Properties

Label 27.3.393...000.1
Degree $27$
Signature $[3, 12]$
Discriminant $3.930\times 10^{41}$
Root discriminant \(34.72\)
Ramified primes $2,3,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\SO(5,3)$ (as 27T1161)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 6*x^25 - 22*x^24 + 6*x^23 + 156*x^22 + 166*x^21 - 540*x^20 - 1284*x^19 + 764*x^18 + 5586*x^17 + 4776*x^16 - 8664*x^15 - 21792*x^14 - 10272*x^13 + 20704*x^12 + 28602*x^11 - 7008*x^10 - 46852*x^9 - 36588*x^8 + 37356*x^7 + 139024*x^6 + 207180*x^5 + 197280*x^4 + 124824*x^3 + 50112*x^2 + 11316*x + 1048)
 
gp: K = bnfinit(y^27 - 6*y^25 - 22*y^24 + 6*y^23 + 156*y^22 + 166*y^21 - 540*y^20 - 1284*y^19 + 764*y^18 + 5586*y^17 + 4776*y^16 - 8664*y^15 - 21792*y^14 - 10272*y^13 + 20704*y^12 + 28602*y^11 - 7008*y^10 - 46852*y^9 - 36588*y^8 + 37356*y^7 + 139024*y^6 + 207180*y^5 + 197280*y^4 + 124824*y^3 + 50112*y^2 + 11316*y + 1048, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 6*x^25 - 22*x^24 + 6*x^23 + 156*x^22 + 166*x^21 - 540*x^20 - 1284*x^19 + 764*x^18 + 5586*x^17 + 4776*x^16 - 8664*x^15 - 21792*x^14 - 10272*x^13 + 20704*x^12 + 28602*x^11 - 7008*x^10 - 46852*x^9 - 36588*x^8 + 37356*x^7 + 139024*x^6 + 207180*x^5 + 197280*x^4 + 124824*x^3 + 50112*x^2 + 11316*x + 1048);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 6*x^25 - 22*x^24 + 6*x^23 + 156*x^22 + 166*x^21 - 540*x^20 - 1284*x^19 + 764*x^18 + 5586*x^17 + 4776*x^16 - 8664*x^15 - 21792*x^14 - 10272*x^13 + 20704*x^12 + 28602*x^11 - 7008*x^10 - 46852*x^9 - 36588*x^8 + 37356*x^7 + 139024*x^6 + 207180*x^5 + 197280*x^4 + 124824*x^3 + 50112*x^2 + 11316*x + 1048)
 

\( x^{27} - 6 x^{25} - 22 x^{24} + 6 x^{23} + 156 x^{22} + 166 x^{21} - 540 x^{20} - 1284 x^{19} + \cdots + 1048 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(393020301725748191821824000000000000000000\) \(\medspace = 2^{52}\cdot 3^{28}\cdot 5^{18}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(34.72\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2}a^{16}$, $\frac{1}{2}a^{17}$, $\frac{1}{2}a^{18}$, $\frac{1}{10}a^{19}-\frac{1}{5}a^{18}-\frac{1}{5}a^{17}-\frac{2}{5}a^{15}-\frac{1}{5}a^{14}+\frac{2}{5}a^{13}-\frac{1}{5}a^{12}+\frac{2}{5}a^{10}+\frac{2}{5}a^{9}-\frac{2}{5}a^{8}+\frac{1}{5}a^{7}-\frac{2}{5}a^{4}+\frac{1}{5}a^{3}-\frac{2}{5}a^{2}+\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{10}a^{20}-\frac{1}{10}a^{18}+\frac{1}{10}a^{17}+\frac{1}{10}a^{16}-\frac{2}{5}a^{13}-\frac{2}{5}a^{12}+\frac{2}{5}a^{11}+\frac{1}{5}a^{10}+\frac{2}{5}a^{9}+\frac{2}{5}a^{8}+\frac{2}{5}a^{7}-\frac{2}{5}a^{5}+\frac{2}{5}a^{4}+\frac{2}{5}a^{2}+\frac{1}{5}a-\frac{2}{5}$, $\frac{1}{10}a^{21}-\frac{1}{10}a^{18}-\frac{1}{10}a^{17}-\frac{2}{5}a^{15}+\frac{2}{5}a^{14}+\frac{1}{5}a^{12}+\frac{1}{5}a^{11}-\frac{1}{5}a^{10}-\frac{1}{5}a^{9}+\frac{1}{5}a^{7}-\frac{2}{5}a^{6}+\frac{2}{5}a^{5}-\frac{2}{5}a^{4}-\frac{2}{5}a^{3}-\frac{1}{5}a^{2}-\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{10}a^{22}+\frac{1}{5}a^{18}-\frac{1}{5}a^{17}+\frac{1}{10}a^{16}-\frac{1}{5}a^{14}-\frac{2}{5}a^{13}-\frac{1}{5}a^{11}+\frac{1}{5}a^{10}+\frac{2}{5}a^{9}-\frac{1}{5}a^{8}-\frac{1}{5}a^