Properties

Label 27.3.237...000.1
Degree $27$
Signature $[3, 12]$
Discriminant $2.379\times 10^{42}$
Root discriminant \(37.11\)
Ramified primes $2,3,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\He_3:\GL(2,3)$ (as 27T294)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 3*x^26 + 3*x^25 - 19*x^24 + 6*x^23 - 102*x^22 - 226*x^21 - 498*x^20 - 909*x^19 - 445*x^18 - 507*x^17 + 975*x^16 + 2228*x^15 + 4668*x^14 + 11076*x^13 + 12980*x^12 + 17511*x^11 + 14643*x^10 + 8685*x^9 + 14619*x^8 + 3462*x^7 - 7574*x^6 + 606*x^5 + 1182*x^4 - 1451*x^3 + 957*x^2 + 1179*x + 185)
 
gp: K = bnfinit(y^27 - 3*y^26 + 3*y^25 - 19*y^24 + 6*y^23 - 102*y^22 - 226*y^21 - 498*y^20 - 909*y^19 - 445*y^18 - 507*y^17 + 975*y^16 + 2228*y^15 + 4668*y^14 + 11076*y^13 + 12980*y^12 + 17511*y^11 + 14643*y^10 + 8685*y^9 + 14619*y^8 + 3462*y^7 - 7574*y^6 + 606*y^5 + 1182*y^4 - 1451*y^3 + 957*y^2 + 1179*y + 185, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 3*x^26 + 3*x^25 - 19*x^24 + 6*x^23 - 102*x^22 - 226*x^21 - 498*x^20 - 909*x^19 - 445*x^18 - 507*x^17 + 975*x^16 + 2228*x^15 + 4668*x^14 + 11076*x^13 + 12980*x^12 + 17511*x^11 + 14643*x^10 + 8685*x^9 + 14619*x^8 + 3462*x^7 - 7574*x^6 + 606*x^5 + 1182*x^4 - 1451*x^3 + 957*x^2 + 1179*x + 185);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 3*x^26 + 3*x^25 - 19*x^24 + 6*x^23 - 102*x^22 - 226*x^21 - 498*x^20 - 909*x^19 - 445*x^18 - 507*x^17 + 975*x^16 + 2228*x^15 + 4668*x^14 + 11076*x^13 + 12980*x^12 + 17511*x^11 + 14643*x^10 + 8685*x^9 + 14619*x^8 + 3462*x^7 - 7574*x^6 + 606*x^5 + 1182*x^4 - 1451*x^3 + 957*x^2 + 1179*x + 185)
 

\( x^{27} - 3 x^{26} + 3 x^{25} - 19 x^{24} + 6 x^{23} - 102 x^{22} - 226 x^{21} - 498 x^{20} - 909 x^{19} + \cdots + 185 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2379126835648701693226200858624000000000000\) \(\medspace = 2^{40}\cdot 3^{46}\cdot 5^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(37.11\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{19/12}3^{37/18}5^{1/2}\approx 64.1010398098106$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{2}a^{4}-\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}-\frac{1}{4}a^{4}+\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{8}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{4}$, $\frac{1}{16}a^{15}-\frac{1}{16}a^{14}-\frac{1}{16}a^{13}-\frac{1}{16}a^{12}+\frac{1}{16}a^{11}-\frac{1}{16}a^{10}-\frac{1}{16}a^{9}+\frac{3}{16}a^{8}-\frac{1}{16}a^{7}+\frac{1}{16}a^{6}-\frac{7}{16}a^{5}-\frac{7}{16}a^{4}-\frac{5}{16}a^{3}-\frac{3}{16}a^{2}-\frac{3}{16}a+\frac{1}{16}$, $\frac{1}{16}a^{16}-\frac{1}{8}a^{14}-\frac{1}{8}a^{13}-\frac{1}{8}a^{10}-\frac{1}{8}a^{9}-\frac{1}{8}a^{8}+\frac{1}{8}a^{6}-\frac{3}{8}a^{5}+\frac{1}{4}a^{4}-\frac{3}{8}a^{2}+\frac{1}{8}a-\frac{3}{16}$, $\frac{1}{16}a^{17}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}+\frac{1}{8}a^{8}-\frac{1}{8}a^{5}+\frac{1}{8}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+\frac{3}{16}a-\frac{1}{8}$, $\frac{1}{16}a^{18}-\frac{1}{8}a^{14}-\frac{1}{8}a^{13}-\frac{1}{8}a^{9}-\frac{1}{4}a^{8}-\frac{1}{8}a^{6}-\frac{3}{8}a^{5}-\frac{5}{16}a^{2}+\frac{1}{8}a+\frac{1}{4}$, $\frac{1}{16}a^{19}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{8}a^{11}-\frac{1}{8}a^{9}-\frac{1}{8}a^{8}-\frac{1}{4}a^{7}-\frac{3}{8}a^{5}-\frac{3}{8}a^{4}+\frac{5}{16}a^{3}+\frac{