Properties

Label 27.1.800...063.1
Degree $27$
Signature $[1, 13]$
Discriminant $-8.002\times 10^{38}$
Root discriminant \(27.60\)
Ramified prime $983$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{27}$ (as 27T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^26 + 41*x^25 - 116*x^24 + 234*x^23 - 347*x^22 + 380*x^21 - 274*x^20 + 118*x^19 - 121*x^18 + 474*x^17 - 1071*x^16 + 1556*x^15 - 1531*x^14 + 964*x^13 - 256*x^12 + 122*x^11 - 700*x^10 + 1761*x^9 - 2620*x^8 + 2840*x^7 - 2483*x^6 + 1678*x^5 - 860*x^4 + 463*x^3 - 60*x^2 + 44*x - 1)
 
gp: K = bnfinit(y^27 - 9*y^26 + 41*y^25 - 116*y^24 + 234*y^23 - 347*y^22 + 380*y^21 - 274*y^20 + 118*y^19 - 121*y^18 + 474*y^17 - 1071*y^16 + 1556*y^15 - 1531*y^14 + 964*y^13 - 256*y^12 + 122*y^11 - 700*y^10 + 1761*y^9 - 2620*y^8 + 2840*y^7 - 2483*y^6 + 1678*y^5 - 860*y^4 + 463*y^3 - 60*y^2 + 44*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 9*x^26 + 41*x^25 - 116*x^24 + 234*x^23 - 347*x^22 + 380*x^21 - 274*x^20 + 118*x^19 - 121*x^18 + 474*x^17 - 1071*x^16 + 1556*x^15 - 1531*x^14 + 964*x^13 - 256*x^12 + 122*x^11 - 700*x^10 + 1761*x^9 - 2620*x^8 + 2840*x^7 - 2483*x^6 + 1678*x^5 - 860*x^4 + 463*x^3 - 60*x^2 + 44*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^26 + 41*x^25 - 116*x^24 + 234*x^23 - 347*x^22 + 380*x^21 - 274*x^20 + 118*x^19 - 121*x^18 + 474*x^17 - 1071*x^16 + 1556*x^15 - 1531*x^14 + 964*x^13 - 256*x^12 + 122*x^11 - 700*x^10 + 1761*x^9 - 2620*x^8 + 2840*x^7 - 2483*x^6 + 1678*x^5 - 860*x^4 + 463*x^3 - 60*x^2 + 44*x - 1)
 

\( x^{27} - 9 x^{26} + 41 x^{25} - 116 x^{24} + 234 x^{23} - 347 x^{22} + 380 x^{21} - 274 x^{20} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-800194812883861824535483445924579987063\) \(\medspace = -\,983^{13}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(27.60\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $983^{1/2}\approx 31.352830813181765$
Ramified primes:   \(983\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-983}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5}a^{17}+\frac{2}{5}a^{16}-\frac{2}{5}a^{15}-\frac{2}{5}a^{14}+\frac{2}{5}a^{12}+\frac{2}{5}a^{11}-\frac{1}{5}a^{9}-\frac{2}{5}a^{7}+\frac{2}{5}a^{5}+\frac{2}{5}a^{4}-\frac{2}{5}a^{2}-\frac{1}{5}a+\frac{2}{5}$, $\frac{1}{5}a^{18}-\frac{1}{5}a^{16}+\frac{2}{5}a^{15}-\frac{1}{5}a^{14}+\frac{2}{5}a^{13}-\frac{2}{5}a^{12}+\frac{1}{5}a^{11}-\frac{1}{5}a^{10}+\frac{2}{5}a^{9}-\frac{2}{5}a^{8}-\frac{1}{5}a^{7}+\frac{2}{5}a^{6}-\frac{2}{5}a^{5}+\frac{1}{5}a^{4}-\frac{2}{5}a^{3}-\frac{2}{5}a^{2}-\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{19}-\frac{1}{5}a^{16}+\frac{2}{5}a^{15}-\frac{2}{5}a^{13}-\frac{2}{5}a^{12}+\frac{1}{5}a^{11}+\frac{2}{5}a^{10}+\frac{2}{5}a^{9}-\frac{1}{5}a^{8}-\frac{2}{5}a^{6}-\frac{2}{5}a^{5}-\frac{2}{5}a^{3}+\frac{2}{5}a^{2}+\frac{2}{5}$, $\frac{1}{5}a^{20}-\frac{1}{5}a^{16}-\frac{2}{5}a^{15}+\frac{1}{5}a^{14}-\frac{2}{5}a^{13}-\frac{2}{5}a^{12}-\frac{1}{5}a^{11}+\frac{2}{5}a^{10}-\frac{2}{5}a^{9}+\frac{1}{5}a^{7}-\frac{2}{5}a^{6}+\frac{2}{5}a^{5}+\frac{2}{5}a^{3}-\frac{2}{5}a^{2}+\frac{1}{5}a+\frac{2}{5}$, $\frac{1}{5}a^{21}-\frac{1}{5}a^{15}+\frac{1}{5}a^{14}-\frac{2}{5}a^{13}+\frac{1}{5}a^{12}-\frac{1}{5}a^{11}-\frac{2}{5}a^{10}-\frac{1}{5}a^{9}+\frac{1}{5}a^{8}+\frac{1}{5}a^{7}+\frac