{7}+\frac{2}{5}a^{6}-\frac{2}{5}a^{5}+\frac{1}{5}a^{4}+\frac{2}{5}a^{2}-\frac{1}{5}$, $\frac{1}{30}a^{23}-\frac{1}{30}a^{22}+\frac{1}{30}a^{21}-\frac{1}{5}a^{18}+\frac{1}{5}a^{17}-\frac{1}{5}a^{16}+\frac{2}{5}a^{15}-\frac{2}{15}a^{14}-\frac{7}{15}a^{13}+\frac{7}{15}a^{12}-\frac{2}{15}a^{11}-\frac{4}{15}a^{10}+\frac{7}{15}a^{9}-\frac{1}{15}a^{8}+\frac{7}{15}a^{7}-\frac{1}{15}a^{6}+\frac{1}{3}a^{5}+\frac{1}{15}a^{4}-\frac{7}{15}a^{3}-\frac{4}{15}a^{2}+\frac{1}{15}a+\frac{2}{15}$, $\frac{1}{30}a^{24}+\frac{1}{30}a^{21}+\frac{1}{10}a^{18}+\frac{1}{10}a^{17}+\frac{1}{5}a^{16}+\frac{7}{15}a^{15}-\frac{1}{5}a^{13}-\frac{1}{15}a^{12}-\frac{2}{5}a^{11}+\frac{1}{5}a^{9}-\frac{2}{5}a^{8}-\frac{1}{5}a^{7}+\frac{4}{15}a^{6}+\frac{2}{5}a^{5}-\frac{1}{5}a^{4}-\frac{1}{3}a^{3}-\frac{2}{5}a-\frac{4}{15}$, $\frac{1}{30}a^{25}+\frac{1}{30}a^{22}-\frac{1}{5}a^{18}-\frac{1}{10}a^{17}-\frac{1}{30}a^{16}+\frac{2}{5}a^{15}-\frac{7}{15}a^{13}-\frac{1}{5}a^{12}-\frac{1}{5}a^{10}+\frac{1}{5}a^{9}+\frac{1}{5}a^{8}+\frac{1}{15}a^{7}+\frac{2}{5}a^{6}-\frac{1}{5}a^{5}+\frac{1}{15}a^{4}-\frac{1}{5}a^{3}-\frac{7}{15}a+\frac{1}{5}$, $\frac{1}{17\!\cdots\!60}a^{26}-\frac{13\!\cdots\!79}{88\!\cdots\!30}a^{25}-\frac{23\!\cdots\!00}{30\!\cdots\!27}a^{24}-\frac{13\!\cdots\!91}{88\!\cdots\!30}a^{23}-\frac{15\!\cdots\!13}{88\!\cdots\!30}a^{22}+\frac{22\!\cdots\!65}{88\!\cdots\!83}a^{21}+\frac{99\!\cdots\!89}{29\!\cdots\!10}a^{20}-\frac{58\!\cdots\!39}{13\!\cdots\!55}a^{19}-\frac{55\!\cdots\!57}{29\!\cdots\!10}a^{18}+\frac{82\!\cdots\!93}{44\!\cdots\!15}a^{17}+\frac{77\!\cdots\!34}{40\!\cdots\!65}a^{16}+\frac{27\!\cdots\!41}{44\!\cdots\!15}a^{15}+\frac{35\!\cdots\!88}{14\!\cdots\!05}a^{14}+\frac{56\!\cdots\!14}{14\!\cdots\!05}a^{13}-\frac{12\!\cdots\!89}{29\!\cdots\!61}a^{12}+\frac{22\!\cdots\!76}{88\!\cdots\!83}a^{11}-\frac{34\!\cdots\!85}{17\!\cdots\!66}a^{10}-\frac{74\!\cdots\!94}{40\!\cdots\!65}a^{9}-\frac{17\!\cdots\!82}{14\!\cdots\!05}a^{8}+\frac{50\!\cdots\!52}{14\!\cdots\!05}a^{7}+\frac{39\!\cdots\!29}{14\!\cdots\!05}a^{6}+\frac{11\!\cdots\!17}{29\!\cdots\!61}a^{5}-\frac{53\!\cdots\!39}{14\!\cdots\!05}a^{4}+\frac{45\!\cdots\!47}{14\!\cdots\!05}a^{3}+\frac{58\!\cdots\!71}{44\!\cdots\!15}a^{2}-\frac{22\!\cdots\!53}{88\!\cdots\!83}a-\frac{99\!\cdots\!34}{44\!\cdots\!15}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{99\!\cdots\!39}{29\!\cdots\!10}a^{26}+\frac{10\!\cdots\!86}{44\!\cdots\!15}a^{25}+\frac{57\!\cdots\!87}{30\!\cdots\!70}a^{24}+\frac{10\!\cdots\!29}{17\!\cdots\!66}a^{23}-\frac{27\!\cdots\!06}{44\!\cdots\!15}a^{22}-\frac{71\!\cdots\!34}{14\!\cdots\!05}a^{21}-\frac{66\!\cdots\!01}{29\!\cdots\!10}a^{20}+\frac{10\!\cdots\!31}{53\!\cdots\!02}a^{19}+\frac{87\!\cdots\!71}{29\!\cdots\!10}a^{18}-\frac{68\!\cdots\!19}{14\!\cdots\!05}a^{17}-\frac{12\!\cdots\!56}{80\!\cdots\!53}a^{16}-\frac{22\!\cdots\!88}{44\!\cdots\!15}a^{15}+\frac{14\!\cdots\!36}{44\!\cdots\!15}a^{14}+\frac{14\!\cdots\!89}{29\!\cdots\!61}a^{13}-\frac{42\!\cdots\!21}{44\!\cdots\!15}a^{12}-\frac{30\!\cdots\!39}{44\!\cdots\!15}a^{11}-\frac{42\!\cdots\!75}{88\!\cdots\!83}a^{10}+\frac{23\!\cdots\!93}{40\!\cdots\!65}a^{9}+\frac{52\!