1}{8}a+\frac{1}{8}$, $\frac{1}{16}a^{20}-\frac{1}{8}a^{14}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{8}a^{10}-\frac{1}{8}a^{9}-\frac{1}{4}a^{8}+\frac{1}{8}a^{6}-\frac{3}{8}a^{5}-\frac{3}{16}a^{4}-\frac{3}{8}a^{2}+\frac{1}{8}a-\frac{1}{2}$, $\frac{1}{32}a^{21}-\frac{1}{32}a^{20}-\frac{1}{32}a^{17}-\frac{1}{32}a^{16}+\frac{1}{16}a^{13}-\frac{1}{16}a^{12}+\frac{1}{16}a^{9}-\frac{3}{16}a^{8}+\frac{5}{32}a^{5}+\frac{3}{32}a^{4}-\frac{1}{2}a^{2}+\frac{7}{32}a+\frac{7}{32}$, $\frac{1}{32}a^{22}-\frac{1}{32}a^{20}-\frac{1}{32}a^{18}-\frac{1}{32}a^{16}+\frac{1}{16}a^{14}-\frac{1}{8}a^{13}+\frac{1}{16}a^{12}+\frac{1}{16}a^{10}-\frac{1}{8}a^{9}+\frac{3}{16}a^{8}+\frac{5}{32}a^{6}+\frac{1}{8}a^{5}-\frac{1}{32}a^{4}+\frac{7}{32}a^{2}-\frac{3}{8}a-\frac{5}{32}$, $\frac{1}{32}a^{23}-\frac{1}{32}a^{20}-\frac{1}{32}a^{19}-\frac{1}{32}a^{16}-\frac{1}{16}a^{14}+\frac{1}{16}a^{13}-\frac{1}{8}a^{12}-\frac{1}{16}a^{10}+\frac{1}{16}a^{9}+\frac{7}{32}a^{7}+\frac{1}{16}a^{6}-\frac{1}{16}a^{5}+\frac{5}{32}a^{4}-\frac{15}{32}a^{3}+\frac{5}{16}a^{2}-\frac{5}{16}a-\frac{7}{32}$, $\frac{1}{192}a^{24}-\frac{1}{32}a^{20}+\frac{1}{96}a^{18}-\frac{1}{64}a^{16}+\frac{1}{48}a^{15}-\frac{1}{16}a^{14}-\frac{1}{16}a^{13}+\frac{1}{16}a^{12}-\frac{1}{16}a^{11}+\frac{5}{48}a^{9}+\frac{1}{64}a^{8}+\frac{1}{16}a^{7}+\frac{5}{48}a^{6}-\frac{3}{16}a^{5}+\frac{3}{32}a^{4}+\frac{1}{16}a^{3}+\frac{1}{32}a^{2}+\frac{1}{16}a-\frac{41}{192}$, $\frac{1}{30144}a^{25}-\frac{1}{15072}a^{24}-\frac{1}{5024}a^{23}-\frac{7}{1256}a^{22}-\frac{5}{1256}a^{21}+\frac{1}{2512}a^{20}-\frac{79}{7536}a^{19}+\frac{11}{7536}a^{18}-\frac{179}{10048}a^{17}-\frac{331}{15072}a^{16}-\frac{59}{7536}a^{15}+\frac{1}{157}a^{14}+\frac{287}{2512}a^{13}+\frac{125}{1256}a^{12}+\frac{53}{1256}a^{11}-\frac{137}{3768}a^{10}-\frac{1909}{30144}a^{9}+\frac{1203}{5024}a^{8}+\frac{2701}{15072}a^{7}-\frac{575}{3768}a^{6}-\frac{263}{2512}a^{5}-\frac{1063}{2512}a^{4}-\frac{35}{2512}a^{3}+\frac{989}{2512}a^{2}+\frac{2053}{30144}a-\frac{469}{15072}$, $\frac{1}{55\!\cdots\!24}a^{26}-\frac{17\!\cdots\!75}{18\!\cdots\!56}a^{25}-\frac{38\!\cdots\!13}{27\!\cdots\!12}a^{24}+\frac{30\!\cdots\!55}{46\!\cdots\!52}a^{23}-\frac{59\!\cdots\!91}{54\!\cdots\!12}a^{22}-\frac{32\!\cdots\!83}{18\!\cdots\!04}a^{21}-\frac{33\!\cdots\!71}{13\!\cdots\!56}a^{20}-\frac{38\!\cdots\!63}{13\!\cdots\!56}a^{19}-\frac{59\!\cdots\!19}{32\!\cdots\!72}a^{18}+\frac{34\!\cdots\!13}{27\!\cdots\!12}a^{17}-\frac{81\!\cdots\!67}{69\!\cdots\!28}a^{16}+\frac{18\!\cdots\!15}{69\!\cdots\!28}a^{15}+\frac{56\!\cdots\!25}{57\!\cdots\!94}a^{14}+\frac{15\!\cdots\!35}{46\!\cdots\!52}a^{13}-\frac{38\!\cdots\!57}{38\!\cdots\!96}a^{12}-\frac{45\!\cdots\!47}{69\!\cdots\!28}a^{11}+\frac{17\!\cdots\!91}{55\!\cdots\!24}a^{10}-\frac{16\!\cdots\!77}{13\!\cdots\!56}a^{9}+\frac{10\!\cdots\!03}{27\!\cdots\!12}a^{8}+\frac{18\!\cdots\!89}{13\!\cdots\!56}a^{7}+\frac{48\!\cdots\!57}{27\!\cdots\!12}a^{6}-\frac{67\!\cdots\!15}{30\!\cdots\!68}a^{5}-\frac{63\!\cdots\!65}{46\!\cdots\!52}a^{4}-\frac{31\!\cdots\!09}{46\!\cdots\!52}a^{3}-\frac{26\!\cdots\!97}{55\!\cdots\!24}a^{2}+\frac{78\!\cdots\!65}{27\!\cdots\!12}a-\frac{57\!\cdots\!35}{13\!\cdots\!56}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{65\!\cdots\!11}{55\!\cdots\!24}a^{26}+\frac{73\!\cdots\!03}{14\!\cdots\!48}a^{25}-\frac{84\!