{2}{5}a^{6}+\frac{2}{5}a^{5}-\frac{1}{5}a^{4}-\frac{2}{5}a^{3}-\frac{1}{5}a^{2}+\frac{1}{5}a+\frac{2}{5}$, $\frac{1}{85}a^{22}+\frac{6}{85}a^{21}+\frac{7}{85}a^{20}-\frac{6}{85}a^{19}-\frac{6}{85}a^{17}-\frac{14}{85}a^{16}-\frac{14}{85}a^{15}-\frac{42}{85}a^{14}+\frac{12}{85}a^{13}-\frac{19}{85}a^{12}-\frac{28}{85}a^{11}-\frac{6}{85}a^{10}-\frac{4}{17}a^{9}+\frac{23}{85}a^{8}-\frac{13}{85}a^{7}+\frac{37}{85}a^{6}-\frac{3}{17}a^{5}-\frac{1}{17}a^{4}-\frac{37}{85}a^{3}-\frac{24}{85}a^{2}+\frac{21}{85}a+\frac{32}{85}$, $\frac{1}{1105}a^{23}-\frac{2}{1105}a^{22}+\frac{19}{221}a^{21}+\frac{6}{1105}a^{20}-\frac{54}{1105}a^{19}-\frac{23}{1105}a^{18}+\frac{6}{65}a^{17}-\frac{79}{221}a^{16}-\frac{236}{1105}a^{15}+\frac{433}{1105}a^{14}+\frac{72}{1105}a^{13}-\frac{97}{1105}a^{12}-\frac{394}{1105}a^{11}-\frac{42}{221}a^{10}+\frac{108}{221}a^{9}+\frac{66}{221}a^{8}+\frac{37}{85}a^{7}-\frac{4}{17}a^{6}-\frac{293}{1105}a^{5}+\frac{326}{1105}a^{4}-\frac{28}{65}a^{3}-\frac{5}{221}a^{2}+\frac{16}{65}a-\frac{103}{1105}$, $\frac{1}{5525}a^{24}+\frac{2}{5525}a^{23}+\frac{22}{5525}a^{22}-\frac{4}{5525}a^{21}-\frac{43}{5525}a^{20}-\frac{512}{5525}a^{19}-\frac{432}{5525}a^{18}-\frac{4}{85}a^{17}-\frac{2674}{5525}a^{16}-\frac{264}{5525}a^{15}-\frac{991}{5525}a^{14}+\frac{2284}{5525}a^{13}-\frac{652}{5525}a^{12}+\frac{93}{325}a^{11}-\frac{424}{1105}a^{10}+\frac{1359}{5525}a^{9}+\frac{44}{325}a^{8}+\frac{193}{425}a^{7}-\frac{173}{1105}a^{6}-\frac{1418}{5525}a^{5}+\frac{108}{221}a^{4}+\frac{16}{65}a^{3}-\frac{1583}{5525}a^{2}+\frac{1167}{5525}a-\frac{282}{5525}$, $\frac{1}{5525}a^{25}-\frac{2}{5525}a^{23}-\frac{8}{5525}a^{22}+\frac{11}{221}a^{21}-\frac{42}{425}a^{20}-\frac{538}{5525}a^{19}-\frac{41}{5525}a^{18}+\frac{226}{5525}a^{17}-\frac{2486}{5525}a^{16}-\frac{2373}{5525}a^{15}+\frac{87}{425}a^{14}+\frac{436}{1105}a^{13}+\frac{81}{1105}a^{12}+\frac{388}{5525}a^{11}+\frac{2064}{5525}a^{10}+\frac{319}{1105}a^{9}+\frac{1043}{5525}a^{8}+\frac{1072}{5525}a^{7}+\frac{84}{425}a^{6}-\frac{1864}{5525}a^{5}+\frac{98}{1105}a^{4}+\frac{1902}{5525}a^{3}+\frac{2623}{5525}a^{2}+\frac{1889}{5525}a-\frac{691}{5525}$, $\frac{1}{16\!\cdots\!75}a^{26}-\frac{11\!\cdots\!13}{14\!\cdots\!25}a^{25}+\frac{12\!\cdots\!39}{16\!\cdots\!75}a^{24}-\frac{26\!\cdots\!94}{29\!\cdots\!65}a^{23}-\frac{73\!\cdots\!39}{16\!\cdots\!75}a^{22}+\frac{74\!\cdots\!03}{32\!\cdots\!15}a^{21}+\frac{32\!\cdots\!27}{16\!\cdots\!75}a^{20}+\frac{94\!\cdots\!96}{16\!\cdots\!75}a^{19}+\frac{10\!\cdots\!92}{16\!\cdots\!75}a^{18}-\frac{12\!\cdots\!09}{16\!\cdots\!75}a^{17}-\frac{52\!\cdots\!89}{16\!\cdots\!75}a^{16}+\frac{30\!\cdots\!16}{16\!\cdots\!75}a^{15}-\frac{46\!\cdots\!59}{16\!\cdots\!75}a^{14}+\frac{24\!\cdots\!19}{16\!\cdots\!75}a^{13}+\frac{16\!\cdots\!73}{94\!\cdots\!75}a^{12}+\frac{36\!\cdots\!36}{16\!\cdots\!75}a^{11}-\frac{76\!\cdots\!22}{16\!\cdots\!75}a^{10}+\frac{45\!\cdots\!82}{16\!\cdots\!75}a^{9}+\frac{23\!\cdots\!21}{16\!\cdots\!75}a^{8}-\frac{97\!\cdots\!56}{32\!\cdots\!15}a^{7}-\frac{13\!\cdots\!17}{32\!\cdots\!15}a^{6}-\frac{47\!\cdots\!11}{14\!\cdots\!25}a^{5}+\frac{68\!\cdots\!22}{16\!\cdots\!75}a^{4}-\frac{29\!\cdots\!18}{16\!\cdots\!75}a^{3}-\frac{26\!\cdots\!63}{16\!\cdots\!75}a^{2}+\frac{75\!\cdots\!44}{16\!\cdots\!75}a-\frac{16\!