\cdots\!94}{44\!\cdots\!15}a^{8}+\frac{11\!\cdots\!23}{29\!\cdots\!61}a^{7}-\frac{68\!\cdots\!88}{44\!\cdots\!15}a^{6}-\frac{16\!\cdots\!93}{44\!\cdots\!15}a^{5}-\frac{13\!\cdots\!79}{29\!\cdots\!61}a^{4}-\frac{15\!\cdots\!04}{44\!\cdots\!15}a^{3}-\frac{76\!\cdots\!06}{44\!\cdots\!15}a^{2}-\frac{20\!\cdots\!47}{44\!\cdots\!15}a-\frac{72\!\cdots\!31}{14\!\cdots\!05}$, $\frac{66\!\cdots\!41}{14\!\cdots\!05}a^{26}+\frac{55\!\cdots\!78}{44\!\cdots\!15}a^{25}-\frac{92\!\cdots\!09}{30\!\cdots\!70}a^{24}-\frac{15\!\cdots\!51}{14\!\cdots\!05}a^{23}+\frac{15\!\cdots\!40}{88\!\cdots\!83}a^{22}+\frac{33\!\cdots\!62}{44\!\cdots\!15}a^{21}+\frac{25\!\cdots\!12}{29\!\cdots\!61}a^{20}-\frac{36\!\cdots\!42}{13\!\cdots\!55}a^{19}-\frac{97\!\cdots\!76}{14\!\cdots\!05}a^{18}+\frac{11\!\cdots\!99}{29\!\cdots\!10}a^{17}+\frac{11\!\cdots\!62}{40\!\cdots\!65}a^{16}+\frac{20\!\cdots\!74}{88\!\cdots\!83}a^{15}-\frac{13\!\cdots\!54}{29\!\cdots\!61}a^{14}-\frac{48\!\cdots\!99}{44\!\cdots\!15}a^{13}-\frac{17\!\cdots\!68}{44\!\cdots\!15}a^{12}+\frac{17\!\cdots\!19}{14\!\cdots\!05}a^{11}+\frac{20\!\cdots\!42}{14\!\cdots\!05}a^{10}-\frac{83\!\cdots\!62}{13\!\cdots\!55}a^{9}-\frac{36\!\cdots\!41}{14\!\cdots\!05}a^{8}-\frac{13\!\cdots\!21}{88\!\cdots\!83}a^{7}+\frac{97\!\cdots\!91}{44\!\cdots\!15}a^{6}+\frac{10\!\cdots\!99}{14\!\cdots\!05}a^{5}+\frac{42\!\cdots\!39}{44\!\cdots\!15}a^{4}+\frac{37\!\cdots\!31}{44\!\cdots\!15}a^{3}+\frac{13\!\cdots\!73}{29\!\cdots\!61}a^{2}+\frac{63\!\cdots\!67}{44\!\cdots\!15}a+\frac{15\!\cdots\!59}{88\!\cdots\!83}$, $\frac{10\!\cdots\!74}{14\!\cdots\!05}a^{26}-\frac{36\!\cdots\!90}{88\!\cdots\!83}a^{25}-\frac{63\!\cdots\!34}{15\!\cdots\!35}a^{24}-\frac{11\!\cdots\!52}{88\!\cdots\!83}a^{23}+\frac{10\!\cdots\!21}{88\!\cdots\!30}a^{22}+\frac{47\!\cdots\!88}{44\!\cdots\!15}a^{21}+\frac{16\!\cdots\!99}{29\!\cdots\!10}a^{20}-\frac{11\!\cdots\!89}{26\!\cdots\!10}a^{19}-\frac{20\!\cdots\!51}{29\!\cdots\!10}a^{18}+\frac{28\!\cdots\!41}{29\!\cdots\!10}a^{17}+\frac{14\!\cdots\!02}{40\!\cdots\!65}a^{16}+\frac{59\!\cdots\!29}{44\!\cdots\!15}a^{15}-\frac{63\!\cdots\!32}{88\!\cdots\!83}a^{14}-\frac{17\!\cdots\!99}{14\!\cdots\!05}a^{13}-\frac{89\!\cdots\!45}{29\!\cdots\!61}a^{12}+\frac{68\!\cdots\!97}{44\!\cdots\!15}a^{11}+\frac{50\!\cdots\!74}{44\!\cdots\!15}a^{10}-\frac{50\!\cdots\!42}{40\!\cdots\!65}a^{9}-\frac{11\!\cdots\!02}{44\!\cdots\!15}a^{8}-\frac{14\!\cdots\!19}{14\!\cdots\!05}a^{7}+\frac{50\!\cdots\!93}{14\!\cdots\!05}a^{6}+\frac{35\!\cdots\!88}{44\!\cdots\!15}a^{5}+\frac{14\!\cdots\!66}{14\!\cdots\!05}a^{4}+\frac{11\!\cdots\!22}{14\!\cdots\!05}a^{3}+\frac{35\!\cdots\!03}{88\!\cdots\!83}a^{2}+\frac{48\!\cdots\!67}{44\!\cdots\!15}a+\frac{10\!\cdots\!93}{88\!\cdots\!83}$, $\frac{15\!\cdots\!01}{49\!\cdots\!35}a^{26}+\frac{12\!\cdots\!13}{99\!\cdots\!70}a^{25}-\frac{72\!\cdots\!89}{34\!\cdots\!30}a^{24}-\frac{11\!\cdots\!68}{16\!\cdots\!45}a^{23}+\frac{23\!\cdots\!39}{33\!\cdots\!90}a^{22}+\frac{17\!\cdots\!99}{33\!\cdots\!90}a^{21}+\frac{10\!\cdots\!61}{16\!\cdots\!45}a^{20}-\frac{55\!\cdots\!51}{30\!\cdots\!90}a^{19}-\frac{77\!\cdots\!76}{16\!