\cdots\!99}{86\!\cdots\!91}a^{24}+\frac{31\!\cdots\!73}{92\!\cdots\!04}a^{23}-\frac{67\!\cdots\!53}{13\!\cdots\!28}a^{22}+\frac{32\!\cdots\!37}{18\!\cdots\!04}a^{21}+\frac{63\!\cdots\!37}{13\!\cdots\!56}a^{20}+\frac{13\!\cdots\!07}{27\!\cdots\!12}a^{19}+\frac{13\!\cdots\!11}{32\!\cdots\!72}a^{18}-\frac{11\!\cdots\!55}{69\!\cdots\!28}a^{17}+\frac{17\!\cdots\!59}{27\!\cdots\!12}a^{16}-\frac{30\!\cdots\!65}{13\!\cdots\!56}a^{15}-\frac{48\!\cdots\!63}{46\!\cdots\!52}a^{14}-\frac{23\!\cdots\!77}{46\!\cdots\!52}a^{13}-\frac{49\!\cdots\!29}{77\!\cdots\!92}a^{12}-\frac{75\!\cdots\!67}{13\!\cdots\!56}a^{11}-\frac{64\!\cdots\!53}{55\!\cdots\!24}a^{10}+\frac{47\!\cdots\!29}{27\!\cdots\!12}a^{9}-\frac{91\!\cdots\!83}{13\!\cdots\!56}a^{8}-\frac{12\!\cdots\!61}{27\!\cdots\!12}a^{7}+\frac{10\!\cdots\!73}{13\!\cdots\!56}a^{6}+\frac{21\!\cdots\!97}{30\!\cdots\!68}a^{5}+\frac{27\!\cdots\!65}{46\!\cdots\!52}a^{4}-\frac{16\!\cdots\!75}{92\!\cdots\!04}a^{3}-\frac{96\!\cdots\!39}{55\!\cdots\!24}a^{2}-\frac{14\!\cdots\!21}{13\!\cdots\!56}a-\frac{40\!\cdots\!49}{27\!\cdots\!12}$, $\frac{93\!\cdots\!55}{55\!\cdots\!24}a^{26}-\frac{28\!\cdots\!07}{29\!\cdots\!96}a^{25}+\frac{12\!\cdots\!23}{55\!\cdots\!24}a^{24}-\frac{57\!\cdots\!55}{92\!\cdots\!04}a^{23}+\frac{34\!\cdots\!01}{27\!\cdots\!56}a^{22}-\frac{27\!\cdots\!85}{90\!\cdots\!52}a^{21}+\frac{63\!\cdots\!29}{27\!\cdots\!12}a^{20}-\frac{46\!\cdots\!49}{13\!\cdots\!56}a^{19}+\frac{13\!\cdots\!19}{32\!\cdots\!72}a^{18}+\frac{99\!\cdots\!21}{55\!\cdots\!24}a^{17}-\frac{55\!\cdots\!79}{55\!\cdots\!24}a^{16}+\frac{28\!\cdots\!73}{69\!\cdots\!28}a^{15}-\frac{79\!\cdots\!25}{23\!\cdots\!76}a^{14}+\frac{91\!\cdots\!17}{23\!\cdots\!76}a^{13}-\frac{40\!\cdots\!03}{15\!\cdots\!84}a^{12}-\frac{18\!\cdots\!03}{13\!\cdots\!56}a^{11}-\frac{26\!\cdots\!55}{55\!\cdots\!24}a^{10}-\frac{17\!\cdots\!67}{55\!\cdots\!24}a^{9}-\frac{70\!\cdots\!75}{55\!\cdots\!24}a^{8}-\frac{49\!\cdots\!39}{27\!\cdots\!12}a^{7}-\frac{49\!\cdots\!33}{13\!\cdots\!56}a^{6}+\frac{14\!\cdots\!61}{15\!\cdots\!84}a^{5}+\frac{10\!\cdots\!75}{92\!\cdots\!04}a^{4}-\frac{98\!\cdots\!15}{23\!\cdots\!76}a^{3}-\frac{48\!\cdots\!31}{55\!\cdots\!24}a^{2}-\frac{41\!\cdots\!17}{55\!\cdots\!24}a-\frac{25\!\cdots\!89}{55\!\cdots\!24}$, $\frac{23\!\cdots\!95}{27\!\cdots\!12}a^{26}+\frac{46\!\cdots\!43}{14\!\cdots\!48}a^{25}-\frac{26\!\cdots\!97}{55\!\cdots\!24}a^{24}+\frac{57\!\cdots\!98}{28\!\cdots\!97}a^{23}-\frac{10\!\cdots\!03}{54\!\cdots\!12}a^{22}+\frac{18\!\cdots\!01}{18\!\cdots\!04}a^{21}+\frac{33\!\cdots\!91}{27\!\cdots\!12}a^{20}+\frac{61\!\cdots\!41}{17\!\cdots\!82}a^{19}+\frac{88\!\cdots\!97}{16\!\cdots\!36}a^{18}+\frac{24\!\cdots\!19}{86\!\cdots\!91}a^{17}+\frac{24\!\cdots\!59}{55\!\cdots\!24}a^{16}-\frac{16\!\cdots\!77}{13\!\cdots\!56}a^{15}-\frac{24\!\cdots\!79}{23\!\cdots\!76}a^{14}-\frac{76\!\cdots\!01}{23\!\cdots\!76}a^{13}-\frac{11\!\cdots\!93}{15\!\cdots\!84}a^{12}-\frac{88\!\cdots\!53}{13\!\cdots\!56}a^{11}-\frac{30\!\cdots\!55}{27\!\cdots\!12}a^{10}-\frac{14\!\cdots\!73}{27\!\cdots\!12}a^{9}-\frac{25\!\cdots\!71}{55\!\cdots\!24}a^{8}-\frac{13\!\cdots\!39}{13\!\cdots\!56}a^{7}+\frac{81\!\cdots\!25}{27\!\cdots\!12}a^{6}+\frac{95\!\cdots\!95}{30\!\cdots\!68}a^{5}-\frac{27\!\cdots\!51}{92\!\cdots\!04}a^{4}+\frac{44\!\cdots\!75}{46\!\cdots\!52}a^{3}+\frac{11\!\cdots\!33}{27\!