Properties

Label 27.3.261...824.1
Degree $27$
Signature $[3, 12]$
Discriminant $2.619\times 10^{41}$
Root discriminant \(34.20\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\SO(5,3)$ (as 27T1161)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^26 + 36*x^25 - 78*x^24 + 90*x^23 - 36*x^22 - 72*x^21 + 324*x^20 - 648*x^19 + 412*x^18 + 198*x^17 - 198*x^16 + 708*x^15 - 864*x^14 - 792*x^13 + 216*x^12 + 1026*x^11 - 3114*x^10 + 6088*x^9 - 2124*x^8 - 1116*x^7 + 3456*x^6 - 8136*x^5 + 4536*x^4 + 1512*x^3 - 2664*x^2 + 1692*x - 636)
 
gp: K = bnfinit(y^27 - 9*y^26 + 36*y^25 - 78*y^24 + 90*y^23 - 36*y^22 - 72*y^21 + 324*y^20 - 648*y^19 + 412*y^18 + 198*y^17 - 198*y^16 + 708*y^15 - 864*y^14 - 792*y^13 + 216*y^12 + 1026*y^11 - 3114*y^10 + 6088*y^9 - 2124*y^8 - 1116*y^7 + 3456*y^6 - 8136*y^5 + 4536*y^4 + 1512*y^3 - 2664*y^2 + 1692*y - 636, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 9*x^26 + 36*x^25 - 78*x^24 + 90*x^23 - 36*x^22 - 72*x^21 + 324*x^20 - 648*x^19 + 412*x^18 + 198*x^17 - 198*x^16 + 708*x^15 - 864*x^14 - 792*x^13 + 216*x^12 + 1026*x^11 - 3114*x^10 + 6088*x^9 - 2124*x^8 - 1116*x^7 + 3456*x^6 - 8136*x^5 + 4536*x^4 + 1512*x^3 - 2664*x^2 + 1692*x - 636);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^26 + 36*x^25 - 78*x^24 + 90*x^23 - 36*x^22 - 72*x^21 + 324*x^20 - 648*x^19 + 412*x^18 + 198*x^17 - 198*x^16 + 708*x^15 - 864*x^14 - 792*x^13 + 216*x^12 + 1026*x^11 - 3114*x^10 + 6088*x^9 - 2124*x^8 - 1116*x^7 + 3456*x^6 - 8136*x^5 + 4536*x^4 + 1512*x^3 - 2664*x^2 + 1692*x - 636)
 

\( x^{27} - 9 x^{26} + 36 x^{25} - 78 x^{24} + 90 x^{23} - 36 x^{22} - 72 x^{21} + 324 x^{20} - 648 x^{19} + \cdots - 636 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(261883133898583555648377230547917759053824\) \(\medspace = 2^{52}\cdot 3^{54}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(34.20\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{16}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{16}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{16}$, $\frac{1}{2}a^{20}-\frac{1}{2}a^{16}$, $\frac{1}{2}a^{21}-\frac{1}{2}a^{16}$, $\frac{1}{2}a^{22}-\frac{1}{2}a^{16}$, $\frac{1}{2}a^{23}-\frac{1}{2}a^{16}$, $\frac{1}{2}a^{24}-\frac{1}{2}a^{16}$, $\frac{1}{2}a^{25}-\frac{1}{2}a^{16}$, $\frac{1}{66\!\cdots\!06}a^{26}-\frac{13\!\cdots\!43}{66\!\cdots\!06}a^{25}+\frac{10\!\cdots\!99}{66\!\cdots\!06}a^{24}-\frac{16\!\cdots\!59}{33\!\cdots\!03}a^{23}+\frac{10\!\cdots\!43}{66\!\cdots\!06}a^{22}+\frac{28\!\cdots\!72}{33\!\cdots\!03}a^{21}-\frac{72\!\cdots\!07}{66\!\cdots\!06}a^{20}-\frac{86\!\cdots\!39}{66\!\cdots\!06}a^{19}-\frac{91\!\cdots\!65}{66\!\cdots\!06}a^{18}+\frac{12\!\cdots\!83}{66\!\cdots\!06}a^{17}-\frac{11\!\cdots\!86}{33\!\cdots\!03}a^{16}+\frac{60\!\cdots\!56}{33\!\cdots\!03}a^{15}+\frac{64\!\cdots\!29}{33\!\cdots\!03}a^{14}+\frac{16\!\cdots\!66}{33\!\cdots\!03}a^{13}+\frac{12\!