9}a+\frac{1}{9}$, $\frac{1}{9}a^{16}+\frac{1}{9}a^{8}-\frac{2}{9}$, $\frac{1}{9}a^{17}+\frac{1}{9}a^{9}-\frac{2}{9}a$, $\frac{1}{27}a^{18}+\frac{1}{27}a^{16}+\frac{1}{27}a^{15}-\frac{4}{27}a^{12}-\frac{4}{27}a^{10}-\frac{2}{27}a^{9}-\frac{1}{9}a^{8}+\frac{5}{27}a^{7}+\frac{4}{9}a^{6}+\frac{1}{9}a^{5}-\frac{5}{27}a^{4}+\frac{1}{9}a^{3}+\frac{8}{27}a-\frac{7}{27}$, $\frac{1}{27}a^{19}+\frac{1}{27}a^{17}+\frac{1}{27}a^{16}-\frac{1}{27}a^{13}+\frac{2}{27}a^{11}+\frac{4}{27}a^{10}+\frac{2}{27}a^{8}+\frac{1}{9}a^{7}-\frac{2}{9}a^{6}-\frac{8}{27}a^{5}-\frac{2}{9}a^{4}+\frac{1}{9}a^{3}+\frac{11}{27}a^{2}-\frac{10}{27}a+\frac{4}{9}$, $\frac{1}{27}a^{20}+\frac{1}{27}a^{17}-\frac{1}{27}a^{16}-\frac{1}{27}a^{15}-\frac{1}{27}a^{14}-\frac{1}{9}a^{12}+\frac{4}{27}a^{11}+\frac{4}{27}a^{10}+\frac{4}{27}a^{9}-\frac{1}{9}a^{8}-\frac{11}{27}a^{7}+\frac{7}{27}a^{6}-\frac{1}{3}a^{5}-\frac{10}{27}a^{4}+\frac{8}{27}a^{3}-\frac{10}{27}a^{2}+\frac{4}{27}a-\frac{11}{27}$, $\frac{1}{81}a^{21}-\frac{1}{81}a^{19}+\frac{4}{81}a^{17}+\frac{1}{27}a^{16}+\frac{4}{81}a^{15}-\frac{1}{27}a^{14}+\frac{1}{81}a^{13}-\frac{4}{81}a^{12}+\frac{2}{81}a^{11}+\frac{4}{81}a^{10}-\frac{10}{81}a^{9}-\frac{4}{81}a^{8}+\frac{29}{81}a^{7}-\frac{1}{27}a^{6}-\frac{35}{81}a^{5}+\frac{40}{81}a^{4}+\frac{29}{81}a^{3}-\frac{16}{81}a^{2}+\frac{7}{27}a+\frac{28}{81}$, $\frac{1}{1053}a^{22}-\frac{1}{351}a^{21}+\frac{14}{1053}a^{20}+\frac{2}{351}a^{19}+\frac{7}{1053}a^{18}+\frac{4}{117}a^{17}+\frac{22}{1053}a^{16}+\frac{2}{117}a^{15}+\frac{49}{1053}a^{14}+\frac{53}{1053}a^{13}-\frac{34}{1053}a^{12}+\frac{82}{1053}a^{11}+\frac{47}{1053}a^{10}+\frac{53}{1053}a^{9}-\frac{4}{81}a^{8}-\frac{146}{351}a^{7}+\frac{475}{1053}a^{6}-\frac{176}{1053}a^{5}+\frac{419}{1053}a^{4}+\frac{503}{1053}a^{3}+\frac{2}{27}a^{2}-\frac{278}{1053}a+\frac{32}{117}$, $\frac{1}{660231}a^{23}-\frac{14}{220077}a^{22}+\frac{1036}{220077}a^{21}-\frac{46}{24453}a^{20}-\frac{2446}{220077}a^{19}+\frac{727}{220077}a^{18}-\frac{31633}{660231}a^{17}-\frac{137}{220077}a^{16}+\frac{12971}{660231}a^{15}-\frac{9268}{660231}a^{14}+\frac{4907}{220077}a^{13}-\frac{35428}{220077}a^{12}+\frac{3077}{60021}a^{11}-\frac{22949}{220077}a^{10}-\frac{4742}{50787}a^{9}+\frac{41201}{660231}a^{8}+\frac{97589}{220077}a^{7}+\frac{160855}{660231}a^{6}-\frac{92767}{220077}a^{5}+\frac{1106}{2717}a^{4}-\frac{13834}{50787}a^{3}+\frac{9134}{24453}a^{2}-\frac{73471}{220077}a-\frac{16976}{50787}$, $\frac{1}{660231}a^{24}+\frac{10}{73359}a^{22}+\frac{80}{20007}a^{21}-\frac{137}{24453}a^{20}-\frac{1328}{73359}a^{19}+\frac{2285}{660231}a^{18}+\frac{3998}{73359}a^{17}-\frac{7426}{660231}a^{16}+\frac{15731}{660231}a^{15}+\frac{734}{16929}a^{14}-\frac{71}{16929}a^{13}-\frac{2207}{660231}a^{12}+\frac{28102}{220077}a^{11}+\frac{60769}{660231}a^{10}-\frac{38677}{660231}a^{9}-\frac{2048}{24453}a^{8}+\frac{176647}{660231}a^{7}-\frac{1321}{24453}a^{6}-\frac{3008}{24453}a^{5}+\frac{181892}{660231}a^{4}-\frac{67403}{220077}a^{3}+\frac{1822}{16929}a^{2}+\frac{260530}{660231}a-\frac{11281}{73359}$, $\frac{1}{2748541653}a^{25}-\frac{379}{2748541653}a^{24}+\frac{37}{249867423}a^{23}-\