\cdots\!12}a^{2}-\frac{40\!\cdots\!01}{34\!\cdots\!64}a-\frac{14\!\cdots\!39}{55\!\cdots\!24}$, $\frac{27\!\cdots\!15}{13\!\cdots\!56}a^{26}+\frac{22\!\cdots\!07}{36\!\cdots\!12}a^{25}-\frac{36\!\cdots\!03}{55\!\cdots\!24}a^{24}+\frac{17\!\cdots\!25}{46\!\cdots\!52}a^{23}-\frac{85\!\cdots\!31}{54\!\cdots\!12}a^{22}+\frac{35\!\cdots\!29}{18\!\cdots\!04}a^{21}+\frac{11\!\cdots\!93}{27\!\cdots\!12}a^{20}+\frac{15\!\cdots\!11}{17\!\cdots\!82}a^{19}+\frac{66\!\cdots\!63}{40\!\cdots\!84}a^{18}+\frac{16\!\cdots\!15}{27\!\cdots\!12}a^{17}+\frac{46\!\cdots\!85}{55\!\cdots\!24}a^{16}-\frac{27\!\cdots\!43}{13\!\cdots\!56}a^{15}-\frac{96\!\cdots\!49}{23\!\cdots\!76}a^{14}-\frac{97\!\cdots\!33}{11\!\cdots\!88}a^{13}-\frac{31\!\cdots\!39}{15\!\cdots\!84}a^{12}-\frac{30\!\cdots\!97}{13\!\cdots\!56}a^{11}-\frac{52\!\cdots\!15}{17\!\cdots\!82}a^{10}-\frac{16\!\cdots\!39}{69\!\cdots\!28}a^{9}-\frac{67\!\cdots\!77}{55\!\cdots\!24}a^{8}-\frac{45\!\cdots\!65}{17\!\cdots\!82}a^{7}-\frac{73\!\cdots\!79}{27\!\cdots\!12}a^{6}+\frac{52\!\cdots\!55}{30\!\cdots\!68}a^{5}-\frac{33\!\cdots\!21}{92\!\cdots\!04}a^{4}-\frac{99\!\cdots\!09}{46\!\cdots\!52}a^{3}+\frac{51\!\cdots\!11}{13\!\cdots\!56}a^{2}-\frac{68\!\cdots\!87}{27\!\cdots\!12}a-\frac{11\!\cdots\!37}{55\!\cdots\!24}$, $\frac{45\!\cdots\!45}{55\!\cdots\!24}a^{26}-\frac{81\!\cdots\!59}{29\!\cdots\!96}a^{25}+\frac{25\!\cdots\!17}{69\!\cdots\!28}a^{24}-\frac{80\!\cdots\!65}{46\!\cdots\!52}a^{23}+\frac{33\!\cdots\!63}{27\!\cdots\!56}a^{22}-\frac{16\!\cdots\!81}{18\!\cdots\!04}a^{21}-\frac{20\!\cdots\!93}{13\!\cdots\!56}a^{20}-\frac{97\!\cdots\!81}{27\!\cdots\!12}a^{19}-\frac{19\!\cdots\!61}{32\!\cdots\!72}a^{18}-\frac{69\!\cdots\!89}{55\!\cdots\!24}a^{17}-\frac{11\!\cdots\!31}{27\!\cdots\!12}a^{16}+\frac{13\!\cdots\!97}{13\!\cdots\!56}a^{15}+\frac{80\!\cdots\!91}{57\!\cdots\!94}a^{14}+\frac{15\!\cdots\!17}{46\!\cdots\!52}a^{13}+\frac{12\!\cdots\!01}{15\!\cdots\!84}a^{12}+\frac{12\!\cdots\!05}{17\!\cdots\!82}a^{11}+\frac{65\!\cdots\!03}{55\!\cdots\!24}a^{10}+\frac{40\!\cdots\!81}{55\!\cdots\!24}a^{9}+\frac{81\!\cdots\!79}{17\!\cdots\!82}a^{8}+\frac{17\!\cdots\!27}{17\!\cdots\!82}a^{7}-\frac{24\!\cdots\!91}{13\!\cdots\!56}a^{6}-\frac{13\!\cdots\!09}{30\!\cdots\!68}a^{5}+\frac{38\!\cdots\!79}{23\!\cdots\!76}a^{4}-\frac{32\!\cdots\!29}{92\!\cdots\!04}a^{3}-\frac{28\!\cdots\!63}{55\!\cdots\!24}a^{2}+\frac{58\!\cdots\!45}{55\!\cdots\!24}a+\frac{14\!\cdots\!27}{27\!\cdots\!12}$, $\frac{77\!\cdots\!15}{46\!\cdots\!52}a^{26}+\frac{56\!\cdots\!11}{97\!\cdots\!32}a^{25}-\frac{14\!\cdots\!91}{18\!\cdots\!08}a^{24}+\frac{22\!\cdots\!48}{61\!\cdots\!07}a^{23}-\frac{25\!\cdots\!97}{90\!\cdots\!52}a^{22}+\frac{16\!\cdots\!13}{90\!\cdots\!52}a^{21}+\frac{13\!\cdots\!07}{46\!\cdots\!52}a^{20}+\frac{65\!\cdots\!55}{92\!\cdots\!04}a^{19}+\frac{64\!\cdots\!57}{54\!\cdots\!12}a^{18}+\frac{34\!\cdots\!23}{18\!\cdots\!08}a^{17}+\frac{14\!\cdots\!31}{18\!\cdots\!08}a^{16}-\frac{24\!\cdots\!03}{11\!\cdots\!88}a^{15}-\frac{21\!\cdots\!07}{77\!\cdots\!92}a^{14}-\frac{10\!\cdots\!49}{15\!\cdots\!84}a^{13}-\frac{23\!\cdots\!69}{15\!\cdots\!84}a^{12}-\frac{66\!\cdots\!75}{46\!\cdots\!52}a^{11}-\frac{26\!\cdots\!23}{11\!\cdots\!88}a^{10}-\frac{24\!\cdots\!77}{18\!\cdots\!08}a^{9}-\frac{14\!\cdots\!37}{18\!\cdots\!08}a^{8}-\frac{43\!\cdots\!21}{23\!