\cdots\!69}{16\!\cdots\!75}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $5$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{18\!\cdots\!04}{16\!\cdots\!75}a^{26}-\frac{20\!\cdots\!98}{14\!\cdots\!25}a^{25}+\frac{25\!\cdots\!18}{32\!\cdots\!15}a^{24}-\frac{15\!\cdots\!09}{58\!\cdots\!73}a^{23}+\frac{20\!\cdots\!06}{32\!\cdots\!15}a^{22}-\frac{16\!\cdots\!51}{16\!\cdots\!75}a^{21}+\frac{19\!\cdots\!72}{16\!\cdots\!75}a^{20}-\frac{14\!\cdots\!76}{16\!\cdots\!75}a^{19}+\frac{41\!\cdots\!01}{16\!\cdots\!75}a^{18}+\frac{64\!\cdots\!28}{16\!\cdots\!75}a^{17}+\frac{14\!\cdots\!04}{16\!\cdots\!75}a^{16}-\frac{48\!\cdots\!39}{16\!\cdots\!75}a^{15}+\frac{60\!\cdots\!43}{12\!\cdots\!75}a^{14}-\frac{79\!\cdots\!48}{16\!\cdots\!75}a^{13}+\frac{46\!\cdots\!31}{16\!\cdots\!75}a^{12}-\frac{94\!\cdots\!59}{32\!\cdots\!15}a^{11}-\frac{96\!\cdots\!27}{16\!\cdots\!75}a^{10}-\frac{25\!\cdots\!66}{16\!\cdots\!75}a^{9}+\frac{63\!\cdots\!31}{12\!\cdots\!75}a^{8}-\frac{12\!\cdots\!86}{16\!\cdots\!75}a^{7}+\frac{13\!\cdots\!13}{16\!\cdots\!75}a^{6}-\frac{10\!\cdots\!52}{14\!\cdots\!25}a^{5}+\frac{79\!\cdots\!88}{16\!\cdots\!75}a^{4}-\frac{39\!\cdots\!24}{16\!\cdots\!75}a^{3}+\frac{12\!\cdots\!73}{16\!\cdots\!75}a^{2}-\frac{13\!\cdots\!07}{32\!\cdots\!15}a-\frac{16\!\cdots\!83}{16\!\cdots\!75}$, $\frac{36\!\cdots\!46}{16\!\cdots\!75}a^{26}-\frac{27\!\cdots\!04}{14\!\cdots\!25}a^{25}+\frac{96\!\cdots\!79}{12\!\cdots\!75}a^{24}-\frac{21\!\cdots\!89}{11\!\cdots\!25}a^{23}+\frac{10\!\cdots\!41}{32\!\cdots\!15}a^{22}-\frac{56\!\cdots\!97}{16\!\cdots\!75}a^{21}+\frac{37\!\cdots\!84}{16\!\cdots\!75}a^{20}-\frac{64\!\cdots\!67}{16\!\cdots\!75}a^{19}-\frac{71\!\cdots\!53}{16\!\cdots\!75}a^{18}-\frac{65\!\cdots\!27}{18\!\cdots\!95}a^{17}+\frac{34\!\cdots\!28}{32\!\cdots\!15}a^{16}-\frac{24\!\cdots\!28}{16\!\cdots\!75}a^{15}+\frac{21\!\cdots\!02}{16\!\cdots\!75}a^{14}-\frac{85\!\cdots\!54}{16\!\cdots\!75}a^{13}-\frac{38\!\cdots\!39}{32\!\cdots\!15}a^{12}+\frac{12\!\cdots\!56}{16\!\cdots\!75}a^{11}+\frac{15\!\cdots\!84}{16\!\cdots\!75}a^{10}-\frac{23\!\cdots\!77}{12\!\cdots\!75}a^{9}+\frac{36\!\cdots\!32}{16\!\cdots\!75}a^{8}-\frac{66\!\cdots\!49}{32\!\cdots\!15}a^{7}+\frac{26\!\cdots\!03}{16\!\cdots\!75}a^{6}-\frac{12\!\cdots\!23}{85\!\cdots\!25}a^{5}+\frac{15\!\cdots\!27}{16\!\cdots\!75}a^{4}-\frac{10\!\cdots\!07}{32\!\cdots\!15}a^{3}+\frac{10\!\cdots\!17}{18\!\cdots\!95}a^{2}+\frac{65\!\cdots\!71}{16\!\cdots\!75}a+\frac{62\!\cdots\!11}{16\!\cdots\!75}$, $\frac{79\!\cdots\!66}{16\!\cdots\!75}a^{26}-\frac{64\!\cdots\!09}{14\!\cdots\!25}a^{25}+\frac{24\!\cdots\!02}{12\!\cdots\!75}a^{24}-\frac{81\!\cdots\!14}{14\!\cdots\!25}a^{23}+\frac{17\!\cdots\!28}{16\!\cdots\!75}a^{22}-\frac{26\!\cdots\!38}{16\!\cdots\!75}a^{21}+\frac{28\!\cdots\!57}{16\!\cdots\!75}a^{20}-\frac{40\!\cdots\!59}{32\!\cdots\!15}a^{19}+\frac{80\!\cdots\!79}{16\!\cdots\!75}a^{18}-\frac{17\!\cdots\!28}{32\!\cdots\!15}a^{17}+\frac{36\!\cdots\!44}{16\!\cdots\!75}a^{16}-\frac{81\!\cdots\!29}{16\!\cdots\!75}a^{15}+\frac{90\!\cdots\!21}{12\!\cdots\!75}a^{14}-\frac{11\!\cdots\!58}{16\!\cdots\!75}a^{13}+\frac{70\!\cdots\!52}{16\!\cdots\!75}a^{12}-\frac{60\!\cdots\!48}{64\!\cdots\!03}a^{11}+\frac{28\!\cdots\!87}{94\!\cdots\!75}a^{10}-\frac{10\!\cdots\!81}{32\!