\cdots\!45}a^{18}+\frac{12\!\cdots\!99}{49\!\cdots\!35}a^{17}+\frac{18\!\cdots\!89}{90\!\cdots\!77}a^{16}+\frac{82\!\cdots\!42}{49\!\cdots\!35}a^{15}-\frac{16\!\cdots\!06}{49\!\cdots\!35}a^{14}-\frac{38\!\cdots\!66}{49\!\cdots\!35}a^{13}-\frac{13\!\cdots\!56}{49\!\cdots\!35}a^{12}+\frac{43\!\cdots\!66}{49\!\cdots\!35}a^{11}+\frac{49\!\cdots\!57}{49\!\cdots\!35}a^{10}-\frac{21\!\cdots\!53}{45\!\cdots\!85}a^{9}-\frac{86\!\cdots\!88}{49\!\cdots\!35}a^{8}-\frac{52\!\cdots\!22}{49\!\cdots\!35}a^{7}+\frac{15\!\cdots\!60}{99\!\cdots\!47}a^{6}+\frac{23\!\cdots\!68}{49\!\cdots\!35}a^{5}+\frac{32\!\cdots\!12}{49\!\cdots\!35}a^{4}+\frac{28\!\cdots\!79}{49\!\cdots\!35}a^{3}+\frac{10\!\cdots\!95}{33\!\cdots\!49}a^{2}+\frac{15\!\cdots\!46}{16\!\cdots\!45}a+\frac{39\!\cdots\!35}{33\!\cdots\!49}$, $\frac{22\!\cdots\!21}{88\!\cdots\!83}a^{26}+\frac{34\!\cdots\!41}{44\!\cdots\!15}a^{25}+\frac{86\!\cdots\!19}{50\!\cdots\!45}a^{24}+\frac{78\!\cdots\!11}{14\!\cdots\!05}a^{23}-\frac{21\!\cdots\!09}{88\!\cdots\!30}a^{22}-\frac{37\!\cdots\!41}{88\!\cdots\!30}a^{21}-\frac{10\!\cdots\!01}{29\!\cdots\!10}a^{20}+\frac{21\!\cdots\!18}{13\!\cdots\!55}a^{19}+\frac{18\!\cdots\!93}{59\!\cdots\!22}a^{18}-\frac{13\!\cdots\!64}{44\!\cdots\!15}a^{17}-\frac{11\!\cdots\!11}{80\!\cdots\!53}a^{16}-\frac{25\!\cdots\!19}{29\!\cdots\!61}a^{15}+\frac{12\!\cdots\!14}{44\!\cdots\!15}a^{14}+\frac{77\!\cdots\!26}{14\!\cdots\!05}a^{13}+\frac{80\!\cdots\!87}{88\!\cdots\!83}a^{12}-\frac{29\!\cdots\!17}{44\!\cdots\!15}a^{11}-\frac{25\!\cdots\!04}{44\!\cdots\!15}a^{10}+\frac{18\!\cdots\!59}{40\!\cdots\!65}a^{9}+\frac{52\!\cdots\!12}{44\!\cdots\!15}a^{8}+\frac{16\!\cdots\!87}{29\!\cdots\!61}a^{7}-\frac{57\!\cdots\!94}{44\!\cdots\!15}a^{6}-\frac{30\!\cdots\!05}{88\!\cdots\!83}a^{5}-\frac{65\!\cdots\!67}{14\!\cdots\!05}a^{4}-\frac{16\!\cdots\!24}{44\!\cdots\!15}a^{3}-\frac{27\!\cdots\!41}{14\!\cdots\!05}a^{2}-\frac{22\!\cdots\!76}{44\!\cdots\!15}a-\frac{50\!\cdots\!79}{88\!\cdots\!83}$, $\frac{11\!\cdots\!97}{29\!\cdots\!10}a^{26}-\frac{55\!\cdots\!81}{17\!\cdots\!66}a^{25}-\frac{31\!\cdots\!44}{15\!\cdots\!35}a^{24}-\frac{60\!\cdots\!79}{88\!\cdots\!30}a^{23}+\frac{23\!\cdots\!83}{29\!\cdots\!61}a^{22}+\frac{96\!\cdots\!89}{17\!\cdots\!66}a^{21}+\frac{59\!\cdots\!71}{29\!\cdots\!10}a^{20}-\frac{60\!\cdots\!67}{26\!\cdots\!10}a^{19}-\frac{46\!\cdots\!89}{14\!\cdots\!05}a^{18}+\frac{82\!\cdots\!39}{14\!\cdots\!05}a^{17}+\frac{69\!\cdots\!14}{40\!\cdots\!65}a^{16}+\frac{19\!\cdots\!52}{44\!\cdots\!15}a^{15}-\frac{16\!\cdots\!58}{44\!\cdots\!15}a^{14}-\frac{23\!\cdots\!08}{44\!\cdots\!15}a^{13}+\frac{72\!\cdots\!41}{14\!\cdots\!05}a^{12}+\frac{34\!\cdots\!42}{44\!\cdots\!15}a^{11}+\frac{21\!\cdots\!54}{44\!\cdots\!15}a^{10}-\frac{27\!\cdots\!74}{40\!\cdots\!65}a^{9}-\frac{56\!\cdots\!96}{44\!\cdots\!15}a^{8}-\frac{32\!\cdots\!11}{88\!\cdots\!83}a^{7}+\frac{52\!\cdots\!45}{29\!\cdots\!61}a^{6}+\frac{17\!\cdots\!32}{44\!\cdots\!15}a^{5}+\frac{42\!\cdots\!94}{88\!\cdots\!83}a^{4}+\frac{54\!\cdots\!27}{14\!\cdots\!05}a^{3}+\frac{78\!\cdots\!77}{44\!\cdots\!15}a^{2}+\frac{68\!\cdots\!62}{14\!\cdots\!05}a+\frac{42\!\cdots\!95}{88\!