\cdots\!97}{33\!\cdots\!03}a^{12}-\frac{16\!\cdots\!42}{33\!\cdots\!03}a^{11}-\frac{12\!\cdots\!95}{33\!\cdots\!03}a^{10}-\frac{13\!\cdots\!53}{33\!\cdots\!03}a^{9}-\frac{43\!\cdots\!45}{33\!\cdots\!03}a^{8}-\frac{34\!\cdots\!46}{33\!\cdots\!03}a^{7}-\frac{19\!\cdots\!85}{33\!\cdots\!03}a^{6}+\frac{12\!\cdots\!07}{33\!\cdots\!03}a^{5}+\frac{56\!\cdots\!66}{33\!\cdots\!03}a^{4}+\frac{55\!\cdots\!47}{33\!\cdots\!03}a^{3}+\frac{12\!\cdots\!66}{33\!\cdots\!03}a^{2}-\frac{10\!\cdots\!67}{33\!\cdots\!03}a+\frac{15\!\cdots\!33}{33\!\cdots\!03}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{41\!\cdots\!13}{66\!\cdots\!06}a^{26}+\frac{16\!\cdots\!64}{33\!\cdots\!03}a^{25}-\frac{11\!\cdots\!47}{66\!\cdots\!06}a^{24}+\frac{99\!\cdots\!03}{33\!\cdots\!03}a^{23}-\frac{17\!\cdots\!91}{66\!\cdots\!06}a^{22}+\frac{43\!\cdots\!15}{66\!\cdots\!06}a^{21}+\frac{95\!\cdots\!28}{33\!\cdots\!03}a^{20}-\frac{48\!\cdots\!16}{33\!\cdots\!03}a^{19}+\frac{14\!\cdots\!87}{66\!\cdots\!06}a^{18}-\frac{19\!\cdots\!95}{66\!\cdots\!06}a^{17}-\frac{12\!\cdots\!59}{33\!\cdots\!03}a^{16}-\frac{19\!\cdots\!10}{33\!\cdots\!03}a^{15}-\frac{14\!\cdots\!13}{33\!\cdots\!03}a^{14}-\frac{18\!\cdots\!88}{33\!\cdots\!03}a^{13}+\frac{12\!\cdots\!91}{33\!\cdots\!03}a^{12}+\frac{15\!\cdots\!46}{33\!\cdots\!03}a^{11}-\frac{15\!\cdots\!67}{33\!\cdots\!03}a^{10}+\frac{64\!\cdots\!15}{33\!\cdots\!03}a^{9}-\frac{53\!\cdots\!63}{33\!\cdots\!03}a^{8}-\frac{24\!\cdots\!68}{33\!\cdots\!03}a^{7}-\frac{25\!\cdots\!02}{33\!\cdots\!03}a^{6}-\frac{66\!\cdots\!05}{33\!\cdots\!03}a^{5}+\frac{64\!\cdots\!42}{33\!\cdots\!03}a^{4}-\frac{81\!\cdots\!72}{33\!\cdots\!03}a^{3}-\frac{94\!\cdots\!90}{33\!\cdots\!03}a^{2}+\frac{12\!\cdots\!88}{33\!\cdots\!03}a-\frac{50\!\cdots\!79}{33\!\cdots\!03}$, $\frac{54\!\cdots\!85}{33\!\cdots\!03}a^{26}-\frac{48\!\cdots\!71}{33\!\cdots\!03}a^{25}+\frac{38\!\cdots\!49}{66\!\cdots\!06}a^{24}-\frac{42\!\cdots\!14}{33\!\cdots\!03}a^{23}+\frac{53\!\cdots\!22}{33\!\cdots\!03}a^{22}-\frac{72\!\cdots\!07}{66\!\cdots\!06}a^{21}-\frac{19\!\cdots\!01}{66\!\cdots\!06}a^{20}+\frac{14\!\cdots\!33}{33\!\cdots\!03}a^{19}-\frac{65\!\cdots\!83}{66\!\cdots\!06}a^{18}+\frac{24\!\cdots\!80}{33\!\cdots\!03}a^{17}-\frac{29\!\cdots\!63}{33\!\cdots\!03}a^{16}+\frac{72\!\cdots\!94}{33\!\cdots\!03}a^{15}+\frac{26\!\cdots\!93}{33\!\cdots\!03}a^{14}-\frac{36\!\cdots\!31}{33\!\cdots\!03}a^{13}-\frac{33\!\cdots\!78}{33\!\cdots\!03}a^{12}-\frac{61\!\cdots\!67}{33\!\cdots\!03}a^{11}+\frac{54\!\cdots\!74}{33\!\cdots\!03}a^{10}-\frac{17\!\cdots\!42}{33\!\cdots\!03}a^{9}+\frac{32\!\cdots\!26}{33\!\cdots\!03}a^{8}-\frac{17\!\cdots\!58}{33\!\cdots\!03}a^{7}+\frac{83\!\cdots\!65}{33\!\cdots\!03}a^{6}+\frac{24\!\cdots\!58}{33\!\cdots\!03}a^{5}-\frac{31\!\cdots\!30}{33\!\cdots\!03}a^{4}+\frac{23\!\cdots\!36}{33\!\cdots\!03}a^{3}+\frac{30\!\cdots\!96}{33\!\cdots\!03}a^{2}-\frac{15\!