\cdots\!15}a^{9}+\frac{13\!\cdots\!74}{16\!\cdots\!75}a^{8}-\frac{20\!\cdots\!44}{16\!\cdots\!75}a^{7}+\frac{21\!\cdots\!88}{16\!\cdots\!75}a^{6}-\frac{16\!\cdots\!33}{14\!\cdots\!25}a^{5}+\frac{11\!\cdots\!72}{16\!\cdots\!75}a^{4}-\frac{64\!\cdots\!76}{18\!\cdots\!95}a^{3}+\frac{21\!\cdots\!61}{12\!\cdots\!75}a^{2}+\frac{83\!\cdots\!39}{16\!\cdots\!75}a+\frac{79\!\cdots\!21}{12\!\cdots\!75}$, $\frac{48\!\cdots\!66}{16\!\cdots\!75}a^{26}-\frac{30\!\cdots\!28}{11\!\cdots\!25}a^{25}+\frac{20\!\cdots\!28}{16\!\cdots\!75}a^{24}-\frac{10\!\cdots\!27}{29\!\cdots\!65}a^{23}+\frac{10\!\cdots\!82}{16\!\cdots\!75}a^{22}-\frac{10\!\cdots\!82}{12\!\cdots\!75}a^{21}+\frac{12\!\cdots\!41}{16\!\cdots\!75}a^{20}-\frac{37\!\cdots\!94}{16\!\cdots\!75}a^{19}-\frac{18\!\cdots\!18}{64\!\cdots\!03}a^{18}+\frac{12\!\cdots\!77}{24\!\cdots\!55}a^{17}+\frac{22\!\cdots\!56}{16\!\cdots\!75}a^{16}-\frac{53\!\cdots\!87}{16\!\cdots\!75}a^{15}+\frac{66\!\cdots\!16}{16\!\cdots\!75}a^{14}-\frac{17\!\cdots\!74}{64\!\cdots\!03}a^{13}+\frac{20\!\cdots\!88}{16\!\cdots\!75}a^{12}+\frac{29\!\cdots\!97}{16\!\cdots\!75}a^{11}-\frac{13\!\cdots\!11}{16\!\cdots\!75}a^{10}-\frac{38\!\cdots\!92}{16\!\cdots\!75}a^{9}+\frac{18\!\cdots\!69}{32\!\cdots\!15}a^{8}-\frac{85\!\cdots\!92}{12\!\cdots\!75}a^{7}+\frac{87\!\cdots\!03}{16\!\cdots\!75}a^{6}-\frac{41\!\cdots\!09}{14\!\cdots\!25}a^{5}+\frac{85\!\cdots\!27}{16\!\cdots\!75}a^{4}+\frac{58\!\cdots\!75}{64\!\cdots\!03}a^{3}-\frac{63\!\cdots\!99}{94\!\cdots\!75}a^{2}+\frac{69\!\cdots\!83}{16\!\cdots\!75}a-\frac{15\!\cdots\!96}{16\!\cdots\!75}$, $\frac{27\!\cdots\!87}{44\!\cdots\!25}a^{26}-\frac{15\!\cdots\!78}{27\!\cdots\!43}a^{25}+\frac{42\!\cdots\!28}{15\!\cdots\!65}a^{24}-\frac{58\!\cdots\!91}{69\!\cdots\!75}a^{23}+\frac{14\!\cdots\!01}{76\!\cdots\!25}a^{22}-\frac{24\!\cdots\!86}{76\!\cdots\!25}a^{21}+\frac{32\!\cdots\!24}{76\!\cdots\!25}a^{20}-\frac{13\!\cdots\!05}{30\!\cdots\!73}a^{19}+\frac{25\!\cdots\!38}{76\!\cdots\!25}a^{18}-\frac{19\!\cdots\!44}{76\!\cdots\!25}a^{17}+\frac{27\!\cdots\!76}{76\!\cdots\!25}a^{16}-\frac{57\!\cdots\!28}{76\!\cdots\!25}a^{15}+\frac{10\!\cdots\!77}{76\!\cdots\!25}a^{14}-\frac{13\!\cdots\!63}{76\!\cdots\!25}a^{13}+\frac{80\!\cdots\!08}{44\!\cdots\!25}a^{12}-\frac{99\!\cdots\!21}{76\!\cdots\!25}a^{11}+\frac{98\!\cdots\!59}{15\!\cdots\!65}a^{10}-\frac{30\!\cdots\!31}{76\!\cdots\!25}a^{9}+\frac{71\!\cdots\!67}{76\!\cdots\!25}a^{8}-\frac{32\!\cdots\!62}{15\!\cdots\!65}a^{7}+\frac{24\!\cdots\!89}{76\!\cdots\!25}a^{6}-\frac{15\!\cdots\!02}{40\!\cdots\!75}a^{5}+\frac{24\!\cdots\!43}{76\!\cdots\!25}a^{4}-\frac{11\!\cdots\!16}{58\!\cdots\!25}a^{3}+\frac{73\!\cdots\!52}{76\!\cdots\!25}a^{2}-\frac{23\!\cdots\!01}{58\!\cdots\!25}a-\frac{32\!\cdots\!46}{76\!\cdots\!25}$, $\frac{97\!\cdots\!74}{16\!\cdots\!75}a^{26}-\frac{75\!\cdots\!26}{14\!\cdots\!25}a^{25}+\frac{35\!\cdots\!09}{16\!\cdots\!75}a^{24}-\frac{80\!\cdots\!71}{14\!\cdots\!25}a^{23}+\frac{14\!\cdots\!37}{16\!\cdots\!75}a^{22}-\frac{16\!\cdots\!82}{16\!\cdots\!75}a^{21}+\frac{92\!\cdots\!33}{16\!\cdots\!75}a^{20}+\frac{11\!\cdots\!14}{32\!\cdots\!15}a^{19}-\frac{12\!\cdots\!44}{16\!\cdots\!75}a^{18}-\frac{19\!\cdots\!27}{64\!\cdots\!03}a^{17}+\frac{46\!\cdots\!81}{16\!\cdots\!75}a^{16}-\frac{80\!