\cdots\!83}$, $\frac{97\!\cdots\!28}{44\!\cdots\!15}a^{26}+\frac{16\!\cdots\!47}{44\!\cdots\!15}a^{25}+\frac{19\!\cdots\!51}{20\!\cdots\!18}a^{24}+\frac{12\!\cdots\!94}{44\!\cdots\!15}a^{23}-\frac{43\!\cdots\!25}{59\!\cdots\!22}a^{22}-\frac{44\!\cdots\!19}{17\!\cdots\!66}a^{21}+\frac{23\!\cdots\!22}{14\!\cdots\!05}a^{20}+\frac{33\!\cdots\!57}{26\!\cdots\!10}a^{19}+\frac{76\!\cdots\!12}{14\!\cdots\!05}a^{18}-\frac{37\!\cdots\!31}{88\!\cdots\!30}a^{17}-\frac{23\!\cdots\!09}{40\!\cdots\!65}a^{16}+\frac{74\!\cdots\!12}{14\!\cdots\!05}a^{15}+\frac{27\!\cdots\!12}{14\!\cdots\!05}a^{14}+\frac{44\!\cdots\!28}{44\!\cdots\!15}a^{13}-\frac{88\!\cdots\!37}{44\!\cdots\!15}a^{12}-\frac{23\!\cdots\!27}{88\!\cdots\!83}a^{11}+\frac{81\!\cdots\!75}{88\!\cdots\!83}a^{10}+\frac{31\!\cdots\!01}{80\!\cdots\!53}a^{9}+\frac{39\!\cdots\!97}{14\!\cdots\!05}a^{8}-\frac{93\!\cdots\!59}{44\!\cdots\!15}a^{7}-\frac{38\!\cdots\!34}{44\!\cdots\!15}a^{6}-\frac{38\!\cdots\!91}{29\!\cdots\!61}a^{5}-\frac{51\!\cdots\!52}{44\!\cdots\!15}a^{4}-\frac{27\!\cdots\!52}{44\!\cdots\!15}a^{3}-\frac{89\!\cdots\!91}{44\!\cdots\!15}a^{2}-\frac{11\!\cdots\!97}{14\!\cdots\!05}a-\frac{24\!\cdots\!57}{88\!\cdots\!83}$, $\frac{49\!\cdots\!94}{88\!\cdots\!83}a^{26}-\frac{11\!\cdots\!21}{88\!\cdots\!83}a^{25}+\frac{26\!\cdots\!65}{61\!\cdots\!54}a^{24}+\frac{27\!\cdots\!61}{88\!\cdots\!30}a^{23}+\frac{89\!\cdots\!79}{88\!\cdots\!30}a^{22}-\frac{33\!\cdots\!01}{44\!\cdots\!15}a^{21}-\frac{13\!\cdots\!89}{14\!\cdots\!05}a^{20}+\frac{80\!\cdots\!91}{26\!\cdots\!10}a^{19}+\frac{38\!\cdots\!67}{59\!\cdots\!22}a^{18}-\frac{56\!\cdots\!11}{88\!\cdots\!30}a^{17}-\frac{24\!\cdots\!65}{80\!\cdots\!53}a^{16}-\frac{28\!\cdots\!89}{44\!\cdots\!15}a^{15}+\frac{32\!\cdots\!99}{44\!\cdots\!15}a^{14}+\frac{37\!\cdots\!12}{44\!\cdots\!15}a^{13}-\frac{29\!\cdots\!71}{44\!\cdots\!15}a^{12}-\frac{29\!\cdots\!81}{14\!\cdots\!05}a^{11}-\frac{60\!\cdots\!88}{14\!\cdots\!05}a^{10}+\frac{32\!\cdots\!76}{13\!\cdots\!55}a^{9}+\frac{18\!\cdots\!03}{88\!\cdots\!83}a^{8}-\frac{39\!\cdots\!46}{44\!\cdots\!15}a^{7}-\frac{32\!\cdots\!63}{88\!\cdots\!83}a^{6}-\frac{19\!\cdots\!38}{44\!\cdots\!15}a^{5}-\frac{96\!\cdots\!47}{44\!\cdots\!15}a^{4}+\frac{80\!\cdots\!82}{44\!\cdots\!15}a^{3}+\frac{41\!\cdots\!31}{88\!\cdots\!83}a^{2}+\frac{15\!\cdots\!58}{44\!\cdots\!15}a+\frac{82\!\cdots\!63}{88\!\cdots\!83}$, $\frac{98\!\cdots\!83}{88\!\cdots\!30}a^{26}+\frac{10\!\cdots\!46}{14\!\cdots\!05}a^{25}+\frac{98\!\cdots\!27}{15\!\cdots\!35}a^{24}+\frac{59\!\cdots\!69}{29\!\cdots\!10}a^{23}-\frac{90\!\cdots\!98}{44\!\cdots\!15}a^{22}-\frac{24\!\cdots\!42}{14\!\cdots\!05}a^{21}-\frac{22\!\cdots\!21}{29\!\cdots\!10}a^{20}+\frac{18\!\cdots\!73}{26\!\cdots\!10}a^{19}+\frac{14\!\cdots\!36}{14\!\cdots\!05}a^{18}-\frac{14\!\cdots\!17}{88\!\cdots\!83}a^{17}-\frac{71\!\cdots\!96}{13\!\cdots\!55}a^{16}-\frac{71\!\cdots\!63}{44\!\cdots\!15}a^{15}+\frac{50\!\cdots\!31}{44\!\cdots\!15}a^{14}+\frac{75\!\cdots\!06}{44\!\cdots\!15}a^{13}-\frac{54\!\cdots\!27}{44\!\cdots\!15}a^{12}-\frac{10\!\cdots\!79}{44\!\cdots\!15}a^{11}-\frac{68\!\cdots\!57}{44\!\cdots\!15}a^{10}+\frac{85\!