\cdots\!76}a^{7}+\frac{25\!\cdots\!19}{46\!\cdots\!52}a^{6}+\frac{86\!\cdots\!79}{77\!\cdots\!92}a^{5}-\frac{26\!\cdots\!59}{77\!\cdots\!92}a^{4}+\frac{59\!\cdots\!53}{30\!\cdots\!68}a^{3}+\frac{16\!\cdots\!33}{92\!\cdots\!04}a^{2}-\frac{39\!\cdots\!95}{18\!\cdots\!08}a-\frac{16\!\cdots\!79}{18\!\cdots\!08}$, $\frac{17\!\cdots\!87}{27\!\cdots\!12}a^{26}+\frac{16\!\cdots\!91}{73\!\cdots\!24}a^{25}-\frac{18\!\cdots\!19}{55\!\cdots\!24}a^{24}+\frac{63\!\cdots\!85}{46\!\cdots\!52}a^{23}-\frac{17\!\cdots\!63}{13\!\cdots\!28}a^{22}+\frac{12\!\cdots\!39}{18\!\cdots\!04}a^{21}+\frac{12\!\cdots\!85}{13\!\cdots\!56}a^{20}+\frac{34\!\cdots\!11}{13\!\cdots\!56}a^{19}+\frac{32\!\cdots\!05}{81\!\cdots\!68}a^{18}+\frac{41\!\cdots\!29}{27\!\cdots\!12}a^{17}+\frac{16\!\cdots\!79}{55\!\cdots\!24}a^{16}-\frac{27\!\cdots\!39}{34\!\cdots\!64}a^{15}-\frac{98\!\cdots\!11}{11\!\cdots\!88}a^{14}-\frac{10\!\cdots\!95}{46\!\cdots\!52}a^{13}-\frac{81\!\cdots\!43}{15\!\cdots\!84}a^{12}-\frac{39\!\cdots\!19}{86\!\cdots\!91}a^{11}-\frac{21\!\cdots\!31}{27\!\cdots\!12}a^{10}-\frac{13\!\cdots\!93}{34\!\cdots\!64}a^{9}-\frac{15\!\cdots\!09}{55\!\cdots\!24}a^{8}-\frac{99\!\cdots\!51}{13\!\cdots\!56}a^{7}+\frac{21\!\cdots\!90}{86\!\cdots\!91}a^{6}+\frac{93\!\cdots\!27}{30\!\cdots\!68}a^{5}-\frac{68\!\cdots\!28}{28\!\cdots\!97}a^{4}+\frac{36\!\cdots\!03}{46\!\cdots\!52}a^{3}+\frac{32\!\cdots\!12}{86\!\cdots\!91}a^{2}-\frac{23\!\cdots\!75}{27\!\cdots\!12}a-\frac{96\!\cdots\!67}{55\!\cdots\!24}$, $\frac{13\!\cdots\!93}{32\!\cdots\!72}a^{26}+\frac{25\!\cdots\!53}{17\!\cdots\!88}a^{25}-\frac{71\!\cdots\!25}{32\!\cdots\!72}a^{24}+\frac{25\!\cdots\!01}{27\!\cdots\!56}a^{23}-\frac{28\!\cdots\!99}{34\!\cdots\!82}a^{22}+\frac{42\!\cdots\!45}{90\!\cdots\!52}a^{21}+\frac{51\!\cdots\!49}{81\!\cdots\!68}a^{20}+\frac{27\!\cdots\!89}{16\!\cdots\!36}a^{19}+\frac{88\!\cdots\!11}{32\!\cdots\!72}a^{18}+\frac{45\!\cdots\!49}{32\!\cdots\!72}a^{17}+\frac{67\!\cdots\!43}{32\!\cdots\!72}a^{16}-\frac{43\!\cdots\!99}{81\!\cdots\!68}a^{15}-\frac{99\!\cdots\!92}{17\!\cdots\!41}a^{14}-\frac{10\!\cdots\!39}{68\!\cdots\!64}a^{13}-\frac{81\!\cdots\!55}{22\!\cdots\!88}a^{12}-\frac{12\!\cdots\!19}{40\!\cdots\!84}a^{11}-\frac{17\!\cdots\!51}{32\!\cdots\!72}a^{10}-\frac{89\!\cdots\!67}{32\!\cdots\!72}a^{9}-\frac{62\!\cdots\!43}{32\!\cdots\!72}a^{8}-\frac{20\!\cdots\!19}{40\!\cdots\!84}a^{7}+\frac{85\!\cdots\!59}{51\!\cdots\!23}a^{6}+\frac{18\!\cdots\!53}{90\!\cdots\!52}a^{5}-\frac{42\!\cdots\!03}{27\!\cdots\!56}a^{4}+\frac{33\!\cdots\!37}{54\!\cdots\!12}a^{3}+\frac{82\!\cdots\!05}{32\!\cdots\!72}a^{2}-\frac{18\!\cdots\!29}{32\!\cdots\!72}a-\frac{38\!\cdots\!63}{32\!\cdots\!72}$, $\frac{11\!\cdots\!29}{57\!\cdots\!94}a^{26}+\frac{69\!\cdots\!05}{97\!\cdots\!32}a^{25}-\frac{29\!\cdots\!95}{30\!\cdots\!68}a^{24}+\frac{13\!\cdots\!07}{30\!\cdots\!68}a^{23}-\frac{59\!\cdots\!33}{18\!\cdots\!04}a^{22}+\frac{41\!\cdots\!89}{18\!\cdots\!04}a^{21}+\frac{10\!\cdots\!01}{28\!\cdots\!97}a^{20}+\frac{20\!\cdots\!13}{23\!\cdots\!76}a^{19}+\frac{27\!\cdots\!01}{18\!\cdots\!04}a^{18}+\frac{58\!\cdots\!31}{18\!\cdots\!08}a^{17}+\frac{90\!\cdots\!65}{92\!\cdots\!04}a^{16}-\frac{37\!\cdots\!97}{15\!\cdots\!84}a^{15}-\frac{53\!\cdots\!13}{15\!\cdots\!84}a^{14}-\frac{64\!\cdots\!07}{77\!\cdots\!92}a^{13}-\frac{18\!\cdots\!05}{96\!\cdots\!99}a^{12}-\frac{21\!