\cdots\!07}{33\!\cdots\!03}a-\frac{90\!\cdots\!07}{33\!\cdots\!03}$, $\frac{26\!\cdots\!38}{33\!\cdots\!03}a^{26}+\frac{45\!\cdots\!11}{66\!\cdots\!06}a^{25}-\frac{17\!\cdots\!51}{66\!\cdots\!06}a^{24}+\frac{18\!\cdots\!46}{33\!\cdots\!03}a^{23}-\frac{20\!\cdots\!91}{33\!\cdots\!03}a^{22}+\frac{97\!\cdots\!66}{33\!\cdots\!03}a^{21}+\frac{25\!\cdots\!61}{66\!\cdots\!06}a^{20}-\frac{72\!\cdots\!11}{33\!\cdots\!03}a^{19}+\frac{28\!\cdots\!91}{66\!\cdots\!06}a^{18}-\frac{82\!\cdots\!39}{33\!\cdots\!03}a^{17}-\frac{25\!\cdots\!75}{33\!\cdots\!03}a^{16}+\frac{79\!\cdots\!46}{33\!\cdots\!03}a^{15}-\frac{15\!\cdots\!21}{33\!\cdots\!03}a^{14}+\frac{13\!\cdots\!15}{33\!\cdots\!03}a^{13}+\frac{18\!\cdots\!26}{33\!\cdots\!03}a^{12}+\frac{23\!\cdots\!04}{33\!\cdots\!03}a^{11}-\frac{22\!\cdots\!15}{33\!\cdots\!03}a^{10}+\frac{83\!\cdots\!99}{33\!\cdots\!03}a^{9}-\frac{12\!\cdots\!29}{33\!\cdots\!03}a^{8}+\frac{49\!\cdots\!56}{33\!\cdots\!03}a^{7}-\frac{37\!\cdots\!82}{33\!\cdots\!03}a^{6}-\frac{57\!\cdots\!93}{33\!\cdots\!03}a^{5}+\frac{14\!\cdots\!80}{33\!\cdots\!03}a^{4}-\frac{79\!\cdots\!00}{33\!\cdots\!03}a^{3}-\frac{32\!\cdots\!52}{33\!\cdots\!03}a^{2}+\frac{27\!\cdots\!16}{33\!\cdots\!03}a-\frac{43\!\cdots\!57}{33\!\cdots\!03}$, $\frac{27\!\cdots\!89}{66\!\cdots\!06}a^{26}-\frac{25\!\cdots\!61}{66\!\cdots\!06}a^{25}+\frac{52\!\cdots\!81}{33\!\cdots\!03}a^{24}-\frac{25\!\cdots\!25}{66\!\cdots\!06}a^{23}+\frac{39\!\cdots\!01}{66\!\cdots\!06}a^{22}-\frac{19\!\cdots\!82}{33\!\cdots\!03}a^{21}+\frac{89\!\cdots\!33}{33\!\cdots\!03}a^{20}+\frac{59\!\cdots\!23}{66\!\cdots\!06}a^{19}-\frac{18\!\cdots\!47}{66\!\cdots\!06}a^{18}+\frac{10\!\cdots\!85}{33\!\cdots\!03}a^{17}-\frac{75\!\cdots\!39}{33\!\cdots\!03}a^{16}+\frac{54\!\cdots\!34}{33\!\cdots\!03}a^{15}+\frac{48\!\cdots\!63}{33\!\cdots\!03}a^{14}-\frac{74\!\cdots\!14}{33\!\cdots\!03}a^{13}-\frac{70\!\cdots\!82}{33\!\cdots\!03}a^{12}-\frac{17\!\cdots\!99}{33\!\cdots\!03}a^{11}+\frac{74\!\cdots\!68}{33\!\cdots\!03}a^{10}-\frac{52\!\cdots\!19}{33\!\cdots\!03}a^{9}+\frac{94\!\cdots\!86}{33\!\cdots\!03}a^{8}-\frac{99\!\cdots\!92}{33\!\cdots\!03}a^{7}+\frac{82\!\cdots\!62}{33\!\cdots\!03}a^{6}-\frac{23\!\cdots\!82}{33\!\cdots\!03}a^{5}-\frac{42\!\cdots\!32}{33\!\cdots\!03}a^{4}+\frac{76\!\cdots\!06}{33\!\cdots\!03}a^{3}-\frac{44\!\cdots\!75}{33\!\cdots\!03}a^{2}+\frac{18\!\cdots\!62}{33\!\cdots\!03}a-\frac{22\!\cdots\!81}{33\!\cdots\!03}$, $\frac{77\!\cdots\!65}{66\!\cdots\!06}a^{26}-\frac{31\!\cdots\!48}{33\!\cdots\!03}a^{25}+\frac{22\!\cdots\!27}{66\!\cdots\!06}a^{24}-\frac{40\!\cdots\!75}{66\!\cdots\!06}a^{23}+\frac{17\!\cdots\!78}{33\!\cdots\!03}a^{22}+\frac{11\!\cdots\!11}{66\!\cdots\!06}a^{21}-\frac{26\!\cdots\!94}{33\!\cdots\!03}a^{20}+\frac{20\!\cdots\!11}{66\!\cdots\!06}a^{19}-\frac{32\!\cdots\!29}{66\!\cdots\!06}a^{18}+\frac{20\!\cdots\!87}{33\!