frac{70184}{305393517}a^{22}-\frac{4644260}{916180551}a^{21}-\frac{53558}{23491809}a^{20}-\frac{2391217}{2748541653}a^{19}-\frac{37820729}{2748541653}a^{18}+\frac{14361475}{916180551}a^{17}+\frac{40660544}{916180551}a^{16}+\frac{61609466}{2748541653}a^{15}+\frac{95881726}{2748541653}a^{14}+\frac{15152659}{2748541653}a^{13}-\frac{294418369}{2748541653}a^{12}-\frac{4819130}{48220029}a^{11}+\frac{161806582}{2748541653}a^{10}+\frac{39508234}{916180551}a^{9}+\frac{25391468}{2748541653}a^{8}-\frac{281013985}{2748541653}a^{7}+\frac{1281820217}{2748541653}a^{6}+\frac{732597692}{2748541653}a^{5}-\frac{792823778}{2748541653}a^{4}-\frac{903329036}{2748541653}a^{3}+\frac{516456796}{2748541653}a^{2}-\frac{355118539}{2748541653}a+\frac{1359261317}{2748541653}$, $\frac{1}{20\!\cdots\!01}a^{26}-\frac{77512}{618656497435197}a^{25}-\frac{372163378}{887637583276587}a^{24}+\frac{11356514027}{20\!\cdots\!01}a^{23}+\frac{2064472311619}{68\!\cdots\!67}a^{22}-\frac{1439099449343}{618656497435197}a^{21}-\frac{7475350304912}{887637583276587}a^{20}-\frac{50445961554746}{68\!\cdots\!67}a^{19}-\frac{161504644084115}{20\!\cdots\!01}a^{18}+\frac{53867607631555}{68\!\cdots\!67}a^{17}-\frac{207808209734284}{20\!\cdots\!01}a^{16}-\frac{170618308883543}{68\!\cdots\!67}a^{15}+\frac{42868602822712}{887637583276587}a^{14}-\frac{6383639394283}{295879194425529}a^{13}-\frac{105453720071077}{10\!\cdots\!79}a^{12}-\frac{26\!\cdots\!36}{20\!\cdots\!01}a^{11}-\frac{463213092146975}{20\!\cdots\!01}a^{10}-\frac{15\!\cdots\!83}{20\!\cdots\!01}a^{9}-\frac{99420778868012}{15\!\cdots\!77}a^{8}+\frac{305705949961427}{18\!\cdots\!91}a^{7}-\frac{10\!\cdots\!50}{20\!\cdots\!01}a^{6}-\frac{33\!\cdots\!46}{68\!\cdots\!67}a^{5}-\frac{25\!\cdots\!26}{20\!\cdots\!01}a^{4}-\frac{60\!\cdots\!13}{20\!\cdots\!01}a^{3}+\frac{92268633458152}{206218832478399}a^{2}+\frac{412509601318531}{20\!\cdots\!01}a+\frac{21\!\cdots\!21}{20\!\cdots\!01}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{74313215719169}{68\!\cdots\!67}a^{26}-\frac{17827932524626}{756135719087463}a^{25}+\frac{87533871614216}{68\!\cdots\!67}a^{24}+\frac{103499837832202}{523478574752859}a^{23}+\frac{25\!\cdots\!87}{22\!\cdots\!89}a^{22}+\frac{19013803111712}{10853622762021}a^{21}+\frac{21\!\cdots\!20}{68\!\cdots\!67}a^{20}+\frac{52\!\cdots\!00}{22\!\cdots\!89}a^{19}+\frac{13\!\cdots\!38}{618656497435197}a^{18}-\frac{531609339815269}{174492858250953}a^{17}-\frac{59\!\cdots\!30}{68\!\cdots\!67}a^{16}-\frac{13\!\cdots\!13}{756135719087463}a^{15}-\frac{12\!\cdots\!18}{68\!\cdots\!67}a^{14}-\frac{14\!\cdots\!09}{756135719087463}a^{13}-\frac{66\!\cdots\!97}{68\!\cdots\!67}a^{12}+\frac{77\!\cdots\!85}{68\!\cdots\!67}a^{11}+\frac{27\!\cdots\!12}{68\!\cdots\!67}a^{10}+\frac{36\!\cdots\!68}{68\!\cdots\!67}a^{9}+\frac{47\!\cdots\!77}{68\!\cdots\!67}a^{8}+\frac{36\!\cdots\!82}{68\!\cdots\!67}a^{7}+\frac{29\!\cdots\!39}{68\!\cdots\!67}a^{6}+\frac{39\!\cdots\!61}{756135719087463}a^{5}+\frac{36\!\cdots\!72}{68\!\cdots\!67}a^{4}-\frac{13\!\cdots\!23}{68\!\cdots\!67}a^{3}+\frac{951872595849139}{22\!\cdots\!89}a^{2}-\frac{32\!\cdots\!47}{68\!