\cdots\!37}{11\!\cdots\!88}a^{11}-\frac{13\!\cdots\!03}{46\!\cdots\!52}a^{10}-\frac{11\!\cdots\!65}{61\!\cdots\!36}a^{9}-\frac{10\!\cdots\!71}{92\!\cdots\!04}a^{8}-\frac{14\!\cdots\!91}{59\!\cdots\!72}a^{7}+\frac{10\!\cdots\!39}{30\!\cdots\!68}a^{6}+\frac{42\!\cdots\!79}{30\!\cdots\!68}a^{5}-\frac{58\!\cdots\!10}{96\!\cdots\!99}a^{4}-\frac{29\!\cdots\!85}{38\!\cdots\!96}a^{3}+\frac{26\!\cdots\!75}{92\!\cdots\!04}a^{2}-\frac{44\!\cdots\!39}{18\!\cdots\!08}a-\frac{44\!\cdots\!67}{30\!\cdots\!68}$, $\frac{81\!\cdots\!43}{27\!\cdots\!12}a^{26}-\frac{45\!\cdots\!17}{45\!\cdots\!89}a^{25}+\frac{36\!\cdots\!73}{27\!\cdots\!12}a^{24}-\frac{56\!\cdots\!55}{92\!\cdots\!04}a^{23}+\frac{24\!\cdots\!19}{54\!\cdots\!12}a^{22}-\frac{28\!\cdots\!81}{90\!\cdots\!52}a^{21}-\frac{71\!\cdots\!55}{13\!\cdots\!56}a^{20}-\frac{34\!\cdots\!05}{27\!\cdots\!12}a^{19}-\frac{43\!\cdots\!17}{20\!\cdots\!92}a^{18}-\frac{63\!\cdots\!17}{17\!\cdots\!82}a^{17}-\frac{36\!\cdots\!57}{27\!\cdots\!12}a^{16}+\frac{23\!\cdots\!55}{69\!\cdots\!28}a^{15}+\frac{28\!\cdots\!47}{57\!\cdots\!94}a^{14}+\frac{52\!\cdots\!29}{46\!\cdots\!52}a^{13}+\frac{42\!\cdots\!85}{15\!\cdots\!84}a^{12}+\frac{22\!\cdots\!98}{86\!\cdots\!91}a^{11}+\frac{11\!\cdots\!53}{27\!\cdots\!12}a^{10}+\frac{34\!\cdots\!93}{13\!\cdots\!56}a^{9}+\frac{39\!\cdots\!29}{27\!\cdots\!12}a^{8}+\frac{10\!\cdots\!05}{27\!\cdots\!12}a^{7}-\frac{17\!\cdots\!33}{27\!\cdots\!12}a^{6}-\frac{15\!\cdots\!15}{77\!\cdots\!92}a^{5}+\frac{23\!\cdots\!23}{23\!\cdots\!76}a^{4}-\frac{15\!\cdots\!77}{92\!\cdots\!04}a^{3}-\frac{12\!\cdots\!61}{34\!\cdots\!64}a^{2}+\frac{59\!\cdots\!87}{13\!\cdots\!56}a+\frac{36\!\cdots\!79}{27\!\cdots\!12}$, $\frac{73\!\cdots\!83}{27\!\cdots\!12}a^{26}-\frac{29\!\cdots\!11}{29\!\cdots\!96}a^{25}+\frac{78\!\cdots\!75}{55\!\cdots\!24}a^{24}-\frac{51\!\cdots\!31}{92\!\cdots\!04}a^{23}+\frac{28\!\cdots\!03}{54\!\cdots\!12}a^{22}-\frac{50\!\cdots\!15}{18\!\cdots\!04}a^{21}-\frac{11\!\cdots\!47}{27\!\cdots\!12}a^{20}-\frac{58\!\cdots\!87}{69\!\cdots\!28}a^{19}-\frac{24\!\cdots\!41}{16\!\cdots\!36}a^{18}+\frac{35\!\cdots\!07}{55\!\cdots\!24}a^{17}-\frac{41\!\cdots\!09}{55\!\cdots\!24}a^{16}+\frac{48\!\cdots\!31}{13\!\cdots\!56}a^{15}+\frac{18\!\cdots\!59}{46\!\cdots\!52}a^{14}+\frac{17\!\cdots\!97}{23\!\cdots\!76}a^{13}+\frac{81\!\cdots\!97}{38\!\cdots\!96}a^{12}+\frac{10\!\cdots\!04}{86\!\cdots\!91}a^{11}+\frac{65\!\cdots\!37}{27\!\cdots\!12}a^{10}+\frac{33\!\cdots\!21}{55\!\cdots\!24}a^{9}-\frac{19\!\cdots\!27}{55\!\cdots\!24}a^{8}+\frac{78\!\cdots\!99}{27\!\cdots\!12}a^{7}-\frac{59\!\cdots\!51}{27\!\cdots\!12}a^{6}-\frac{56\!\cdots\!01}{30\!\cdots\!68}a^{5}+\frac{18\!\cdots\!85}{92\!\cdots\!04}a^{4}-\frac{48\!\cdots\!51}{57\!\cdots\!94}a^{3}-\frac{22\!\cdots\!75}{27\!\cdots\!12}a^{2}+\frac{29\!\cdots\!61}{55\!\cdots\!24}a+\frac{16\!\cdots\!81}{55\!\cdots\!24}$, $\frac{38\!\cdots\!33}{55\!\cdots\!24}a^{26}+\frac{70\!\cdots\!07}{29\!\cdots\!96}a^{25}-\frac{18\!\cdots\!43}{55\!\cdots\!24}a^{24}+\frac{88\!\cdots\!11}{57\!\cdots\!94}a^{23}-\frac{65\!\cdots\!69}{54\!\cdots\!12}a^{22}+\frac{14\!\cdots\!09}{18\!\cdots\!04}a^{21}+\frac{80\!\cdots\!15}{69\!\cdots\!28}a^{20}+\frac{84\!\cdots\!35}{27\!\cdots\!12}a^{19}+\frac{16\!\cdots\!25}{32\!\cdots\!72}a^{18}+\frac{63\!\cdots\!45}{55\!\cdots\!24}a^{17}+\frac{19\!