\cdots\!22}{40\!\cdots\!65}a^{9}+\frac{17\!\cdots\!08}{44\!\cdots\!15}a^{8}+\frac{51\!\cdots\!09}{44\!\cdots\!15}a^{7}-\frac{23\!\cdots\!84}{44\!\cdots\!15}a^{6}-\frac{53\!\cdots\!56}{44\!\cdots\!15}a^{5}-\frac{64\!\cdots\!97}{44\!\cdots\!15}a^{4}-\frac{49\!\cdots\!56}{44\!\cdots\!15}a^{3}-\frac{75\!\cdots\!91}{14\!\cdots\!05}a^{2}-\frac{53\!\cdots\!61}{44\!\cdots\!15}a-\frac{15\!\cdots\!07}{14\!\cdots\!05}$, $\frac{51\!\cdots\!77}{88\!\cdots\!30}a^{26}-\frac{13\!\cdots\!61}{29\!\cdots\!10}a^{25}-\frac{94\!\cdots\!07}{30\!\cdots\!70}a^{24}-\frac{45\!\cdots\!17}{44\!\cdots\!15}a^{23}+\frac{50\!\cdots\!29}{44\!\cdots\!15}a^{22}+\frac{23\!\cdots\!51}{29\!\cdots\!10}a^{21}+\frac{49\!\cdots\!81}{14\!\cdots\!05}a^{20}-\frac{44\!\cdots\!41}{13\!\cdots\!55}a^{19}-\frac{14\!\cdots\!37}{29\!\cdots\!10}a^{18}+\frac{35\!\cdots\!92}{44\!\cdots\!15}a^{17}+\frac{34\!\cdots\!91}{13\!\cdots\!55}a^{16}+\frac{34\!\cdots\!64}{44\!\cdots\!15}a^{15}-\frac{81\!\cdots\!03}{14\!\cdots\!05}a^{14}-\frac{36\!\cdots\!24}{44\!\cdots\!15}a^{13}+\frac{11\!\cdots\!79}{44\!\cdots\!15}a^{12}+\frac{50\!\cdots\!68}{44\!\cdots\!15}a^{11}+\frac{68\!\cdots\!32}{88\!\cdots\!83}a^{10}-\frac{38\!\cdots\!97}{40\!\cdots\!65}a^{9}-\frac{28\!\cdots\!11}{14\!\cdots\!05}a^{8}-\frac{28\!\cdots\!24}{44\!\cdots\!15}a^{7}+\frac{11\!\cdots\!06}{44\!\cdots\!15}a^{6}+\frac{17\!\cdots\!04}{29\!\cdots\!61}a^{5}+\frac{65\!\cdots\!23}{88\!\cdots\!83}a^{4}+\frac{26\!\cdots\!88}{44\!\cdots\!15}a^{3}+\frac{13\!\cdots\!98}{44\!\cdots\!15}a^{2}+\frac{37\!\cdots\!24}{44\!\cdots\!15}a+\frac{15\!\cdots\!07}{14\!\cdots\!05}$, $\frac{29\!\cdots\!83}{88\!\cdots\!30}a^{26}+\frac{79\!\cdots\!57}{29\!\cdots\!10}a^{25}+\frac{18\!\cdots\!97}{10\!\cdots\!09}a^{24}+\frac{87\!\cdots\!27}{14\!\cdots\!05}a^{23}-\frac{30\!\cdots\!26}{44\!\cdots\!15}a^{22}-\frac{42\!\cdots\!57}{88\!\cdots\!30}a^{21}-\frac{99\!\cdots\!63}{59\!\cdots\!22}a^{20}+\frac{53\!\cdots\!09}{26\!\cdots\!10}a^{19}+\frac{80\!\cdots\!97}{29\!\cdots\!10}a^{18}-\frac{88\!\cdots\!23}{17\!\cdots\!66}a^{17}-\frac{40\!\cdots\!36}{26\!\cdots\!51}a^{16}-\frac{50\!\cdots\!56}{14\!\cdots\!05}a^{15}+\frac{14\!\cdots\!81}{44\!\cdots\!15}a^{14}+\frac{20\!\cdots\!01}{44\!\cdots\!15}a^{13}-\frac{27\!\cdots\!19}{44\!\cdots\!15}a^{12}-\frac{60\!\cdots\!95}{88\!\cdots\!83}a^{11}-\frac{34\!\cdots\!74}{88\!\cdots\!83}a^{10}+\frac{24\!\cdots\!38}{40\!\cdots\!65}a^{9}+\frac{97\!\cdots\!94}{88\!\cdots\!83}a^{8}+\frac{12\!\cdots\!88}{44\!\cdots\!15}a^{7}-\frac{69\!\cdots\!02}{44\!\cdots\!15}a^{6}-\frac{15\!\cdots\!19}{44\!\cdots\!15}a^{5}-\frac{18\!\cdots\!37}{44\!\cdots\!15}a^{4}-\frac{27\!\cdots\!56}{88\!\cdots\!83}a^{3}-\frac{21\!\cdots\!77}{14\!\cdots\!05}a^{2}-\frac{31\!\cdots\!08}{88\!\cdots\!83}a-\frac{14\!\cdots\!71}{44\!\cdots\!15}$, $\frac{13\!\cdots\!17}{29\!\cdots\!10}a^{26}-\frac{95\!\cdots\!67}{29\!\cdots\!10}a^{25}-\frac{38\!\cdots\!03}{15\!\cdots\!35}a^{24}-\frac{73\!\cdots\!07}{88\!\cdots\!30}a^{23}+\frac{15\!\cdots\!73}{17\!\cdots\!66}a^{22}+\frac{19\!\cdots\!87}{29\!\cdots\!61}a^{21}+\frac{17\!\cdots\!87}{59\!\cdots\!22}a^{20}-\frac{36\!\cdots\!18}{13\!\cdots\!55}a^{19}-\frac{58\!