\cdots\!51}{16\!\cdots\!75}a^{15}+\frac{55\!\cdots\!19}{12\!\cdots\!75}a^{14}-\frac{16\!\cdots\!12}{16\!\cdots\!75}a^{13}-\frac{43\!\cdots\!67}{16\!\cdots\!75}a^{12}+\frac{11\!\cdots\!39}{32\!\cdots\!15}a^{11}+\frac{97\!\cdots\!31}{16\!\cdots\!75}a^{10}-\frac{19\!\cdots\!51}{32\!\cdots\!15}a^{9}+\frac{14\!\cdots\!31}{16\!\cdots\!75}a^{8}-\frac{11\!\cdots\!11}{16\!\cdots\!75}a^{7}+\frac{48\!\cdots\!52}{16\!\cdots\!75}a^{6}-\frac{35\!\cdots\!42}{14\!\cdots\!25}a^{5}-\frac{25\!\cdots\!37}{16\!\cdots\!75}a^{4}+\frac{56\!\cdots\!02}{32\!\cdots\!15}a^{3}+\frac{15\!\cdots\!57}{16\!\cdots\!75}a^{2}+\frac{52\!\cdots\!86}{16\!\cdots\!75}a+\frac{21\!\cdots\!42}{16\!\cdots\!75}$, $\frac{11\!\cdots\!56}{14\!\cdots\!25}a^{26}-\frac{79\!\cdots\!54}{11\!\cdots\!25}a^{25}+\frac{48\!\cdots\!61}{14\!\cdots\!25}a^{24}-\frac{14\!\cdots\!03}{14\!\cdots\!25}a^{23}+\frac{29\!\cdots\!97}{14\!\cdots\!25}a^{22}-\frac{44\!\cdots\!78}{14\!\cdots\!25}a^{21}+\frac{97\!\cdots\!02}{29\!\cdots\!65}a^{20}-\frac{35\!\cdots\!91}{14\!\cdots\!25}a^{19}+\frac{13\!\cdots\!47}{14\!\cdots\!25}a^{18}-\frac{11\!\cdots\!63}{14\!\cdots\!25}a^{17}+\frac{55\!\cdots\!27}{14\!\cdots\!25}a^{16}-\frac{54\!\cdots\!07}{58\!\cdots\!73}a^{15}+\frac{40\!\cdots\!58}{29\!\cdots\!65}a^{14}-\frac{15\!\cdots\!76}{11\!\cdots\!25}a^{13}+\frac{12\!\cdots\!37}{14\!\cdots\!25}a^{12}-\frac{23\!\cdots\!39}{14\!\cdots\!25}a^{11}+\frac{22\!\cdots\!32}{14\!\cdots\!25}a^{10}-\frac{16\!\cdots\!19}{29\!\cdots\!65}a^{9}+\frac{34\!\cdots\!14}{22\!\cdots\!05}a^{8}-\frac{10\!\cdots\!81}{44\!\cdots\!21}a^{7}+\frac{36\!\cdots\!32}{14\!\cdots\!25}a^{6}-\frac{30\!\cdots\!51}{14\!\cdots\!25}a^{5}+\frac{20\!\cdots\!52}{14\!\cdots\!25}a^{4}-\frac{10\!\cdots\!01}{14\!\cdots\!25}a^{3}+\frac{51\!\cdots\!19}{14\!\cdots\!25}a^{2}-\frac{11\!\cdots\!08}{14\!\cdots\!25}a+\frac{33\!\cdots\!36}{14\!\cdots\!25}$, $\frac{97\!\cdots\!16}{16\!\cdots\!75}a^{26}-\frac{84\!\cdots\!72}{14\!\cdots\!25}a^{25}+\frac{17\!\cdots\!77}{64\!\cdots\!03}a^{24}-\frac{22\!\cdots\!41}{29\!\cdots\!65}a^{23}+\frac{10\!\cdots\!40}{64\!\cdots\!03}a^{22}-\frac{37\!\cdots\!59}{16\!\cdots\!75}a^{21}+\frac{42\!\cdots\!53}{16\!\cdots\!75}a^{20}-\frac{37\!\cdots\!64}{16\!\cdots\!75}a^{19}+\frac{29\!\cdots\!04}{16\!\cdots\!75}a^{18}-\frac{36\!\cdots\!38}{16\!\cdots\!75}a^{17}+\frac{70\!\cdots\!16}{16\!\cdots\!75}a^{16}-\frac{11\!\cdots\!76}{16\!\cdots\!75}a^{15}+\frac{15\!\cdots\!41}{16\!\cdots\!75}a^{14}-\frac{15\!\cdots\!82}{16\!\cdots\!75}a^{13}+\frac{14\!\cdots\!54}{16\!\cdots\!75}a^{12}-\frac{25\!\cdots\!98}{32\!\cdots\!15}a^{11}+\frac{11\!\cdots\!27}{16\!\cdots\!75}a^{10}-\frac{13\!\cdots\!54}{16\!\cdots\!75}a^{9}+\frac{16\!\cdots\!87}{16\!\cdots\!75}a^{8}-\frac{22\!\cdots\!49}{16\!\cdots\!75}a^{7}+\frac{29\!\cdots\!97}{16\!\cdots\!75}a^{6}-\frac{32\!\cdots\!73}{14\!\cdots\!25}a^{5}+\frac{34\!\cdots\!42}{16\!\cdots\!75}a^{4}-\frac{25\!\cdots\!21}{16\!\cdots\!75}a^{3}+\frac{14\!\cdots\!02}{16\!\cdots\!75}a^{2}-\frac{12\!\cdots\!99}{24\!\cdots\!55}a+\frac{58\!\cdots\!18}{16\!\cdots\!75}$, $\frac{11\!\cdots\!38}{14\!\cdots\!15}a^{26}-\frac{10\!\cdots\!48}{14\!\cdots\!25}a^{25}+\frac{52\!\cdots\!51}{16\!\cdots\!75}a^{24}-\frac{13\!\cdots\!02}{14\!\cdots\!25}a^{23}+\frac{29\!\cdots\!56}{16\!\cdots\!75}a^{22}-\frac{42\!