\cdots\!57}{55\!\cdots\!24}a^{16}-\frac{12\!\cdots\!21}{13\!\cdots\!56}a^{15}-\frac{51\!\cdots\!69}{46\!\cdots\!52}a^{14}-\frac{13\!\cdots\!83}{46\!\cdots\!52}a^{13}-\frac{49\!\cdots\!05}{77\!\cdots\!92}a^{12}-\frac{11\!\cdots\!65}{17\!\cdots\!82}a^{11}-\frac{55\!\cdots\!23}{55\!\cdots\!24}a^{10}-\frac{33\!\cdots\!29}{55\!\cdots\!24}a^{9}-\frac{22\!\cdots\!81}{55\!\cdots\!24}a^{8}-\frac{71\!\cdots\!73}{88\!\cdots\!08}a^{7}+\frac{55\!\cdots\!77}{27\!\cdots\!12}a^{6}+\frac{13\!\cdots\!29}{30\!\cdots\!68}a^{5}-\frac{19\!\cdots\!77}{28\!\cdots\!97}a^{4}+\frac{14\!\cdots\!11}{92\!\cdots\!04}a^{3}+\frac{65\!\cdots\!83}{55\!\cdots\!24}a^{2}-\frac{23\!\cdots\!17}{55\!\cdots\!24}a-\frac{83\!\cdots\!93}{55\!\cdots\!24}$, $\frac{27\!\cdots\!43}{40\!\cdots\!84}a^{26}+\frac{29\!\cdots\!93}{10\!\cdots\!68}a^{25}-\frac{15\!\cdots\!89}{32\!\cdots\!72}a^{24}+\frac{45\!\cdots\!91}{27\!\cdots\!56}a^{23}-\frac{54\!\cdots\!75}{27\!\cdots\!56}a^{22}+\frac{75\!\cdots\!47}{90\!\cdots\!52}a^{21}+\frac{11\!\cdots\!33}{16\!\cdots\!36}a^{20}+\frac{18\!\cdots\!61}{81\!\cdots\!68}a^{19}+\frac{58\!\cdots\!85}{16\!\cdots\!36}a^{18}-\frac{94\!\cdots\!13}{81\!\cdots\!68}a^{17}+\frac{15\!\cdots\!71}{32\!\cdots\!72}a^{16}-\frac{74\!\cdots\!81}{81\!\cdots\!68}a^{15}-\frac{12\!\cdots\!41}{27\!\cdots\!56}a^{14}-\frac{59\!\cdots\!45}{27\!\cdots\!56}a^{13}-\frac{46\!\cdots\!27}{90\!\cdots\!52}a^{12}-\frac{24\!\cdots\!05}{81\!\cdots\!68}a^{11}-\frac{16\!\cdots\!85}{20\!\cdots\!92}a^{10}-\frac{20\!\cdots\!15}{81\!\cdots\!68}a^{9}-\frac{12\!\cdots\!07}{32\!\cdots\!72}a^{8}-\frac{18\!\cdots\!75}{20\!\cdots\!92}a^{7}+\frac{17\!\cdots\!47}{40\!\cdots\!84}a^{6}-\frac{14\!\cdots\!10}{56\!\cdots\!47}a^{5}-\frac{21\!\cdots\!77}{54\!\cdots\!12}a^{4}+\frac{15\!\cdots\!25}{68\!\cdots\!64}a^{3}-\frac{22\!\cdots\!09}{16\!\cdots\!36}a^{2}-\frac{62\!\cdots\!56}{51\!\cdots\!23}a-\frac{29\!\cdots\!31}{32\!\cdots\!72}$, $\frac{75\!\cdots\!21}{27\!\cdots\!12}a^{26}+\frac{29\!\cdots\!35}{29\!\cdots\!96}a^{25}-\frac{88\!\cdots\!61}{55\!\cdots\!24}a^{24}+\frac{14\!\cdots\!33}{23\!\cdots\!76}a^{23}-\frac{35\!\cdots\!63}{54\!\cdots\!12}a^{22}+\frac{59\!\cdots\!03}{18\!\cdots\!04}a^{21}+\frac{50\!\cdots\!03}{13\!\cdots\!56}a^{20}+\frac{30\!\cdots\!19}{27\!\cdots\!12}a^{19}+\frac{27\!\cdots\!43}{16\!\cdots\!36}a^{18}+\frac{15\!\cdots\!81}{55\!\cdots\!24}a^{17}+\frac{79\!\cdots\!37}{55\!\cdots\!24}a^{16}-\frac{51\!\cdots\!45}{13\!\cdots\!56}a^{15}-\frac{37\!\cdots\!29}{11\!\cdots\!88}a^{14}-\frac{48\!\cdots\!07}{46\!\cdots\!52}a^{13}-\frac{17\!\cdots\!19}{77\!\cdots\!92}a^{12}-\frac{33\!\cdots\!49}{17\!\cdots\!82}a^{11}-\frac{95\!\cdots\!21}{27\!\cdots\!12}a^{10}-\frac{83\!\cdots\!73}{55\!\cdots\!24}a^{9}-\frac{78\!\cdots\!83}{55\!\cdots\!24}a^{8}-\frac{41\!\cdots\!63}{13\!\cdots\!56}a^{7}+\frac{33\!\cdots\!29}{27\!\cdots\!12}a^{6}+\frac{32\!\cdots\!03}{30\!\cdots\!68}a^{5}-\frac{40\!\cdots\!21}{46\!\cdots\!52}a^{4}+\frac{33\!\cdots\!31}{92\!\cdots\!04}a^{3}+\frac{28\!\cdots\!11}{27\!\cdots\!12}a^{2}-\frac{18\!\cdots\!77}{55\!\cdots\!24}a-\frac{44\!\cdots\!97}{55\!