\cdots\!67}a+\frac{86\!\cdots\!73}{68\!\cdots\!67}$, $\frac{270904564493110}{20\!\cdots\!01}a^{26}-\frac{215643172835603}{68\!\cdots\!67}a^{25}+\frac{340132787248849}{20\!\cdots\!01}a^{24}+\frac{461064442144315}{18\!\cdots\!91}a^{23}+\frac{90\!\cdots\!79}{68\!\cdots\!67}a^{22}+\frac{502678572436633}{295879194425529}a^{21}+\frac{56\!\cdots\!13}{20\!\cdots\!01}a^{20}+\frac{713527010185163}{618656497435197}a^{19}+\frac{24\!\cdots\!48}{20\!\cdots\!01}a^{18}-\frac{28\!\cdots\!30}{68\!\cdots\!67}a^{17}-\frac{98\!\cdots\!44}{10\!\cdots\!79}a^{16}-\frac{11\!\cdots\!12}{68\!\cdots\!67}a^{15}-\frac{26\!\cdots\!27}{20\!\cdots\!01}a^{14}-\frac{75\!\cdots\!52}{68\!\cdots\!67}a^{13}+\frac{14\!\cdots\!55}{20\!\cdots\!01}a^{12}+\frac{24\!\cdots\!91}{20\!\cdots\!01}a^{11}+\frac{32\!\cdots\!22}{887637583276587}a^{10}+\frac{88\!\cdots\!61}{20\!\cdots\!01}a^{9}+\frac{11\!\cdots\!55}{20\!\cdots\!01}a^{8}+\frac{64\!\cdots\!01}{20\!\cdots\!01}a^{7}+\frac{55\!\cdots\!70}{20\!\cdots\!01}a^{6}-\frac{13\!\cdots\!29}{523478574752859}a^{5}+\frac{33\!\cdots\!97}{20\!\cdots\!01}a^{4}-\frac{18\!\cdots\!13}{20\!\cdots\!01}a^{3}+\frac{894439006827653}{98626398141843}a^{2}-\frac{46\!\cdots\!15}{10\!\cdots\!79}a+\frac{21\!\cdots\!92}{20\!\cdots\!01}$, $\frac{60292762415432}{20\!\cdots\!01}a^{26}-\frac{568365644311}{523478574752859}a^{25}-\frac{155091094045684}{20\!\cdots\!01}a^{24}+\frac{2705692856591}{46717767540873}a^{23}+\frac{27\!\cdots\!77}{68\!\cdots\!67}a^{22}+\frac{537095260805341}{523478574752859}a^{21}+\frac{26\!\cdots\!47}{15\!\cdots\!77}a^{20}+\frac{14\!\cdots\!89}{68\!\cdots\!67}a^{19}+\frac{33\!\cdots\!23}{18\!\cdots\!91}a^{18}+\frac{17\!\cdots\!73}{68\!\cdots\!67}a^{17}-\frac{65\!\cdots\!79}{18\!\cdots\!91}a^{16}-\frac{61\!\cdots\!17}{68\!\cdots\!67}a^{15}-\frac{27\!\cdots\!98}{20\!\cdots\!01}a^{14}-\frac{50\!\cdots\!63}{358169551146693}a^{13}-\frac{19\!\cdots\!66}{20\!\cdots\!01}a^{12}+\frac{24\!\cdots\!88}{20\!\cdots\!01}a^{11}+\frac{31\!\cdots\!51}{20\!\cdots\!01}a^{10}+\frac{65\!\cdots\!52}{20\!\cdots\!01}a^{9}+\frac{82\!\cdots\!19}{18\!\cdots\!91}a^{8}+\frac{96\!\cdots\!77}{20\!\cdots\!01}a^{7}+\frac{81\!\cdots\!78}{20\!\cdots\!01}a^{6}+\frac{17\!\cdots\!58}{68\!\cdots\!67}a^{5}+\frac{21\!\cdots\!93}{20\!\cdots\!01}a^{4}+\frac{25\!\cdots\!06}{10\!\cdots\!79}a^{3}-\frac{46\!\cdots\!78}{22\!\cdots\!89}a^{2}-\frac{156658438335856}{10\!\cdots\!79}a+\frac{16\!\cdots\!43}{20\!\cdots\!01}$, $\frac{79432750765169}{68\!\cdots\!67}a^{26}-\frac{55396093475908}{22\!\cdots\!89}a^{25}+\frac{99604340046698}{68\!\cdots\!67}a^{24}+\frac{128075923733177}{618656497435197}a^{23}+\frac{253746663834130}{206218832478399}a^{22}+\frac{45\!\cdots\!85}{22\!\cdots\!89}a^{21}+\frac{25\!\cdots\!58}{68\!\cdots\!67}a^{20}+\frac{70\!\cdots\!18}{22\!\cdots\!89}a^{19}+\frac{20\!\cdots\!07}{618656497435197}a^{18}-\frac{399823497909461}{174492858250953}a^{17}-\frac{59\!\cdots\!54}{68\!\cdots\!67}a^{16}-\frac{15\!\cdots\!75}{756135719087463}a^{15}-\frac{15\!\cdots\!70}{68\!\cdots\!67}a^{14}-\frac{58\!\cdots\!79}{22\!\cdots\!89}a^{13}-\frac{53\!\cdots\!97}{68\!\cdots\!67}a^{12}+\frac{39\!\cdots\!48}{68\!