Properties

Label 27.3.419...184.1
Degree $27$
Signature $[3, 12]$
Discriminant $4.190\times 10^{42}$
Root discriminant \(37.90\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\SO(5,3)$ (as 27T1161)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^25 - 24*x^24 + 36*x^23 + 180*x^22 + 108*x^21 - 792*x^20 - 486*x^19 + 784*x^18 + 4806*x^17 - 10800*x^16 + 6240*x^15 + 3960*x^14 + 9216*x^13 - 29544*x^12 + 24237*x^11 - 43704*x^10 + 90435*x^9 - 103320*x^8 + 71820*x^7 - 40524*x^6 + 49716*x^5 - 66528*x^4 + 47076*x^3 - 17208*x^2 + 3060*x - 208)
 
gp: K = bnfinit(y^27 - 9*y^25 - 24*y^24 + 36*y^23 + 180*y^22 + 108*y^21 - 792*y^20 - 486*y^19 + 784*y^18 + 4806*y^17 - 10800*y^16 + 6240*y^15 + 3960*y^14 + 9216*y^13 - 29544*y^12 + 24237*y^11 - 43704*y^10 + 90435*y^9 - 103320*y^8 + 71820*y^7 - 40524*y^6 + 49716*y^5 - 66528*y^4 + 47076*y^3 - 17208*y^2 + 3060*y - 208, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 9*x^25 - 24*x^24 + 36*x^23 + 180*x^22 + 108*x^21 - 792*x^20 - 486*x^19 + 784*x^18 + 4806*x^17 - 10800*x^16 + 6240*x^15 + 3960*x^14 + 9216*x^13 - 29544*x^12 + 24237*x^11 - 43704*x^10 + 90435*x^9 - 103320*x^8 + 71820*x^7 - 40524*x^6 + 49716*x^5 - 66528*x^4 + 47076*x^3 - 17208*x^2 + 3060*x - 208);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^25 - 24*x^24 + 36*x^23 + 180*x^22 + 108*x^21 - 792*x^20 - 486*x^19 + 784*x^18 + 4806*x^17 - 10800*x^16 + 6240*x^15 + 3960*x^14 + 9216*x^13 - 29544*x^12 + 24237*x^11 - 43704*x^10 + 90435*x^9 - 103320*x^8 + 71820*x^7 - 40524*x^6 + 49716*x^5 - 66528*x^4 + 47076*x^3 - 17208*x^2 + 3060*x - 208)
 

\( x^{27} - 9 x^{25} - 24 x^{24} + 36 x^{23} + 180 x^{22} + 108 x^{21} - 792 x^{20} - 486 x^{19} + \cdots - 208 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(4190130142377336890374035688766684144861184\) \(\medspace = 2^{56}\cdot 3^{54}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(37.90\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{5}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}+\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{13}-\frac{1}{2}a^{9}+\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}+\frac{1}{4}a^{8}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{17}-\frac{1}{4}a^{13}-\frac{1}{2}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