\cdots\!24}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 283423388975.19037 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{12}\cdot 283423388975.19037 \cdot 1}{2\cdot\sqrt{2379126835648701693226200858624000000000000}}\cr\approx \mathstrut & 2.78256488697990 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 3*x^26 + 3*x^25 - 19*x^24 + 6*x^23 - 102*x^22 - 226*x^21 - 498*x^20 - 909*x^19 - 445*x^18 - 507*x^17 + 975*x^16 + 2228*x^15 + 4668*x^14 + 11076*x^13 + 12980*x^12 + 17511*x^11 + 14643*x^10 + 8685*x^9 + 14619*x^8 + 3462*x^7 - 7574*x^6 + 606*x^5 + 1182*x^4 - 1451*x^3 + 957*x^2 + 1179*x + 185)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 3*x^26 + 3*x^25 - 19*x^24 + 6*x^23 - 102*x^22 - 226*x^21 - 498*x^20 - 909*x^19 - 445*x^18 - 507*x^17 + 975*x^16 + 2228*x^15 + 4668*x^14 + 11076*x^13 + 12980*x^12 + 17511*x^11 + 14643*x^10 + 8685*x^9 + 14619*x^8 + 3462*x^7 - 7574*x^6 + 606*x^5 + 1182*x^4 - 1451*x^3 + 957*x^2 + 1179*x + 185, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 3*x^26 + 3*x^25 - 19*x^24 + 6*x^23 - 102*x^22 - 226*x^21 - 498*x^20 - 909*x^19 - 445*x^18 - 507*x^17 + 975*x^16 + 2228*x^15 + 4668*x^14 + 11076*x^13 + 12980*x^12 + 17511*x^11 + 14643*x^10 + 8685*x^9 + 14619*x^8 + 3462*x^7 - 7574*x^6 + 606*x^5 + 1182*x^4 - 1451*x^3 + 957*x^2 + 1179*x + 185);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 3*x^26 + 3*x^25 - 19*x^24 + 6*x^23 - 102*x^22 - 226*x^21 - 498*x^20 - 909*x^19 - 445*x^18 - 507*x^17 + 975*x^16 + 2228*x^15 + 4668*x^14 + 11076*x^13 + 12980*x^12 + 17511*x^11 + 14643*x^10 + 8685*x^9 + 14619*x^8 + 3462*x^7 - 7574*x^6 + 606*x^5 + 1182*x^4 - 1451*x^3 + 957*x^2 + 1179*x + 185);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\He_3:\GL(2,3)$ (as 27T294):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 1296
The 18 conjugacy class representatives for $\He_3:\GL(2,3)$
Character table for $\He_3:\GL(2,3)$

Intermediate fields

9.3.4081466880000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 27 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.12.0.1}{12} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }$ ${\href{/padicField/11.8.0.1}{8} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.9.0.1}{9} }^{3}$ ${\href{/padicField/17.8.0.1}{8} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.6.0.1}{6} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ ${\href{/padicField/23.8.0.1}{8} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.6.0.1}{6} }^{4}{,}\,{\href{/padicField/29.3.0.1}{3} }$ ${\href{/padicField/31.6.0.1}{6} }^{4}{,}\,{\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.4.0.1}{4} }^{6}{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ ${\href{/padicField/41.6.0.1}{6} }^{4}{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.6.0.1}{6} }^{4}{,}\,{\href{/padicField/43.3.0.1}{3} }$ ${\href{/padicField/47.6.0.1}{6} }^{4}{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.8.0.1}{8} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.8.0.1}{8} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
Deg $24$$24$$1$$38$
\(3\) Copy content Toggle raw display 3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.6.7.5$x^{6} + 6 x^{2} + 3$$6$$1$$7$$D_{6}$$[3/2]_{2}^{2}$
Deg $18$$9$$2$$36$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.8.4.2$x^{8} + 100 x^{4} - 500 x^{2} + 1250$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
5.8.4.2$x^{8} + 100 x^{4} - 500 x^{2} + 1250$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
5.8.4.2$x^{8} + 100 x^{4} - 500 x^{2} + 1250$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$