\cdots\!03}a^{17}+\frac{90\!\cdots\!31}{33\!\cdots\!03}a^{16}+\frac{42\!\cdots\!77}{33\!\cdots\!03}a^{15}+\frac{27\!\cdots\!73}{33\!\cdots\!03}a^{14}-\frac{93\!\cdots\!67}{33\!\cdots\!03}a^{13}-\frac{37\!\cdots\!64}{33\!\cdots\!03}a^{12}-\frac{23\!\cdots\!75}{33\!\cdots\!03}a^{11}+\frac{19\!\cdots\!61}{33\!\cdots\!03}a^{10}-\frac{10\!\cdots\!15}{33\!\cdots\!03}a^{9}+\frac{14\!\cdots\!76}{33\!\cdots\!03}a^{8}+\frac{37\!\cdots\!77}{33\!\cdots\!03}a^{7}-\frac{11\!\cdots\!19}{33\!\cdots\!03}a^{6}+\frac{11\!\cdots\!56}{33\!\cdots\!03}a^{5}-\frac{20\!\cdots\!89}{33\!\cdots\!03}a^{4}-\frac{93\!\cdots\!89}{33\!\cdots\!03}a^{3}+\frac{60\!\cdots\!58}{33\!\cdots\!03}a^{2}-\frac{45\!\cdots\!41}{33\!\cdots\!03}a+\frac{27\!\cdots\!11}{33\!\cdots\!03}$, $\frac{22\!\cdots\!67}{66\!\cdots\!06}a^{26}+\frac{81\!\cdots\!39}{33\!\cdots\!03}a^{25}-\frac{25\!\cdots\!60}{33\!\cdots\!03}a^{24}+\frac{35\!\cdots\!58}{33\!\cdots\!03}a^{23}-\frac{12\!\cdots\!63}{66\!\cdots\!06}a^{22}-\frac{42\!\cdots\!96}{33\!\cdots\!03}a^{21}+\frac{17\!\cdots\!13}{66\!\cdots\!06}a^{20}-\frac{49\!\cdots\!93}{66\!\cdots\!06}a^{19}+\frac{26\!\cdots\!07}{33\!\cdots\!03}a^{18}+\frac{26\!\cdots\!38}{33\!\cdots\!03}a^{17}-\frac{33\!\cdots\!00}{33\!\cdots\!03}a^{16}-\frac{11\!\cdots\!34}{33\!\cdots\!03}a^{15}-\frac{81\!\cdots\!82}{33\!\cdots\!03}a^{14}-\frac{25\!\cdots\!41}{33\!\cdots\!03}a^{13}+\frac{11\!\cdots\!12}{33\!\cdots\!03}a^{12}+\frac{12\!\cdots\!09}{33\!\cdots\!03}a^{11}-\frac{22\!\cdots\!18}{33\!\cdots\!03}a^{10}+\frac{23\!\cdots\!66}{33\!\cdots\!03}a^{9}-\frac{17\!\cdots\!87}{33\!\cdots\!03}a^{8}-\frac{33\!\cdots\!99}{33\!\cdots\!03}a^{7}+\frac{10\!\cdots\!84}{33\!\cdots\!03}a^{6}-\frac{32\!\cdots\!57}{33\!\cdots\!03}a^{5}+\frac{35\!\cdots\!24}{33\!\cdots\!03}a^{4}+\frac{24\!\cdots\!00}{33\!\cdots\!03}a^{3}-\frac{26\!\cdots\!33}{33\!\cdots\!03}a^{2}+\frac{33\!\cdots\!31}{33\!\cdots\!03}a-\frac{12\!\cdots\!87}{33\!\cdots\!03}$, $\frac{29\!\cdots\!12}{33\!\cdots\!03}a^{26}+\frac{51\!\cdots\!13}{66\!\cdots\!06}a^{25}-\frac{96\!\cdots\!21}{33\!\cdots\!03}a^{24}+\frac{37\!\cdots\!47}{66\!\cdots\!06}a^{23}-\frac{15\!\cdots\!56}{33\!\cdots\!03}a^{22}-\frac{92\!\cdots\!51}{66\!\cdots\!06}a^{21}+\frac{31\!\cdots\!37}{33\!\cdots\!03}a^{20}-\frac{18\!\cdots\!53}{66\!\cdots\!06}a^{19}+\frac{31\!\cdots\!85}{66\!\cdots\!06}a^{18}-\frac{60\!\cdots\!99}{66\!\cdots\!06}a^{17}-\frac{14\!\cdots\!31}{33\!\cdots\!03}a^{16}+\frac{44\!\cdots\!68}{33\!\cdots\!03}a^{15}-\frac{20\!\cdots\!79}{33\!\cdots\!03}a^{14}+\frac{23\!\cdots\!21}{33\!\cdots\!03}a^{13}+\frac{42\!\cdots\!40}{33\!\cdots\!03}a^{12}+\frac{45\!\cdots\!11}{33\!\cdots\!03}a^{11}-\frac{40\!\cdots\!73}{33\!\cdots\!03}a^{10}+\frac{64\!\cdots\!93}{33\!\cdots\!03}a^{9}-\frac{15\!\cdots\!10}{33\!\cdots\!03}a^{8}-\frac{41\!\cdots\!67}{33\!\cdots\!03}a^{7}+\frac{89\!\cdots\!37}{33\!\cdots\!03}a^{6}-\frac{87\!\cdots\!49}{33\!