{18}-\frac{1}{4}a^{13}-\frac{1}{2}a^{11}+\frac{1}{4}a^{10}-\frac{1}{2}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{19}-\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{2}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{20}-\frac{1}{4}a^{13}-\frac{1}{4}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{21}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{22}-\frac{1}{2}a^{10}-\frac{1}{4}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{23}-\frac{1}{2}a^{11}-\frac{1}{4}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{8}a^{24}-\frac{1}{4}a^{13}-\frac{1}{4}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{8}a^{8}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{25}+\frac{3}{8}a^{9}-\frac{1}{2}a$, $\frac{1}{35\!\cdots\!64}a^{26}+\frac{84\!\cdots\!07}{17\!\cdots\!32}a^{25}+\frac{13\!\cdots\!63}{87\!\cdots\!66}a^{24}+\frac{35\!\cdots\!31}{17\!\cdots\!32}a^{23}-\frac{41\!\cdots\!36}{43\!\cdots\!83}a^{22}-\frac{26\!\cdots\!35}{17\!\cdots\!32}a^{21}+\frac{59\!\cdots\!35}{43\!\cdots\!83}a^{20}-\frac{10\!\cdots\!57}{17\!\cdots\!32}a^{19}-\frac{54\!\cdots\!63}{87\!\cdots\!66}a^{18}+\frac{14\!\cdots\!53}{17\!\cdots\!32}a^{17}+\frac{10\!\cdots\!13}{87\!\cdots\!66}a^{16}-\frac{28\!\cdots\!53}{17\!\cdots\!32}a^{15}-\frac{36\!\cdots\!41}{87\!\cdots\!66}a^{14}+\frac{34\!\cdots\!23}{17\!\cdots\!32}a^{13}-\frac{36\!\cdots\!57}{43\!\cdots\!83}a^{12}-\frac{17\!\cdots\!13}{17\!\cdots\!32}a^{11}+\frac{64\!\cdots\!99}{35\!\cdots\!64}a^{10}-\frac{34\!\cdots\!93}{87\!\cdots\!66}a^{9}-\frac{15\!\cdots\!38}{43\!\cdots\!83}a^{8}+\frac{14\!\cdots\!77}{43\!\cdots\!83}a^{7}-\frac{15\!\cdots\!01}{87\!\cdots\!66}a^{6}+\frac{16\!\cdots\!19}{87\!\cdots\!66}a^{5}+\frac{42\!\cdots\!83}{43\!\cdots\!83}a^{4}+\frac{15\!\cdots\!96}{43\!\cdots\!83}a^{3}-\frac{18\!\cdots\!39}{87\!\cdots\!66}a^{2}-\frac{61\!\cdots\!55}{43\!\cdots\!83}a-\frac{20\!\cdots\!65}{43\!\cdots\!83}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{13\!\cdots\!03}{35\!\cdots\!64}a^{26}-\frac{15\!\cdots\!89}{17\!\cdots\!32}a^{25}+\frac{11\!\cdots\!75}{35\!\cdots\!64}a^{24}+\frac{17\!\cdots\!95}{17\!\cdots\!32}a^{23}-\frac{48\!\cdots\!94}{43\!\cdots\!83}a^{22}-\frac{12\!\cdots\!39}{17\!\cdots\!32}a^{21}-\frac{25\!\cdots\!61}{43\!