\cdots\!44}{16\!\cdots\!75}a^{21}+\frac{89\!\cdots\!32}{32\!\cdots\!15}a^{20}-\frac{13\!\cdots\!83}{72\!\cdots\!75}a^{19}+\frac{91\!\cdots\!36}{16\!\cdots\!75}a^{18}-\frac{11\!\cdots\!33}{16\!\cdots\!75}a^{17}+\frac{58\!\cdots\!54}{16\!\cdots\!75}a^{16}-\frac{26\!\cdots\!03}{32\!\cdots\!15}a^{15}+\frac{19\!\cdots\!21}{16\!\cdots\!75}a^{14}-\frac{80\!\cdots\!91}{72\!\cdots\!75}a^{13}+\frac{98\!\cdots\!63}{16\!\cdots\!75}a^{12}-\frac{80\!\cdots\!23}{16\!\cdots\!75}a^{11}+\frac{39\!\cdots\!19}{94\!\cdots\!75}a^{10}-\frac{50\!\cdots\!33}{94\!\cdots\!75}a^{9}+\frac{22\!\cdots\!59}{16\!\cdots\!75}a^{8}-\frac{32\!\cdots\!42}{16\!\cdots\!75}a^{7}+\frac{33\!\cdots\!54}{16\!\cdots\!75}a^{6}-\frac{14\!\cdots\!98}{85\!\cdots\!25}a^{5}+\frac{51\!\cdots\!19}{49\!\cdots\!31}a^{4}-\frac{73\!\cdots\!26}{16\!\cdots\!75}a^{3}+\frac{35\!\cdots\!63}{16\!\cdots\!75}a^{2}+\frac{16\!\cdots\!36}{64\!\cdots\!03}a+\frac{21\!\cdots\!96}{16\!\cdots\!75}$, $\frac{27\!\cdots\!81}{21\!\cdots\!75}a^{26}-\frac{18\!\cdots\!88}{19\!\cdots\!25}a^{25}+\frac{71\!\cdots\!12}{21\!\cdots\!75}a^{24}-\frac{12\!\cdots\!14}{19\!\cdots\!25}a^{23}+\frac{17\!\cdots\!62}{21\!\cdots\!75}a^{22}-\frac{69\!\cdots\!79}{16\!\cdots\!75}a^{21}-\frac{86\!\cdots\!72}{21\!\cdots\!75}a^{20}+\frac{11\!\cdots\!16}{87\!\cdots\!11}a^{19}-\frac{19\!\cdots\!54}{21\!\cdots\!75}a^{18}-\frac{13\!\cdots\!72}{12\!\cdots\!75}a^{17}+\frac{72\!\cdots\!19}{21\!\cdots\!75}a^{16}-\frac{71\!\cdots\!36}{21\!\cdots\!75}a^{15}+\frac{95\!\cdots\!23}{99\!\cdots\!75}a^{14}+\frac{59\!\cdots\!16}{21\!\cdots\!75}a^{13}-\frac{21\!\cdots\!83}{43\!\cdots\!55}a^{12}+\frac{84\!\cdots\!39}{21\!\cdots\!75}a^{11}+\frac{32\!\cdots\!93}{21\!\cdots\!75}a^{10}-\frac{84\!\cdots\!46}{21\!\cdots\!75}a^{9}+\frac{47\!\cdots\!70}{87\!\cdots\!11}a^{8}-\frac{79\!\cdots\!63}{21\!\cdots\!75}a^{7}-\frac{48\!\cdots\!19}{43\!\cdots\!55}a^{6}+\frac{16\!\cdots\!08}{39\!\cdots\!05}a^{5}-\frac{17\!\cdots\!53}{21\!\cdots\!75}a^{4}+\frac{16\!\cdots\!77}{21\!\cdots\!75}a^{3}-\frac{46\!\cdots\!62}{21\!\cdots\!75}a^{2}+\frac{18\!\cdots\!03}{43\!\cdots\!55}a+\frac{40\!\cdots\!44}{43\!\cdots\!55}$, $\frac{53\!\cdots\!27}{16\!\cdots\!75}a^{26}-\frac{25\!\cdots\!33}{85\!\cdots\!25}a^{25}+\frac{43\!\cdots\!72}{32\!\cdots\!15}a^{24}-\frac{55\!\cdots\!16}{14\!\cdots\!25}a^{23}+\frac{12\!\cdots\!26}{16\!\cdots\!75}a^{22}-\frac{18\!\cdots\!83}{16\!\cdots\!75}a^{21}+\frac{16\!\cdots\!11}{12\!\cdots\!75}a^{20}-\frac{12\!\cdots\!09}{12\!\cdots\!75}a^{19}+\frac{16\!\cdots\!78}{32\!\cdots\!15}a^{18}-\frac{67\!\cdots\!73}{16\!\cdots\!75}a^{17}+\frac{23\!\cdots\!39}{16\!\cdots\!75}a^{16}-\frac{54\!\cdots\!81}{16\!\cdots\!75}a^{15}+\frac{16\!\cdots\!48}{32\!\cdots\!15}a^{14}-\frac{87\!\cdots\!24}{16\!\cdots\!75}a^{13}+\frac{60\!\cdots\!48}{16\!\cdots\!75}a^{12}-\frac{19\!\cdots\!56}{16\!\cdots\!75}a^{11}+\frac{55\!\cdots\!11}{16\!\cdots\!75}a^{10}-\frac{30\!\cdots\!98}{16\!\cdots\!75}a^{9}+\frac{89\!\cdots\!33}{16\!\cdots\!75}a^{8}-\frac{14\!\cdots\!52}{16\!\cdots\!75}a^{7}+\frac{32\!\cdots\!42}{32\!\cdots\!15}a^{6}-\frac{13\!\cdots\!83}{14\!\cdots\!25}a^{5}+\frac{98\!\cdots\!89}{16\!\cdots\!75}a^{4}-\frac{49\!\cdots\!01}{16\!\cdots\!75}a^{3}+\frac{23\!\cdots\!58}{16\!\cdots\!75}a^{2}-\frac{13\!\cdots\!48}{16\!\cdots\!75}a+\frac{14\!