\cdots\!03}a^{5}+\frac{26\!\cdots\!74}{33\!\cdots\!03}a^{4}-\frac{18\!\cdots\!66}{33\!\cdots\!03}a^{3}-\frac{12\!\cdots\!23}{33\!\cdots\!03}a^{2}+\frac{58\!\cdots\!53}{33\!\cdots\!03}a-\frac{46\!\cdots\!19}{33\!\cdots\!03}$, $\frac{12\!\cdots\!97}{66\!\cdots\!06}a^{26}-\frac{10\!\cdots\!15}{66\!\cdots\!06}a^{25}+\frac{33\!\cdots\!33}{66\!\cdots\!06}a^{24}-\frac{26\!\cdots\!76}{33\!\cdots\!03}a^{23}+\frac{12\!\cdots\!80}{33\!\cdots\!03}a^{22}+\frac{18\!\cdots\!55}{33\!\cdots\!03}a^{21}-\frac{50\!\cdots\!48}{33\!\cdots\!03}a^{20}+\frac{15\!\cdots\!72}{33\!\cdots\!03}a^{19}-\frac{42\!\cdots\!81}{66\!\cdots\!06}a^{18}-\frac{90\!\cdots\!83}{33\!\cdots\!03}a^{17}+\frac{21\!\cdots\!16}{33\!\cdots\!03}a^{16}+\frac{50\!\cdots\!55}{33\!\cdots\!03}a^{15}+\frac{48\!\cdots\!79}{33\!\cdots\!03}a^{14}-\frac{60\!\cdots\!71}{33\!\cdots\!03}a^{13}-\frac{83\!\cdots\!62}{33\!\cdots\!03}a^{12}-\frac{69\!\cdots\!73}{33\!\cdots\!03}a^{11}+\frac{10\!\cdots\!75}{33\!\cdots\!03}a^{10}-\frac{14\!\cdots\!55}{33\!\cdots\!03}a^{9}+\frac{19\!\cdots\!23}{33\!\cdots\!03}a^{8}+\frac{20\!\cdots\!62}{33\!\cdots\!03}a^{7}-\frac{12\!\cdots\!28}{33\!\cdots\!03}a^{6}+\frac{22\!\cdots\!61}{33\!\cdots\!03}a^{5}-\frac{30\!\cdots\!01}{33\!\cdots\!03}a^{4}-\frac{16\!\cdots\!75}{33\!\cdots\!03}a^{3}+\frac{13\!\cdots\!74}{33\!\cdots\!03}a^{2}-\frac{10\!\cdots\!17}{33\!\cdots\!03}a+\frac{46\!\cdots\!61}{33\!\cdots\!03}$, $\frac{36\!\cdots\!55}{66\!\cdots\!06}a^{26}-\frac{14\!\cdots\!22}{33\!\cdots\!03}a^{25}+\frac{96\!\cdots\!61}{66\!\cdots\!06}a^{24}-\frac{14\!\cdots\!29}{66\!\cdots\!06}a^{23}+\frac{15\!\cdots\!49}{33\!\cdots\!03}a^{22}+\frac{11\!\cdots\!60}{33\!\cdots\!03}a^{21}-\frac{25\!\cdots\!51}{33\!\cdots\!03}a^{20}+\frac{10\!\cdots\!93}{66\!\cdots\!06}a^{19}-\frac{13\!\cdots\!89}{66\!\cdots\!06}a^{18}-\frac{79\!\cdots\!61}{66\!\cdots\!06}a^{17}+\frac{11\!\cdots\!43}{33\!\cdots\!03}a^{16}-\frac{44\!\cdots\!78}{33\!\cdots\!03}a^{15}+\frac{14\!\cdots\!31}{33\!\cdots\!03}a^{14}-\frac{43\!\cdots\!54}{33\!\cdots\!03}a^{13}-\frac{26\!\cdots\!54}{33\!\cdots\!03}a^{12}-\frac{80\!\cdots\!41}{33\!\cdots\!03}a^{11}+\frac{15\!\cdots\!19}{33\!\cdots\!03}a^{10}-\frac{38\!\cdots\!69}{33\!\cdots\!03}a^{9}+\frac{51\!\cdots\!02}{33\!\cdots\!03}a^{8}+\frac{72\!\cdots\!61}{33\!\cdots\!03}a^{7}-\frac{81\!\cdots\!36}{33\!\cdots\!03}a^{6}+\frac{85\!\cdots\!97}{33\!\cdots\!03}a^{5}-\frac{12\!\cdots\!17}{33\!\cdots\!03}a^{4}-\frac{34\!\cdots\!95}{33\!\cdots\!03}a^{3}+\frac{10\!\cdots\!10}{33\!\cdots\!03}a^{2}-\frac{48\!\cdots\!30}{33\!\cdots\!03}a+\frac{31\!\cdots\!67}{33\!\cdots\!03}$, $\frac{17\!\cdots\!89}{66\!\cdots\!06}a^{26}-\frac{15\!\cdots\!51}{66\!\cdots\!06}a^{25}+\frac{30\!\cdots\!41}{33\!\cdots\!03}a^{24}-\frac{66\!\cdots\!25}{33\!\cdots\!03}a^{23}+\frac{16\!\cdots\!55}{66\!\cdots\!06}a^{22}-\frac{10\!\cdots\!93}{66\!\cdots\!06}a^{21}-\frac{19\!