\cdots\!03}{14\!\cdots\!05}a^{18}+\frac{18\!\cdots\!51}{29\!\cdots\!10}a^{17}+\frac{56\!\cdots\!40}{26\!\cdots\!51}a^{16}+\frac{30\!\cdots\!13}{44\!\cdots\!15}a^{15}-\frac{19\!\cdots\!18}{44\!\cdots\!15}a^{14}-\frac{30\!\cdots\!03}{44\!\cdots\!15}a^{13}+\frac{15\!\cdots\!90}{88\!\cdots\!83}a^{12}+\frac{41\!\cdots\!61}{44\!\cdots\!15}a^{11}+\frac{56\!\cdots\!37}{88\!\cdots\!83}a^{10}-\frac{31\!\cdots\!03}{40\!\cdots\!65}a^{9}-\frac{70\!\cdots\!64}{44\!\cdots\!15}a^{8}-\frac{23\!\cdots\!77}{44\!\cdots\!15}a^{7}+\frac{18\!\cdots\!01}{88\!\cdots\!83}a^{6}+\frac{21\!\cdots\!33}{44\!\cdots\!15}a^{5}+\frac{26\!\cdots\!03}{44\!\cdots\!15}a^{4}+\frac{20\!\cdots\!33}{44\!\cdots\!15}a^{3}+\frac{10\!\cdots\!43}{44\!\cdots\!15}a^{2}+\frac{27\!\cdots\!17}{44\!\cdots\!15}a+\frac{96\!\cdots\!53}{14\!\cdots\!05}$, $\frac{14\!\cdots\!22}{88\!\cdots\!83}a^{26}+\frac{72\!\cdots\!01}{29\!\cdots\!10}a^{25}-\frac{10\!\cdots\!41}{10\!\cdots\!90}a^{24}-\frac{46\!\cdots\!36}{88\!\cdots\!83}a^{23}-\frac{11\!\cdots\!67}{29\!\cdots\!10}a^{22}+\frac{84\!\cdots\!65}{29\!\cdots\!61}a^{21}+\frac{20\!\cdots\!99}{29\!\cdots\!10}a^{20}-\frac{76\!\cdots\!29}{13\!\cdots\!55}a^{19}-\frac{54\!\cdots\!88}{14\!\cdots\!05}a^{18}-\frac{75\!\cdots\!72}{44\!\cdots\!15}a^{17}+\frac{16\!\cdots\!83}{13\!\cdots\!55}a^{16}+\frac{32\!\cdots\!51}{14\!\cdots\!05}a^{15}-\frac{30\!\cdots\!33}{44\!\cdots\!15}a^{14}-\frac{94\!\cdots\!13}{14\!\cdots\!05}a^{13}-\frac{19\!\cdots\!36}{29\!\cdots\!61}a^{12}+\frac{42\!\cdots\!79}{14\!\cdots\!05}a^{11}+\frac{16\!\cdots\!88}{14\!\cdots\!05}a^{10}+\frac{56\!\cdots\!48}{13\!\cdots\!55}a^{9}-\frac{56\!\cdots\!73}{44\!\cdots\!15}a^{8}-\frac{52\!\cdots\!55}{29\!\cdots\!61}a^{7}+\frac{21\!\cdots\!91}{14\!\cdots\!05}a^{6}+\frac{16\!\cdots\!02}{44\!\cdots\!15}a^{5}+\frac{98\!\cdots\!56}{14\!\cdots\!05}a^{4}+\frac{10\!\cdots\!66}{14\!\cdots\!05}a^{3}+\frac{23\!\cdots\!07}{44\!\cdots\!15}a^{2}+\frac{33\!\cdots\!44}{14\!\cdots\!05}a+\frac{70\!\cdots\!83}{14\!\cdots\!05}$, $\frac{18\!\cdots\!13}{88\!\cdots\!30}a^{26}-\frac{45\!\cdots\!58}{29\!\cdots\!61}a^{25}-\frac{35\!\cdots\!99}{30\!\cdots\!70}a^{24}-\frac{33\!\cdots\!31}{88\!\cdots\!30}a^{23}+\frac{35\!\cdots\!07}{88\!\cdots\!30}a^{22}+\frac{44\!\cdots\!21}{14\!\cdots\!05}a^{21}+\frac{19\!\cdots\!23}{14\!\cdots\!05}a^{20}-\frac{33\!\cdots\!16}{26\!\cdots\!51}a^{19}-\frac{53\!\cdots\!19}{29\!\cdots\!10}a^{18}+\frac{51\!\cdots\!93}{17\!\cdots\!66}a^{17}+\frac{25\!\cdots\!85}{26\!\cdots\!51}a^{16}+\frac{13\!\cdots\!86}{44\!\cdots\!15}a^{15}-\frac{30\!\cdots\!94}{14\!\cdots\!05}a^{14}-\frac{13\!\cdots\!44}{44\!\cdots\!15}a^{13}+\frac{59\!\cdots\!13}{88\!\cdots\!83}a^{12}+\frac{18\!\cdots\!04}{44\!\cdots\!15}a^{11}+\frac{12\!\cdots\!71}{44\!\cdots\!15}a^{10}-\frac{28\!\cdots\!34}{80\!\cdots\!53}a^{9}-\frac{21\!\cdots\!80}{29\!\cdots\!61}a^{8}-\frac{22\!\cdots\!78}{88\!\cdots\!83}a^{7}+\frac{84\!\cdots\!85}{88\!\cdots\!83}a^{6}+\frac{32\!\cdots\!54}{14\!\cdots\!05}a^{5}+\frac{12\!\cdots\!81}{44\!\cdots\!15}a^{4}+\frac{96\!\cdots\!64}{44\!\cdots\!15}a^{3}+\frac{94\!\cdots\!76}{88\!\cdots\!83}a^{2}+\frac{12\!\cdots\!11}{44\!