\cdots\!67}a^{11}+\frac{27\!\cdots\!53}{68\!\cdots\!67}a^{10}+\frac{40\!\cdots\!08}{68\!\cdots\!67}a^{9}+\frac{25\!\cdots\!67}{295879194425529}a^{8}+\frac{51\!\cdots\!03}{68\!\cdots\!67}a^{7}+\frac{47\!\cdots\!06}{68\!\cdots\!67}a^{6}+\frac{65\!\cdots\!44}{22\!\cdots\!89}a^{5}+\frac{15\!\cdots\!86}{618656497435197}a^{4}-\frac{48\!\cdots\!65}{68\!\cdots\!67}a^{3}+\frac{20\!\cdots\!31}{252045239695821}a^{2}-\frac{21\!\cdots\!85}{68\!\cdots\!67}a+\frac{89997611574578}{32560868286063}$, $\frac{32916582370019}{20\!\cdots\!01}a^{26}-\frac{35145815796745}{68\!\cdots\!67}a^{25}+\frac{78558887334515}{20\!\cdots\!01}a^{24}+\frac{641765475775978}{20\!\cdots\!01}a^{23}+\frac{922935601287002}{68\!\cdots\!67}a^{22}+\frac{341538492345295}{68\!\cdots\!67}a^{21}+\frac{578918271784279}{20\!\cdots\!01}a^{20}-\frac{21\!\cdots\!64}{68\!\cdots\!67}a^{19}-\frac{228755534000447}{887637583276587}a^{18}-\frac{226492276457636}{295879194425529}a^{17}-\frac{18\!\cdots\!80}{20\!\cdots\!01}a^{16}-\frac{55\!\cdots\!47}{68\!\cdots\!67}a^{15}+\frac{18\!\cdots\!29}{20\!\cdots\!01}a^{14}+\frac{11\!\cdots\!71}{68\!\cdots\!67}a^{13}+\frac{62\!\cdots\!55}{18\!\cdots\!91}a^{12}+\frac{41\!\cdots\!31}{20\!\cdots\!01}a^{11}+\frac{33\!\cdots\!66}{10\!\cdots\!79}a^{10}+\frac{16\!\cdots\!47}{18\!\cdots\!91}a^{9}-\frac{16\!\cdots\!09}{20\!\cdots\!01}a^{8}-\frac{92\!\cdots\!86}{15\!\cdots\!77}a^{7}-\frac{12\!\cdots\!41}{20\!\cdots\!01}a^{6}-\frac{46\!\cdots\!55}{68\!\cdots\!67}a^{5}-\frac{34\!\cdots\!96}{20\!\cdots\!01}a^{4}-\frac{83\!\cdots\!58}{18\!\cdots\!91}a^{3}-\frac{28\!\cdots\!83}{22\!\cdots\!89}a^{2}-\frac{13\!\cdots\!49}{887637583276587}a+\frac{832933199126521}{15\!\cdots\!77}$, $\frac{93293463115393}{68\!\cdots\!67}a^{26}-\frac{88834027363043}{22\!\cdots\!89}a^{25}+\frac{232558387878385}{68\!\cdots\!67}a^{24}+\frac{16\!\cdots\!95}{68\!\cdots\!67}a^{23}+\frac{28\!\cdots\!01}{22\!\cdots\!89}a^{22}+\frac{26\!\cdots\!53}{22\!\cdots\!89}a^{21}+\frac{14\!\cdots\!83}{68\!\cdots\!67}a^{20}-\frac{116434588301021}{22\!\cdots\!89}a^{19}+\frac{23\!\cdots\!65}{68\!\cdots\!67}a^{18}-\frac{12\!\cdots\!01}{22\!\cdots\!89}a^{17}-\frac{52\!\cdots\!62}{618656497435197}a^{16}-\frac{10\!\cdots\!65}{756135719087463}a^{15}-\frac{44\!\cdots\!34}{68\!\cdots\!67}a^{14}-\frac{11\!\cdots\!56}{22\!\cdots\!89}a^{13}+\frac{10\!\cdots\!76}{68\!\cdots\!67}a^{12}+\frac{10\!\cdots\!51}{68\!\cdots\!67}a^{11}+\frac{23\!\cdots\!78}{618656497435197}a^{10}+\frac{20\!\cdots\!96}{68\!\cdots\!67}a^{9}+\frac{23\!\cdots\!86}{68\!\cdots\!67}a^{8}+\frac{25\!\cdots\!57}{68\!\cdots\!67}a^{7}+\frac{20\!\cdots\!83}{68\!\cdots\!67}a^{6}-\frac{66\!\cdots\!60}{206218832478399}a^{5}+\frac{991140679826888}{68\!\cdots\!67}a^{4}-\frac{77\!\cdots\!04}{295879194425529}a^{3}+\frac{87\!\cdots\!85}{756135719087463}a^{2}-\frac{37\!\cdots\!91}{68\!\cdots\!67}a+\frac{49\!\cdots\!04}{68\!\cdots\!67}$, $\frac{26741842526257}{20\!\cdots\!01}a^{26}-\frac{48805747136444}{68\!\cdots\!67}a^{25}+\frac{194956643213788}{20\!\cdots\!01}a^{24}+\frac{23928059179514}{10\!\cdots\!79}a^{23}+\frac{355877398005199}{68\!\cdots\!67}a^{22}-\frac{17\!