\cdots\!00}{33\!\cdots\!03}a^{20}+\frac{45\!\cdots\!79}{66\!\cdots\!06}a^{19}-\frac{51\!\cdots\!41}{33\!\cdots\!03}a^{18}+\frac{72\!\cdots\!87}{66\!\cdots\!06}a^{17}-\frac{66\!\cdots\!96}{33\!\cdots\!03}a^{16}+\frac{13\!\cdots\!67}{33\!\cdots\!03}a^{15}+\frac{47\!\cdots\!72}{33\!\cdots\!03}a^{14}-\frac{64\!\cdots\!36}{33\!\cdots\!03}a^{13}-\frac{78\!\cdots\!59}{33\!\cdots\!03}a^{12}-\frac{36\!\cdots\!99}{33\!\cdots\!03}a^{11}+\frac{76\!\cdots\!24}{33\!\cdots\!03}a^{10}-\frac{24\!\cdots\!69}{33\!\cdots\!03}a^{9}+\frac{55\!\cdots\!61}{33\!\cdots\!03}a^{8}-\frac{17\!\cdots\!48}{33\!\cdots\!03}a^{7}+\frac{17\!\cdots\!79}{33\!\cdots\!03}a^{6}+\frac{84\!\cdots\!61}{33\!\cdots\!03}a^{5}-\frac{53\!\cdots\!61}{33\!\cdots\!03}a^{4}+\frac{23\!\cdots\!20}{33\!\cdots\!03}a^{3}-\frac{35\!\cdots\!77}{33\!\cdots\!03}a^{2}+\frac{11\!\cdots\!27}{33\!\cdots\!03}a+\frac{14\!\cdots\!37}{33\!\cdots\!03}$, $\frac{46\!\cdots\!43}{66\!\cdots\!06}a^{26}+\frac{39\!\cdots\!93}{66\!\cdots\!06}a^{25}-\frac{72\!\cdots\!09}{33\!\cdots\!03}a^{24}+\frac{28\!\cdots\!77}{66\!\cdots\!06}a^{23}-\frac{26\!\cdots\!35}{66\!\cdots\!06}a^{22}+\frac{22\!\cdots\!69}{33\!\cdots\!03}a^{21}+\frac{29\!\cdots\!87}{66\!\cdots\!06}a^{20}-\frac{61\!\cdots\!85}{33\!\cdots\!03}a^{19}+\frac{11\!\cdots\!17}{33\!\cdots\!03}a^{18}-\frac{68\!\cdots\!51}{66\!\cdots\!06}a^{17}-\frac{56\!\cdots\!80}{33\!\cdots\!03}a^{16}-\frac{67\!\cdots\!81}{33\!\cdots\!03}a^{15}-\frac{13\!\cdots\!16}{33\!\cdots\!03}a^{14}+\frac{10\!\cdots\!91}{33\!\cdots\!03}a^{13}+\frac{23\!\cdots\!86}{33\!\cdots\!03}a^{12}+\frac{77\!\cdots\!01}{33\!\cdots\!03}a^{11}-\frac{22\!\cdots\!46}{33\!\cdots\!03}a^{10}+\frac{61\!\cdots\!55}{33\!\cdots\!03}a^{9}-\frac{10\!\cdots\!13}{33\!\cdots\!03}a^{8}-\frac{21\!\cdots\!30}{33\!\cdots\!03}a^{7}+\frac{16\!\cdots\!42}{33\!\cdots\!03}a^{6}-\frac{44\!\cdots\!78}{33\!\cdots\!03}a^{5}+\frac{13\!\cdots\!78}{33\!\cdots\!03}a^{4}-\frac{21\!\cdots\!75}{33\!\cdots\!03}a^{3}-\frac{55\!\cdots\!95}{33\!\cdots\!03}a^{2}+\frac{13\!\cdots\!73}{33\!\cdots\!03}a-\frac{29\!\cdots\!41}{33\!\cdots\!03}$, $\frac{29\!\cdots\!04}{33\!\cdots\!03}a^{26}+\frac{25\!\cdots\!52}{33\!\cdots\!03}a^{25}-\frac{92\!\cdots\!43}{33\!\cdots\!03}a^{24}+\frac{35\!\cdots\!85}{66\!\cdots\!06}a^{23}-\frac{32\!\cdots\!17}{66\!\cdots\!06}a^{22}+\frac{63\!\cdots\!64}{33\!\cdots\!03}a^{21}+\frac{47\!\cdots\!91}{66\!\cdots\!06}a^{20}-\frac{16\!\cdots\!67}{66\!\cdots\!06}a^{19}+\frac{28\!\cdots\!17}{66\!\cdots\!06}a^{18}-\frac{71\!\cdots\!51}{66\!\cdots\!06}a^{17}-\frac{95\!\cdots\!11}{33\!\cdots\!03}a^{16}+\frac{22\!\cdots\!66}{33\!\cdots\!03}a^{15}-\frac{17\!\cdots\!94}{33\!\cdots\!03}a^{14}+\frac{12\!\cdots\!44}{33\!\cdots\!03}a^{13}+\frac{31\!\cdots\!41}{33\!\cdots\!03}a^{12}+\frac{61\!\cdots\!53}{33\!\cdots\!03}a^{11}-\frac{31\!\cdots\!76}{33\!\cdots\!03}a^{10}+\frac{82\!\cdots\!89}{33\!