\cdots\!83}a^{20}+\frac{49\!\cdots\!67}{17\!\cdots\!32}a^{19}+\frac{11\!\cdots\!73}{43\!\cdots\!83}a^{18}-\frac{20\!\cdots\!29}{87\!\cdots\!66}a^{17}-\frac{32\!\cdots\!25}{17\!\cdots\!32}a^{16}+\frac{31\!\cdots\!11}{87\!\cdots\!66}a^{15}-\frac{12\!\cdots\!11}{87\!\cdots\!66}a^{14}-\frac{32\!\cdots\!15}{17\!\cdots\!32}a^{13}-\frac{68\!\cdots\!39}{17\!\cdots\!32}a^{12}+\frac{17\!\cdots\!13}{17\!\cdots\!32}a^{11}-\frac{22\!\cdots\!69}{35\!\cdots\!64}a^{10}+\frac{25\!\cdots\!43}{17\!\cdots\!32}a^{9}-\frac{10\!\cdots\!49}{35\!\cdots\!64}a^{8}+\frac{54\!\cdots\!83}{17\!\cdots\!32}a^{7}-\frac{16\!\cdots\!61}{87\!\cdots\!66}a^{6}+\frac{44\!\cdots\!02}{43\!\cdots\!83}a^{5}-\frac{27\!\cdots\!79}{17\!\cdots\!32}a^{4}+\frac{18\!\cdots\!33}{87\!\cdots\!66}a^{3}-\frac{53\!\cdots\!45}{43\!\cdots\!83}a^{2}+\frac{14\!\cdots\!33}{43\!\cdots\!83}a-\frac{13\!\cdots\!61}{43\!\cdots\!83}$, $\frac{11\!\cdots\!17}{35\!\cdots\!64}a^{26}-\frac{12\!\cdots\!63}{17\!\cdots\!32}a^{25}+\frac{10\!\cdots\!81}{35\!\cdots\!64}a^{24}+\frac{72\!\cdots\!93}{87\!\cdots\!66}a^{23}-\frac{16\!\cdots\!35}{17\!\cdots\!32}a^{22}-\frac{10\!\cdots\!81}{17\!\cdots\!32}a^{21}-\frac{41\!\cdots\!49}{87\!\cdots\!66}a^{20}+\frac{42\!\cdots\!39}{17\!\cdots\!32}a^{19}+\frac{36\!\cdots\!63}{17\!\cdots\!32}a^{18}-\frac{35\!\cdots\!07}{17\!\cdots\!32}a^{17}-\frac{27\!\cdots\!25}{17\!\cdots\!32}a^{16}+\frac{13\!\cdots\!76}{43\!\cdots\!83}a^{15}-\frac{22\!\cdots\!63}{17\!\cdots\!32}a^{14}-\frac{68\!\cdots\!88}{43\!\cdots\!83}a^{13}-\frac{57\!\cdots\!95}{17\!\cdots\!32}a^{12}+\frac{15\!\cdots\!41}{17\!\cdots\!32}a^{11}-\frac{20\!\cdots\!53}{35\!\cdots\!64}a^{10}+\frac{11\!\cdots\!81}{87\!\cdots\!66}a^{9}-\frac{91\!\cdots\!87}{35\!\cdots\!64}a^{8}+\frac{23\!\cdots\!21}{87\!\cdots\!66}a^{7}-\frac{74\!\cdots\!20}{43\!\cdots\!83}a^{6}+\frac{16\!\cdots\!57}{17\!\cdots\!32}a^{5}-\frac{24\!\cdots\!17}{17\!\cdots\!32}a^{4}+\frac{15\!\cdots\!73}{87\!\cdots\!66}a^{3}-\frac{48\!\cdots\!24}{43\!\cdots\!83}a^{2}+\frac{26\!\cdots\!67}{87\!\cdots\!66}a-\frac{13\!\cdots\!35}{43\!\cdots\!83}$, $\frac{94\!\cdots\!21}{35\!\cdots\!64}a^{26}+\frac{75\!\cdots\!67}{17\!\cdots\!32}a^{25}-\frac{84\!\cdots\!85}{35\!\cdots\!64}a^{24}-\frac{59\!\cdots\!79}{87\!\cdots\!66}a^{23}+\frac{75\!\cdots\!61}{87\!