\cdots\!10}{68\!\cdots\!67}a^{21}-\frac{91\!\cdots\!90}{20\!\cdots\!01}a^{20}-\frac{79\!\cdots\!66}{68\!\cdots\!67}a^{19}-\frac{23\!\cdots\!66}{20\!\cdots\!01}a^{18}-\frac{11\!\cdots\!46}{68\!\cdots\!67}a^{17}-\frac{10\!\cdots\!12}{20\!\cdots\!01}a^{16}+\frac{92\!\cdots\!18}{68\!\cdots\!67}a^{15}+\frac{11\!\cdots\!35}{20\!\cdots\!01}a^{14}+\frac{50\!\cdots\!40}{68\!\cdots\!67}a^{13}+\frac{21\!\cdots\!18}{20\!\cdots\!01}a^{12}+\frac{12\!\cdots\!27}{20\!\cdots\!01}a^{11}+\frac{52\!\cdots\!68}{20\!\cdots\!01}a^{10}-\frac{16\!\cdots\!32}{20\!\cdots\!01}a^{9}-\frac{18\!\cdots\!52}{10\!\cdots\!79}a^{8}-\frac{57\!\cdots\!42}{20\!\cdots\!01}a^{7}-\frac{58\!\cdots\!31}{20\!\cdots\!01}a^{6}-\frac{19\!\cdots\!28}{68\!\cdots\!67}a^{5}-\frac{16\!\cdots\!33}{10\!\cdots\!79}a^{4}-\frac{25\!\cdots\!54}{20\!\cdots\!01}a^{3}-\frac{34\!\cdots\!32}{22\!\cdots\!89}a^{2}-\frac{85\!\cdots\!71}{20\!\cdots\!01}a-\frac{10\!\cdots\!50}{20\!\cdots\!01}$, $\frac{10576751116519}{22\!\cdots\!89}a^{26}-\frac{21272363381998}{22\!\cdots\!89}a^{25}+\frac{680980178168}{119389850382231}a^{24}+\frac{63085086253796}{756135719087463}a^{23}+\frac{6571821532217}{13265538931359}a^{22}+\frac{644314561462391}{756135719087463}a^{21}+\frac{37\!\cdots\!96}{22\!\cdots\!89}a^{20}+\frac{37\!\cdots\!50}{22\!\cdots\!89}a^{19}+\frac{13\!\cdots\!85}{756135719087463}a^{18}-\frac{20400664882436}{68739610826133}a^{17}-\frac{71\!\cdots\!58}{22\!\cdots\!89}a^{16}-\frac{18\!\cdots\!34}{22\!\cdots\!89}a^{15}-\frac{24\!\cdots\!42}{22\!\cdots\!89}a^{14}-\frac{30\!\cdots\!86}{22\!\cdots\!89}a^{13}-\frac{55\!\cdots\!61}{756135719087463}a^{12}-\frac{27\!\cdots\!65}{22\!\cdots\!89}a^{11}+\frac{11\!\cdots\!32}{84015079898607}a^{10}+\frac{59\!\cdots\!90}{22\!\cdots\!89}a^{9}+\frac{89\!\cdots\!44}{22\!\cdots\!89}a^{8}+\frac{93\!\cdots\!76}{22\!\cdots\!89}a^{7}+\frac{49\!\cdots\!06}{119389850382231}a^{6}+\frac{58\!\cdots\!93}{22\!\cdots\!89}a^{5}+\frac{44\!\cdots\!07}{22\!\cdots\!89}a^{4}+\frac{10\!\cdots\!44}{206218832478399}a^{3}+\frac{95\!\cdots\!95}{22\!\cdots\!89}a^{2}+\frac{68747044528373}{22\!\cdots\!89}a+\frac{475209078752560}{756135719087463}$, $\frac{27822020293987}{20\!\cdots\!01}a^{26}-\frac{27764790354674}{68\!\cdots\!67}a^{25}+\frac{81088112771617}{20\!\cdots\!01}a^{24}+\frac{37004046248534}{15\!\cdots\!77}a^{23}+\frac{820709891176957}{68\!\cdots\!67}a^{22}+\frac{683170446412301}{68\!\cdots\!67}a^{21}+\frac{40\!\cdots\!04}{20\!\cdots\!01}a^{20}-\frac{382241772540359}{68\!\cdots\!67}a^{19}-\frac{11072947329368}{10\!\cdots\!79}a^{18}-\frac{41\!\cdots\!70}{68\!\cdots\!67}a^{17}-\frac{17\!\cdots\!20}{20\!\cdots\!01}a^{16}-\frac{89\!\cdots\!11}{68\!\cdots\!67}a^{15}-\frac{10\!\cdots\!67}{20\!\cdots\!01}a^{14}-\frac{18\!\cdots\!69}{68\!\cdots\!67}a^{13}+\frac{37\!\cdots\!47}{20\!\cdots\!01}a^{12}+\frac{34\!\cdots\!04}{20\!\cdots\!01}a^{11}+\frac{60\!\cdots\!26}{15\!\cdots\!77}a^{10}+\frac{59\!\cdots\!80}{20\!\cdots\!01}a^{9}+\frac{47\!\cdots\!78}{20\!\cdots\!01}a^{8}-\frac{173156734627714}{887637583276587}a^{7}-\frac{10\!\cdots\!85}{20\!\cdots\!01}a^{6}-\frac{28\!\cdots\!76}{68\!\cdots\!67}a^{5}-\frac{88\!