\cdots\!15}a+\frac{44\!\cdots\!41}{14\!\cdots\!05}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 134255356693.02907 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{12}\cdot 134255356693.02907 \cdot 1}{2\cdot\sqrt{393020301725748191821824000000000000000000}}\cr\approx \mathstrut & 3.24296709443952 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 6*x^25 - 22*x^24 + 6*x^23 + 156*x^22 + 166*x^21 - 540*x^20 - 1284*x^19 + 764*x^18 + 5586*x^17 + 4776*x^16 - 8664*x^15 - 21792*x^14 - 10272*x^13 + 20704*x^12 + 28602*x^11 - 7008*x^10 - 46852*x^9 - 36588*x^8 + 37356*x^7 + 139024*x^6 + 207180*x^5 + 197280*x^4 + 124824*x^3 + 50112*x^2 + 11316*x + 1048)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 6*x^25 - 22*x^24 + 6*x^23 + 156*x^22 + 166*x^21 - 540*x^20 - 1284*x^19 + 764*x^18 + 5586*x^17 + 4776*x^16 - 8664*x^15 - 21792*x^14 - 10272*x^13 + 20704*x^12 + 28602*x^11 - 7008*x^10 - 46852*x^9 - 36588*x^8 + 37356*x^7 + 139024*x^6 + 207180*x^5 + 197280*x^4 + 124824*x^3 + 50112*x^2 + 11316*x + 1048, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 6*x^25 - 22*x^24 + 6*x^23 + 156*x^22 + 166*x^21 - 540*x^20 - 1284*x^19 + 764*x^18 + 5586*x^17 + 4776*x^16 - 8664*x^15 - 21792*x^14 - 10272*x^13 + 20704*x^12 + 28602*x^11 - 7008*x^10 - 46852*x^9 - 36588*x^8 + 37356*x^7 + 139024*x^6 + 207180*x^5 + 197280*x^4 + 124824*x^3 + 50112*x^2 + 11316*x + 1048);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 6*x^25 - 22*x^24 + 6*x^23 + 156*x^22 + 166*x^21 - 540*x^20 - 1284*x^19 + 764*x^18 + 5586*x^17 + 4776*x^16 - 8664*x^15 - 21792*x^14 - 10272*x^13 + 20704*x^12 + 28602*x^11 - 7008*x^10 - 46852*x^9 - 36588*x^8 + 37356*x^7 + 139024*x^6 + 207180*x^5 + 197280*x^4 + 124824*x^3 + 50112*x^2 + 11316*x + 1048);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\SO(5,3)$ (as 27T1161):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 51840
The 25 conjugacy class representatives for $\SO(5,3)$
Character table for $\SO(5,3)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.9.0.1}{9} }^{3}$ ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.5.0.1}{5} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.9.0.1}{9} }^{3}$ ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.5.0.1}{5} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.9.0.1}{9} }^{3}$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.4.0.1}{4} }^{5}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{5}$ ${\href{/padicField/31.5.0.1}{5} }^{5}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.5.0.1}{5} }^{5}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.5.0.1}{5} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.10.16.1$x^{10} + 2 x^{7} + 4 x^{4} + 4 x^{2} + 2$$10$$1$$16$$(C_2^4 : C_5):C_4$$[12/5, 12/5, 12/5, 12/5]_{5}^{4}$
Deg $16$$16$$1$$36$
\(3\) Copy content Toggle raw display 3.9.10.2$x^{9} + 6 x^{2} + 3$$9$$1$$10$$S_3^2:C_2$$[5/4, 5/4]_{4}^{2}$
Deg $18$$6$$3$$18$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.8.6.4$x^{8} - 20 x^{4} + 50$$4$$2$$6$$C_8$$[\ ]_{4}^{2}$
5.8.6.4$x^{8} - 20 x^{4} + 50$$4$$2$$6$$C_8$$[\ ]_{4}^{2}$
5.8.6.4$x^{8} - 20 x^{4} + 50$$4$$2$$6$$C_8$$[\ ]_{4}^{2}$