\cdots\!66}a^{22}+\frac{87\!\cdots\!97}{17\!\cdots\!32}a^{21}+\frac{32\!\cdots\!95}{87\!\cdots\!66}a^{20}-\frac{18\!\cdots\!01}{87\!\cdots\!66}a^{19}-\frac{72\!\cdots\!94}{43\!\cdots\!83}a^{18}+\frac{16\!\cdots\!09}{87\!\cdots\!66}a^{17}+\frac{23\!\cdots\!67}{17\!\cdots\!32}a^{16}-\frac{23\!\cdots\!19}{87\!\cdots\!66}a^{15}+\frac{53\!\cdots\!45}{43\!\cdots\!83}a^{14}+\frac{11\!\cdots\!67}{87\!\cdots\!66}a^{13}+\frac{46\!\cdots\!81}{17\!\cdots\!32}a^{12}-\frac{33\!\cdots\!50}{43\!\cdots\!83}a^{11}+\frac{18\!\cdots\!51}{35\!\cdots\!64}a^{10}-\frac{18\!\cdots\!83}{17\!\cdots\!32}a^{9}+\frac{78\!\cdots\!67}{35\!\cdots\!64}a^{8}-\frac{10\!\cdots\!93}{43\!\cdots\!83}a^{7}+\frac{13\!\cdots\!53}{87\!\cdots\!66}a^{6}-\frac{14\!\cdots\!63}{17\!\cdots\!32}a^{5}+\frac{20\!\cdots\!79}{17\!\cdots\!32}a^{4}-\frac{13\!\cdots\!05}{87\!\cdots\!66}a^{3}+\frac{43\!\cdots\!21}{43\!\cdots\!83}a^{2}-\frac{24\!\cdots\!95}{87\!\cdots\!66}a+\frac{12\!\cdots\!95}{43\!\cdots\!83}$, $\frac{34\!\cdots\!71}{35\!\cdots\!64}a^{26}-\frac{34\!\cdots\!17}{17\!\cdots\!32}a^{25}+\frac{31\!\cdots\!77}{35\!\cdots\!64}a^{24}+\frac{22\!\cdots\!47}{87\!\cdots\!66}a^{23}-\frac{53\!\cdots\!39}{17\!\cdots\!32}a^{22}-\frac{32\!\cdots\!11}{17\!\cdots\!32}a^{21}-\frac{62\!\cdots\!50}{43\!\cdots\!83}a^{20}+\frac{66\!\cdots\!33}{87\!\cdots\!66}a^{19}+\frac{11\!\cdots\!05}{17\!\cdots\!32}a^{18}-\frac{28\!\cdots\!79}{43\!\cdots\!83}a^{17}-\frac{42\!\cdots\!79}{87\!\cdots\!66}a^{16}+\frac{85\!\cdots\!11}{87\!\cdots\!66}a^{15}-\frac{18\!\cdots\!15}{43\!\cdots\!83}a^{14}-\frac{20\!\cdots\!26}{43\!\cdots\!83}a^{13}-\frac{17\!\cdots\!21}{17\!\cdots\!32}a^{12}+\frac{11\!\cdots\!37}{43\!\cdots\!83}a^{11}-\frac{65\!\cdots\!63}{35\!\cdots\!64}a^{10}+\frac{69\!\cdots\!03}{17\!\cdots\!32}a^{9}-\frac{28\!\cdots\!81}{35\!\cdots\!64}a^{8}+\frac{37\!\cdots\!65}{43\!\cdots\!83}a^{7}-\frac{94\!\cdots\!05}{17\!\cdots\!32}a^{6}+\frac{51\!\cdots\!03}{17\!\cdots\!32}a^{5}-\frac{76\!\cdots\!85}{17\!\cdots\!32}a^{4}+\frac{50\!\cdots\!03}{87\!\cdots\!66}a^{3}-\frac{30\!\cdots\!31}{87\!\cdots\!66}a^{2}+\frac{87\!\cdots\!63}{87\!\cdots\!66}a-\frac{45\!\cdots\!65}{43\!\cdots\!83}$, $\frac{17\!\cdots\!18}{43\!\cdots\!83}a^{26}-\frac{48\!\cdots\!12}{43\!\cdots\!83}a^{25}+\frac{64\!\cdots\!75}{17\!