\cdots\!44}{20\!\cdots\!01}a^{4}-\frac{56\!\cdots\!14}{20\!\cdots\!01}a^{3}+\frac{683060061184}{1473948770151}a^{2}+\frac{14\!\cdots\!28}{18\!\cdots\!91}a-\frac{93\!\cdots\!50}{20\!\cdots\!01}$, $\frac{58564248358766}{20\!\cdots\!01}a^{26}-\frac{2254866640222}{358169551146693}a^{25}+\frac{68172095315663}{20\!\cdots\!01}a^{24}+\frac{57300136201624}{10\!\cdots\!79}a^{23}+\frac{20\!\cdots\!13}{68\!\cdots\!67}a^{22}+\frac{30\!\cdots\!12}{68\!\cdots\!67}a^{21}+\frac{16\!\cdots\!39}{20\!\cdots\!01}a^{20}+\frac{43\!\cdots\!31}{68\!\cdots\!67}a^{19}+\frac{13\!\cdots\!95}{20\!\cdots\!01}a^{18}-\frac{37\!\cdots\!07}{68\!\cdots\!67}a^{17}-\frac{37\!\cdots\!95}{18\!\cdots\!91}a^{16}-\frac{22\!\cdots\!25}{523478574752859}a^{15}-\frac{97\!\cdots\!49}{20\!\cdots\!01}a^{14}-\frac{35\!\cdots\!50}{68\!\cdots\!67}a^{13}-\frac{32\!\cdots\!34}{20\!\cdots\!01}a^{12}+\frac{26\!\cdots\!93}{20\!\cdots\!01}a^{11}+\frac{17\!\cdots\!29}{20\!\cdots\!01}a^{10}+\frac{26\!\cdots\!88}{20\!\cdots\!01}a^{9}+\frac{37\!\cdots\!60}{20\!\cdots\!01}a^{8}+\frac{33\!\cdots\!88}{20\!\cdots\!01}a^{7}+\frac{24\!\cdots\!22}{15\!\cdots\!77}a^{6}+\frac{47\!\cdots\!56}{68\!\cdots\!67}a^{5}+\frac{61\!\cdots\!70}{10\!\cdots\!79}a^{4}-\frac{17\!\cdots\!35}{18\!\cdots\!91}a^{3}+\frac{33\!\cdots\!32}{22\!\cdots\!89}a^{2}-\frac{98\!\cdots\!97}{20\!\cdots\!01}a+\frac{10\!\cdots\!78}{18\!\cdots\!91}$, $\frac{88582025534281}{20\!\cdots\!01}a^{26}-\frac{74238784344932}{68\!\cdots\!67}a^{25}+\frac{172698206292724}{20\!\cdots\!01}a^{24}+\frac{142091487938323}{18\!\cdots\!91}a^{23}+\frac{28\!\cdots\!06}{68\!\cdots\!67}a^{22}+\frac{36\!\cdots\!73}{68\!\cdots\!67}a^{21}+\frac{20\!\cdots\!39}{20\!\cdots\!01}a^{20}+\frac{130581606425747}{295879194425529}a^{19}+\frac{85\!\cdots\!75}{20\!\cdots\!01}a^{18}-\frac{10\!\cdots\!74}{618656497435197}a^{17}-\frac{68\!\cdots\!54}{20\!\cdots\!01}a^{16}-\frac{42\!\cdots\!97}{68\!\cdots\!67}a^{15}-\frac{10\!\cdots\!53}{20\!\cdots\!01}a^{14}-\frac{28\!\cdots\!94}{618656497435197}a^{13}+\frac{68\!\cdots\!94}{20\!\cdots\!01}a^{12}+\frac{10\!\cdots\!91}{15\!\cdots\!77}a^{11}+\frac{34\!\cdots\!97}{20\!\cdots\!01}a^{10}+\frac{34\!\cdots\!30}{20\!\cdots\!01}a^{9}+\frac{37\!\cdots\!39}{18\!\cdots\!91}a^{8}+\frac{20\!\cdots\!63}{20\!\cdots\!01}a^{7}+\frac{12\!\cdots\!39}{20\!\cdots\!01}a^{6}-\frac{62\!\cdots\!84}{618656497435197}a^{5}-\frac{45\!\cdots\!01}{887637583276587}a^{4}-\frac{29\!\cdots\!78}{20\!\cdots\!01}a^{3}+\frac{80052878759101}{22\!\cdots\!89}a^{2}-\frac{74\!\cdots\!22}{20\!\cdots\!01}a+\frac{12\!\cdots\!69}{18\!\cdots\!91}$, $\frac{136685056043092}{20\!\cdots\!01}a^{26}-\frac{17572110248207}{68\!\cdots\!67}a^{25}-\frac{16357008858370}{887637583276587}a^{24}+\frac{27\!\cdots\!10}{20\!\cdots\!01}a^{23}+\frac{62\!\cdots\!92}{68\!\cdots\!67}a^{22}+\frac{15\!\cdots\!78}{68\!\cdots\!67}a^{21}+\frac{33\!\cdots\!13}{887637583276587}a^{20}+\frac{28\!\cdots\!53}{618656497435197}a^{19}+\frac{70\!\cdots\!10}{20\!\cdots\!01}a^{18}+\frac{652269777456733}{68\!\cdots\!67}a^{17}-\frac{17\!\cdots\!63}{20\!\cdots\!01}a^{16}-\frac{13\!\cdots\!28}{68\!\cdots\!67}a^{15}-\frac{26\!