\cdots\!03}a^{9}-\frac{12\!\cdots\!56}{33\!\cdots\!03}a^{8}-\frac{94\!\cdots\!80}{33\!\cdots\!03}a^{7}+\frac{48\!\cdots\!00}{33\!\cdots\!03}a^{6}-\frac{82\!\cdots\!40}{33\!\cdots\!03}a^{5}+\frac{16\!\cdots\!93}{33\!\cdots\!03}a^{4}-\frac{25\!\cdots\!57}{33\!\cdots\!03}a^{3}-\frac{92\!\cdots\!73}{33\!\cdots\!03}a^{2}+\frac{36\!\cdots\!59}{33\!\cdots\!03}a-\frac{42\!\cdots\!19}{33\!\cdots\!03}$, $\frac{12\!\cdots\!07}{66\!\cdots\!06}a^{26}+\frac{48\!\cdots\!30}{33\!\cdots\!03}a^{25}-\frac{16\!\cdots\!26}{33\!\cdots\!03}a^{24}+\frac{28\!\cdots\!85}{33\!\cdots\!03}a^{23}-\frac{20\!\cdots\!55}{33\!\cdots\!03}a^{22}-\frac{52\!\cdots\!61}{33\!\cdots\!03}a^{21}+\frac{42\!\cdots\!55}{33\!\cdots\!03}a^{20}-\frac{30\!\cdots\!77}{66\!\cdots\!06}a^{19}+\frac{21\!\cdots\!53}{33\!\cdots\!03}a^{18}+\frac{12\!\cdots\!02}{33\!\cdots\!03}a^{17}-\frac{12\!\cdots\!48}{33\!\cdots\!03}a^{16}-\frac{79\!\cdots\!87}{33\!\cdots\!03}a^{15}-\frac{46\!\cdots\!04}{33\!\cdots\!03}a^{14}+\frac{80\!\cdots\!21}{33\!\cdots\!03}a^{13}+\frac{51\!\cdots\!09}{33\!\cdots\!03}a^{12}+\frac{45\!\cdots\!22}{33\!\cdots\!03}a^{11}-\frac{99\!\cdots\!77}{33\!\cdots\!03}a^{10}+\frac{17\!\cdots\!64}{33\!\cdots\!03}a^{9}-\frac{16\!\cdots\!71}{33\!\cdots\!03}a^{8}-\frac{73\!\cdots\!29}{33\!\cdots\!03}a^{7}+\frac{31\!\cdots\!38}{33\!\cdots\!03}a^{6}-\frac{22\!\cdots\!87}{33\!\cdots\!03}a^{5}+\frac{25\!\cdots\!41}{33\!\cdots\!03}a^{4}+\frac{92\!\cdots\!38}{33\!\cdots\!03}a^{3}-\frac{93\!\cdots\!88}{33\!\cdots\!03}a^{2}+\frac{66\!\cdots\!57}{33\!\cdots\!03}a-\frac{39\!\cdots\!89}{33\!\cdots\!03}$, $\frac{41\!\cdots\!33}{33\!\cdots\!03}a^{26}+\frac{69\!\cdots\!61}{66\!\cdots\!06}a^{25}-\frac{26\!\cdots\!81}{66\!\cdots\!06}a^{24}+\frac{29\!\cdots\!68}{33\!\cdots\!03}a^{23}-\frac{38\!\cdots\!73}{33\!\cdots\!03}a^{22}+\frac{63\!\cdots\!19}{66\!\cdots\!06}a^{21}+\frac{19\!\cdots\!83}{33\!\cdots\!03}a^{20}-\frac{21\!\cdots\!75}{66\!\cdots\!06}a^{19}+\frac{21\!\cdots\!20}{33\!\cdots\!03}a^{18}-\frac{17\!\cdots\!46}{33\!\cdots\!03}a^{17}+\frac{10\!\cdots\!12}{33\!\cdots\!03}a^{16}-\frac{26\!\cdots\!16}{33\!\cdots\!03}a^{15}-\frac{32\!\cdots\!86}{33\!\cdots\!03}a^{14}+\frac{70\!\cdots\!65}{33\!\cdots\!03}a^{13}+\frac{96\!\cdots\!95}{33\!\cdots\!03}a^{12}+\frac{16\!\cdots\!41}{33\!\cdots\!03}a^{11}+\frac{41\!\cdots\!99}{33\!\cdots\!03}a^{10}+\frac{15\!\cdots\!11}{33\!\cdots\!03}a^{9}-\frac{19\!\cdots\!22}{33\!\cdots\!03}a^{8}+\frac{15\!\cdots\!46}{33\!\cdots\!03}a^{7}-\frac{13\!\cdots\!57}{33\!\cdots\!03}a^{6}-\frac{13\!\cdots\!09}{33\!\cdots\!03}a^{5}+\frac{17\!\cdots\!84}{33\!\cdots\!03}a^{4}-\frac{12\!\cdots\!89}{33\!\cdots\!03}a^{3}+\frac{59\!\cdots\!50}{33\!\cdots\!03}a^{2}+\frac{20\!\cdots\!37}{33\!\cdots\!03}a-\frac{15\!\cdots\!75}{33\!