\cdots\!32}a^{24}+\frac{94\!\cdots\!13}{87\!\cdots\!66}a^{23}-\frac{20\!\cdots\!81}{17\!\cdots\!32}a^{22}-\frac{67\!\cdots\!45}{87\!\cdots\!66}a^{21}-\frac{28\!\cdots\!06}{43\!\cdots\!83}a^{20}+\frac{13\!\cdots\!60}{43\!\cdots\!83}a^{19}+\frac{24\!\cdots\!11}{87\!\cdots\!66}a^{18}-\frac{42\!\cdots\!73}{17\!\cdots\!32}a^{17}-\frac{35\!\cdots\!67}{17\!\cdots\!32}a^{16}+\frac{67\!\cdots\!23}{17\!\cdots\!32}a^{15}-\frac{26\!\cdots\!11}{17\!\cdots\!32}a^{14}-\frac{88\!\cdots\!03}{43\!\cdots\!83}a^{13}-\frac{18\!\cdots\!43}{43\!\cdots\!83}a^{12}+\frac{95\!\cdots\!65}{87\!\cdots\!66}a^{11}-\frac{60\!\cdots\!25}{87\!\cdots\!66}a^{10}+\frac{28\!\cdots\!39}{17\!\cdots\!32}a^{9}-\frac{28\!\cdots\!57}{87\!\cdots\!66}a^{8}+\frac{58\!\cdots\!73}{17\!\cdots\!32}a^{7}-\frac{17\!\cdots\!91}{87\!\cdots\!66}a^{6}+\frac{97\!\cdots\!87}{87\!\cdots\!66}a^{5}-\frac{76\!\cdots\!15}{43\!\cdots\!83}a^{4}+\frac{19\!\cdots\!19}{87\!\cdots\!66}a^{3}-\frac{57\!\cdots\!06}{43\!\cdots\!83}a^{2}+\frac{15\!\cdots\!74}{43\!\cdots\!83}a-\frac{14\!\cdots\!33}{43\!\cdots\!83}$, $\frac{70\!\cdots\!65}{43\!\cdots\!83}a^{26}+\frac{50\!\cdots\!99}{17\!\cdots\!32}a^{25}-\frac{12\!\cdots\!23}{87\!\cdots\!66}a^{24}-\frac{18\!\cdots\!70}{43\!\cdots\!83}a^{23}+\frac{88\!\cdots\!29}{17\!\cdots\!32}a^{22}+\frac{13\!\cdots\!76}{43\!\cdots\!83}a^{21}+\frac{99\!\cdots\!98}{43\!\cdots\!83}a^{20}-\frac{54\!\cdots\!13}{43\!\cdots\!83}a^{19}-\frac{44\!\cdots\!85}{43\!\cdots\!83}a^{18}+\frac{47\!\cdots\!08}{43\!\cdots\!83}a^{17}+\frac{13\!\cdots\!81}{17\!\cdots\!32}a^{16}-\frac{13\!\cdots\!69}{87\!\cdots\!66}a^{15}+\frac{12\!\cdots\!77}{17\!\cdots\!32}a^{14}+\frac{67\!\cdots\!95}{87\!\cdots\!66}a^{13}+\frac{14\!\cdots\!11}{87\!\cdots\!66}a^{12}-\frac{19\!\cdots\!43}{43\!\cdots\!83}a^{11}+\frac{13\!\cdots\!94}{43\!\cdots\!83}a^{10}-\frac{11\!\cdots\!79}{17\!\cdots\!32}a^{9}+\frac{23\!\cdots\!67}{17\!\cdots\!32}a^{8}-\frac{12\!\cdots\!89}{87\!\cdots\!66}a^{7}+\frac{39\!\cdots\!34}{43\!\cdots\!83}a^{6}-\frac{42\!\cdots\!97}{87\!\cdots\!66}a^{5}+\frac{62\!\cdots\!03}{87\!\cdots\!66}a^{4}-\frac{41\!\cdots\!51}{43\!\cdots\!83}a^{3}+\frac{25\!\cdots\!61}{43\!\cdots\!83}a^{2}-\frac{72\!\cdots\!84}{43\!\cdots\!83}a+\frac{75\!\cdots\!01}{43\!\cdots\!83}$, $\frac{28\!\cdots\!65}{35\!\cdots\!64}a^{26}-\frac{15\!