\cdots\!88}{887637583276587}a^{14}-\frac{790851492350006}{26898108584139}a^{13}-\frac{37\!\cdots\!91}{20\!\cdots\!01}a^{12}+\frac{14\!\cdots\!62}{20\!\cdots\!01}a^{11}+\frac{73\!\cdots\!62}{20\!\cdots\!01}a^{10}+\frac{14\!\cdots\!36}{20\!\cdots\!01}a^{9}+\frac{91\!\cdots\!07}{97682604858189}a^{8}+\frac{20\!\cdots\!22}{20\!\cdots\!01}a^{7}+\frac{15\!\cdots\!51}{20\!\cdots\!01}a^{6}+\frac{31\!\cdots\!78}{68\!\cdots\!67}a^{5}+\frac{24\!\cdots\!74}{20\!\cdots\!01}a^{4}+\frac{45\!\cdots\!20}{20\!\cdots\!01}a^{3}-\frac{64\!\cdots\!35}{756135719087463}a^{2}+\frac{64\!\cdots\!23}{15\!\cdots\!77}a-\frac{15\!\cdots\!43}{20\!\cdots\!01}$, $\frac{1190431927606}{658569819850371}a^{26}-\frac{1667683162679}{219523273283457}a^{25}+\frac{6118238275642}{658569819850371}a^{24}+\frac{20009666604209}{658569819850371}a^{23}+\frac{26299865386057}{219523273283457}a^{22}-\frac{23833287769348}{219523273283457}a^{21}-\frac{101848292364448}{658569819850371}a^{20}-\frac{172042335248444}{219523273283457}a^{19}-\frac{384720312101249}{658569819850371}a^{18}-\frac{283682947544255}{219523273283457}a^{17}-\frac{392326998918835}{658569819850371}a^{16}+\frac{22820140751800}{219523273283457}a^{15}+\frac{21\!\cdots\!32}{658569819850371}a^{14}+\frac{883619086990249}{219523273283457}a^{13}+\frac{45\!\cdots\!38}{658569819850371}a^{12}+\frac{22\!\cdots\!91}{658569819850371}a^{11}+\frac{21\!\cdots\!31}{658569819850371}a^{10}-\frac{26\!\cdots\!68}{658569819850371}a^{9}-\frac{50\!\cdots\!56}{658569819850371}a^{8}-\frac{10\!\cdots\!21}{658569819850371}a^{7}-\frac{99\!\cdots\!38}{658569819850371}a^{6}-\frac{208544014474453}{11553856488603}a^{5}-\frac{37\!\cdots\!20}{658569819850371}a^{4}-\frac{53\!\cdots\!90}{658569819850371}a^{3}+\frac{1128107523728}{404278587999}a^{2}-\frac{90193066828768}{59869983622761}a+\frac{230225759673137}{658569819850371}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 25801652404.76311 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{13}\cdot 25801652404.76311 \cdot 4}{2\cdot\sqrt{3639553781467035763182087002112051895733239}}\cr\approx \mathstrut & 1.28683163686933 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 2*x^26 + x^25 + 18*x^24 + 107*x^23 + 180*x^22 + 332*x^21 + 290*x^20 + 295*x^19 - 179*x^18 - 772*x^17 - 1774*x^16 - 2092*x^15 - 2320*x^14 - 811*x^13 + 489*x^12 + 3551*x^11 + 5424*x^10 + 7617*x^9 + 6962*x^8 + 6380*x^7 + 2824*x^6 + 2291*x^5 - 521*x^4 + 623*x^3 - 221*x^2 + 207*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 2*x^26 + x^25 + 18*x^24 + 107*x^23 + 180*x^22 + 332*x^21 + 290*x^20 + 295*x^19 - 179*x^18 - 772*x^17 - 1774*x^16 - 2092*x^15 - 2320*x^14 - 811*x^13 + 489*x^12 + 3551*x^11 + 5424*x^10 + 7617*x^9 + 6962*x^8 + 6380*x^7 + 2824*x^6 + 2291*x^5 - 521*x^4 + 623*x^3 - 221*x^2 + 207*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 2*x^26 + x^25 + 18*x^24 + 107*x^23 + 180*x^22 + 332*x^21 + 290*x^20 + 295*x^19 - 179*x^18 - 772*x^17 - 1774*x^16 - 2092*x^15 - 2320*x^14 - 811*x^13 + 489*x^12 + 3551*x^11 + 5424*x^10 + 7617*x^9 + 6962*x^8 + 6380*x^7 + 2824*x^6 + 2291*x^5 - 521*x^4 + 623*x^3 - 221*x^2 + 207*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 2*x^26 + x^25 + 18*x^24 + 107*x^23 + 180*x^22 + 332*x^21 + 290*x^20 + 295*x^19 - 179*x^18 - 772*x^17 - 1774*x^16 - 2092*x^15 - 2320*x^14 - 811*x^13 + 489*x^12 + 3551*x^11 + 5424*x^10 + 7617*x^9 + 6962*x^8 + 6380*x^7 + 2824*x^6 + 2291*x^5 - 521*x^4 + 623*x^3 - 221*x^2 + 207*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{27}$ (as 27T8):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 54