\cdots\!58}{16\!\cdots\!75}$, $\frac{47\!\cdots\!44}{21\!\cdots\!75}a^{26}-\frac{25\!\cdots\!11}{19\!\cdots\!25}a^{25}+\frac{60\!\cdots\!69}{21\!\cdots\!75}a^{24}+\frac{53\!\cdots\!99}{19\!\cdots\!25}a^{23}-\frac{35\!\cdots\!74}{12\!\cdots\!75}a^{22}+\frac{17\!\cdots\!38}{21\!\cdots\!75}a^{21}-\frac{19\!\cdots\!06}{12\!\cdots\!75}a^{20}+\frac{82\!\cdots\!81}{43\!\cdots\!55}a^{19}-\frac{32\!\cdots\!94}{21\!\cdots\!75}a^{18}+\frac{17\!\cdots\!27}{43\!\cdots\!55}a^{17}+\frac{74\!\cdots\!06}{21\!\cdots\!75}a^{16}+\frac{16\!\cdots\!74}{21\!\cdots\!75}a^{15}-\frac{82\!\cdots\!43}{21\!\cdots\!75}a^{14}+\frac{15\!\cdots\!08}{21\!\cdots\!75}a^{13}-\frac{17\!\cdots\!57}{21\!\cdots\!75}a^{12}+\frac{48\!\cdots\!22}{87\!\cdots\!11}a^{11}-\frac{18\!\cdots\!69}{21\!\cdots\!75}a^{10}-\frac{57\!\cdots\!38}{43\!\cdots\!55}a^{9}-\frac{61\!\cdots\!92}{12\!\cdots\!75}a^{8}+\frac{13\!\cdots\!14}{21\!\cdots\!75}a^{7}-\frac{25\!\cdots\!18}{21\!\cdots\!75}a^{6}+\frac{26\!\cdots\!23}{19\!\cdots\!25}a^{5}-\frac{26\!\cdots\!27}{21\!\cdots\!75}a^{4}+\frac{35\!\cdots\!24}{43\!\cdots\!55}a^{3}-\frac{74\!\cdots\!33}{21\!\cdots\!75}a^{2}+\frac{44\!\cdots\!11}{21\!\cdots\!75}a+\frac{51\!\cdots\!57}{21\!\cdots\!75}$, $\frac{45\!\cdots\!16}{16\!\cdots\!75}a^{26}-\frac{37\!\cdots\!67}{14\!\cdots\!25}a^{25}+\frac{11\!\cdots\!82}{94\!\cdots\!75}a^{24}-\frac{50\!\cdots\!22}{14\!\cdots\!25}a^{23}+\frac{11\!\cdots\!48}{16\!\cdots\!75}a^{22}-\frac{34\!\cdots\!88}{32\!\cdots\!15}a^{21}+\frac{18\!\cdots\!31}{16\!\cdots\!75}a^{20}-\frac{13\!\cdots\!27}{16\!\cdots\!75}a^{19}+\frac{42\!\cdots\!47}{12\!\cdots\!75}a^{18}-\frac{47\!\cdots\!38}{16\!\cdots\!75}a^{17}+\frac{43\!\cdots\!27}{32\!\cdots\!15}a^{16}-\frac{30\!\cdots\!26}{94\!\cdots\!75}a^{15}+\frac{77\!\cdots\!97}{16\!\cdots\!75}a^{14}-\frac{45\!\cdots\!33}{94\!\cdots\!75}a^{13}+\frac{48\!\cdots\!11}{16\!\cdots\!75}a^{12}-\frac{10\!\cdots\!16}{16\!\cdots\!75}a^{11}+\frac{14\!\cdots\!07}{16\!\cdots\!75}a^{10}-\frac{30\!\cdots\!18}{16\!\cdots\!75}a^{9}+\frac{50\!\cdots\!37}{94\!\cdots\!75}a^{8}-\frac{13\!\cdots\!98}{16\!\cdots\!75}a^{7}+\frac{14\!\cdots\!22}{16\!\cdots\!75}a^{6}-\frac{44\!\cdots\!49}{58\!\cdots\!73}a^{5}+\frac{80\!\cdots\!07}{16\!\cdots\!75}a^{4}-\frac{38\!\cdots\!96}{16\!\cdots\!75}a^{3}+\frac{35\!\cdots\!78}{32\!\cdots\!15}a^{2}-\frac{10\!\cdots\!47}{16\!\cdots\!75}a-\frac{23\!\cdots\!32}{32\!\cdots\!15}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 460164457.10213304 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{13}\cdot 460164457.10213304 \cdot 1}{2\cdot\sqrt{800194812883861824535483445924579987063}}\cr\approx \mathstrut & 0.386948790637645 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^26 + 41*x^25 - 116*x^24 + 234*x^23 - 347*x^22 + 380*x^21 - 274*x^20 + 118*x^19 - 121*x^18 + 474*x^17 - 1071*x^16 + 1556*x^15 - 1531*x^14 + 964*x^13 - 256*x^12 + 122*x^11 - 700*x^10 + 1761*x^9 - 2620*x^8 + 2840*x^7 - 2483*x^6 + 1678*x^5 - 860*x^4 + 463*x^3 - 60*x^2 + 44*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 9*x^26 + 41*x^25 - 116*x^24 + 234*x^23 - 347*x^22 + 380*x^21 - 274*x^20 + 118*x^19 - 121*x^18 + 474*x^17 - 1071*x^16 + 1556*x^15 - 1531*x^14 + 964*x^13 - 256*x^12 + 122*x^11 - 700*x^10 + 1761*x^9 - 2620*x^8 + 2840*x^7 - 2483*x^6 + 1678*x^5 - 860*x^4 + 463*x^3 - 60*x^2 + 44*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 9*x^26 + 41*x^25 - 116*x^24 + 234*x^23 - 347*x^22 + 380*x^21 - 274*x^20 + 118*x^19 - 121*x^18 + 474*x^17 - 1071*x^16 + 1556*x^15 - 1531*x^14 + 964*x^13 - 256*x^12 + 122*x^11 - 700*x^10 + 1761*x^9 - 2620*x^8 + 2840*x^7 - 2483*x^6 + 1678*x^5 - 860*x^4 + 463*x^3 - 60*x^2 + 44*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^26 + 41*x^25 - 116*x^24 + 234*x^23 - 347*x^22 + 380*x^21 - 274*x^20 + 118*x^19 - 121*x^18 + 474*x^17 - 1071*x^16 + 1556*x^15 - 1531*x^14 + 964*x^13 - 256*x^12 + 122*x^11 - 700*x^10 + 1761*x^9 - 2620*x^8 + 2840*x^7 - 2483*x^6 + 1678*x^5 - 860*x^4 + 463*x^3 - 60*x^2 + 44*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{27}$ (as 27T8):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 54
The 15 conjugacy class representatives for $D_{27}$
Character table for $D_{27}$

Intermediate fields

3.1.983.1, 9.1.933714431521.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $27$ $27$ ${\href{/padicField/5.2.0.1}{2} }^{13}{,}\,{\href{/padicField/5.1.0.1}{1} }$ $27$ ${\href{/padicField/11.2.0.1}{2} }^{13}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.2.0.1}{2} }^{13}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.2.0.1}{2} }^{13}{,}\,{\href{/padicField/17.1.0.1}{1} }$ $27$ $27$ ${\href{/padicField/29.2.0.1}{2} }^{13}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.9.0.1}{9} }^{3}$ ${\href{/padicField/37.9.0.1}{9} }^{3}$ ${\href{/padicField/41.9.0.1}{9} }^{3}$ $27$ $27$ $27$ ${\href{/padicField/59.3.0.1}{3} }^{9}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(983\) Copy content Toggle raw display $\Q_{983}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.983.2t1.a.a$1$ $ 983 $ \(\Q(\sqrt{-983}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.983.3t2.a.a$2$ $ 983 $ 3.1.983.1 $S_3$ (as 3T2) $1$ $0$
* 2.983.9t3.a.c$2$ $ 983 $ 9.1.933714431521.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.983.9t3.a.a$2$ $ 983 $ 9.1.933714431521.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.983.9t3.a.b$2$ $ 983 $ 9.1.933714431521.1 $D_{9}$ (as 9T3) $1$ $0$
* 2.983.27t8.a.d$2$ $ 983 $ 27.1.800194812883861824535483445924579987063.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.983.27t8.a.h$2$ $ 983 $ 27.1.800194812883861824535483445924579987063.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.983.27t8.a.b$2$ $ 983 $ 27.1.800194812883861824535483445924579987063.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.983.27t8.a.c$2$ $ 983 $ 27.1.800194812883861824535483445924579987063.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.983.27t8.a.g$2$ $ 983 $ 27.1.800194812883861824535483445924579987063.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.983.27t8.a.f$2$ $ 983 $ 27.1.800194812883861824535483445924579987063.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.983.27t8.a.e$2$ $ 983 $ 27.1.800194812883861824535483445924579987063.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.983.27t8.a.a$2$ $ 983 $ 27.1.800194812883861824535483445924579987063.1 $D_{27}$ (as 27T8) $1$ $0$
* 2.983.27t8.a.i$2$ $ 983 $ 27.1.800194812883861824535483445924579987063.1 $D_{27}$ (as 27T8) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.