\cdots\!03}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 163300072007.99246 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{12}\cdot 163300072007.99246 \cdot 1}{2\cdot\sqrt{261883133898583555648377230547917759053824}}\cr\approx \mathstrut & 4.83226811907605 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^26 + 36*x^25 - 78*x^24 + 90*x^23 - 36*x^22 - 72*x^21 + 324*x^20 - 648*x^19 + 412*x^18 + 198*x^17 - 198*x^16 + 708*x^15 - 864*x^14 - 792*x^13 + 216*x^12 + 1026*x^11 - 3114*x^10 + 6088*x^9 - 2124*x^8 - 1116*x^7 + 3456*x^6 - 8136*x^5 + 4536*x^4 + 1512*x^3 - 2664*x^2 + 1692*x - 636)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 9*x^26 + 36*x^25 - 78*x^24 + 90*x^23 - 36*x^22 - 72*x^21 + 324*x^20 - 648*x^19 + 412*x^18 + 198*x^17 - 198*x^16 + 708*x^15 - 864*x^14 - 792*x^13 + 216*x^12 + 1026*x^11 - 3114*x^10 + 6088*x^9 - 2124*x^8 - 1116*x^7 + 3456*x^6 - 8136*x^5 + 4536*x^4 + 1512*x^3 - 2664*x^2 + 1692*x - 636, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 9*x^26 + 36*x^25 - 78*x^24 + 90*x^23 - 36*x^22 - 72*x^21 + 324*x^20 - 648*x^19 + 412*x^18 + 198*x^17 - 198*x^16 + 708*x^15 - 864*x^14 - 792*x^13 + 216*x^12 + 1026*x^11 - 3114*x^10 + 6088*x^9 - 2124*x^8 - 1116*x^7 + 3456*x^6 - 8136*x^5 + 4536*x^4 + 1512*x^3 - 2664*x^2 + 1692*x - 636);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^26 + 36*x^25 - 78*x^24 + 90*x^23 - 36*x^22 - 72*x^21 + 324*x^20 - 648*x^19 + 412*x^18 + 198*x^17 - 198*x^16 + 708*x^15 - 864*x^14 - 792*x^13 + 216*x^12 + 1026*x^11 - 3114*x^10 + 6088*x^9 - 2124*x^8 - 1116*x^7 + 3456*x^6 - 8136*x^5 + 4536*x^4 + 1512*x^3 - 2664*x^2 + 1692*x - 636);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\SO(5,3)$ (as 27T1161):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 51840
The 25 conjugacy class representatives for $\SO(5,3)$
Character table for $\SO(5,3)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{4}{,}\,{\href{/padicField/5.3.0.1}{3} }$ ${\href{/padicField/7.5.0.1}{5} }^{5}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.5.0.1}{5} }^{5}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{5}$ ${\href{/padicField/19.4.0.1}{4} }^{5}{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.5.0.1}{5} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }$ ${\href{/padicField/31.9.0.1}{9} }^{3}$ ${\href{/padicField/37.12.0.1}{12} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.8.0.1}{8} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.5.0.1}{5} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.10.0.1}{10} }{,}\,{\href{/padicField/47.5.0.1}{5} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.8.0.1}{8} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.8.0.1}{8} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.10.16.3$x^{10} + 2 x^{7} + 4 x^{4} + 4 x^{2} + 6$$10$$1$$16$$(C_2^4 : C_5):C_4$$[12/5, 12/5, 12/5, 12/5]_{5}^{4}$
Deg $16$$16$$1$$36$
\(3\) Copy content Toggle raw display 3.9.18.39$x^{9} + 18 x + 21$$9$$1$$18$$S_3^2:C_2$$[9/4, 9/4]_{4}^{2}$
Deg $18$$18$$1$$36$