The 15 conjugacy class representatives for $D_{27}$
Character table for $D_{27}$

Intermediate fields

3.1.1879.1, 9.1.12465425870881.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.9.0.1}{9} }^{3}$ ${\href{/padicField/3.2.0.1}{2} }^{13}{,}\,{\href{/padicField/3.1.0.1}{1} }$ $27$ $27$ ${\href{/padicField/11.2.0.1}{2} }^{13}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.2.0.1}{2} }^{13}{,}\,{\href{/padicField/13.1.0.1}{1} }$ $27$ ${\href{/padicField/19.2.0.1}{2} }^{13}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.2.0.1}{2} }^{13}{,}\,{\href{/padicField/23.1.0.1}{1} }$ $27$ ${\href{/padicField/31.2.0.1}{2} }^{13}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.2.0.1}{2} }^{13}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.2.0.1}{2} }^{13}{,}\,{\href{/padicField/41.1.0.1}{1} }$ $27$ $27$ $27$ ${\href{/padicField/59.3.0.1}{3} }^{9}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(1879\) Copy content Toggle raw display $\Q_{1879}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.1879.2t1.a.a$1$ $ 1879 $ \(\Q(\sqrt{-1879}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.1879.3t2.a.a$2$ $ 1879 $ 3.1.1879.1 $S_3$ (as 3T2) $1$ $0$
* 2.1879.9t3.a.b$2$ $ 1879 $ 9.1.12465425870881.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.1879.9t3.a.c$2$ $ 1879 $ 9.1.12465425870881.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.1879.9t3.a.a$2$ $ 1879 $ 9.1.12465425870881.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.1879.27t8.a.c$2$ $ 1879 $ 27.1.3639553781467035763182087002112051895733239.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.1879.27t8.a.h$2$ $ 1879 $ 27.1.3639553781467035763182087002112051895733239.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.1879.27t8.a.i$2$ $ 1879 $ 27.1.3639553781467035763182087002112051895733239.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.1879.27t8.a.b$2$ $ 1879 $ 27.1.3639553781467035763182087002112051895733239.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.1879.27t8.a.d$2$ $ 1879 $ 27.1.3639553781467035763182087002112051895733239.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.1879.27t8.a.f$2$ $ 1879 $ 27.1.3639553781467035763182087002112051895733239.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.1879.27t8.a.g$2$ $ 1879 $ 27.1.3639553781467035763182087002112051895733239.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.1879.27t8.a.e$2$ $ 1879 $ 27.1.3639553781467035763182087002112051895733239.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.1879.27t8.a.a$2$ $ 1879 $ 27.1.3639553781467035763182087002112051895733239.1 $D_{27}$ (as 27T8) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.