\cdots\!39}{87\!\cdots\!66}a^{25}+\frac{25\!\cdots\!63}{35\!\cdots\!64}a^{24}+\frac{92\!\cdots\!73}{43\!\cdots\!83}a^{23}-\frac{21\!\cdots\!67}{87\!\cdots\!66}a^{22}-\frac{26\!\cdots\!31}{17\!\cdots\!32}a^{21}-\frac{53\!\cdots\!21}{43\!\cdots\!83}a^{20}+\frac{10\!\cdots\!47}{17\!\cdots\!32}a^{19}+\frac{93\!\cdots\!65}{17\!\cdots\!32}a^{18}-\frac{45\!\cdots\!11}{87\!\cdots\!66}a^{17}-\frac{35\!\cdots\!45}{87\!\cdots\!66}a^{16}+\frac{13\!\cdots\!35}{17\!\cdots\!32}a^{15}-\frac{29\!\cdots\!43}{87\!\cdots\!66}a^{14}-\frac{17\!\cdots\!27}{43\!\cdots\!83}a^{13}-\frac{14\!\cdots\!91}{17\!\cdots\!32}a^{12}+\frac{38\!\cdots\!07}{17\!\cdots\!32}a^{11}-\frac{52\!\cdots\!61}{35\!\cdots\!64}a^{10}+\frac{28\!\cdots\!05}{87\!\cdots\!66}a^{9}-\frac{23\!\cdots\!55}{35\!\cdots\!64}a^{8}+\frac{12\!\cdots\!63}{17\!\cdots\!32}a^{7}-\frac{18\!\cdots\!25}{43\!\cdots\!83}a^{6}+\frac{41\!\cdots\!95}{17\!\cdots\!32}a^{5}-\frac{61\!\cdots\!19}{17\!\cdots\!32}a^{4}+\frac{20\!\cdots\!93}{43\!\cdots\!83}a^{3}-\frac{12\!\cdots\!49}{43\!\cdots\!83}a^{2}+\frac{68\!\cdots\!97}{87\!\cdots\!66}a-\frac{34\!\cdots\!31}{43\!\cdots\!83}$, $\frac{85\!\cdots\!25}{35\!\cdots\!64}a^{26}+\frac{20\!\cdots\!87}{43\!\cdots\!83}a^{25}-\frac{76\!\cdots\!65}{35\!\cdots\!64}a^{24}-\frac{11\!\cdots\!97}{17\!\cdots\!32}a^{23}+\frac{33\!\cdots\!54}{43\!\cdots\!83}a^{22}+\frac{79\!\cdots\!45}{17\!\cdots\!32}a^{21}+\frac{61\!\cdots\!11}{17\!\cdots\!32}a^{20}-\frac{32\!\cdots\!09}{17\!\cdots\!32}a^{19}-\frac{67\!\cdots\!65}{43\!\cdots\!83}a^{18}+\frac{70\!\cdots\!68}{43\!\cdots\!83}a^{17}+\frac{21\!\cdots\!67}{17\!\cdots\!32}a^{16}-\frac{42\!\cdots\!89}{17\!\cdots\!32}a^{15}+\frac{18\!\cdots\!99}{17\!\cdots\!32}a^{14}+\frac{51\!\cdots\!89}{43\!\cdots\!83}a^{13}+\frac{21\!\cdots\!97}{87\!\cdots\!66}a^{12}-\frac{11\!\cdots\!15}{17\!\cdots\!32}a^{11}+\frac{16\!\cdots\!43}{35\!\cdots\!64}a^{10}-\frac{85\!\cdots\!91}{87\!\cdots\!66}a^{9}+\frac{70\!\cdots\!87}{35\!\cdots\!64}a^{8}-\frac{93\!\cdots\!54}{43\!\cdots\!83}a^{7}+\frac{23\!\cdots\!47}{17\!\cdots\!32}a^{6}-\frac{12\!\cdots\!69}{17\!\cdots\!32}a^{5}+\frac{18\!\cdots\!27}{17\!\cdots\!32}a^{4}-\frac{12\!\cdots\!59}{87\!\cdots\!66}a^{3}+\frac{76\!\cdots\!91}{87\!\cdots\!66}a^{2}-\frac{21\!\cdots\!37}{87\!\cdots\!66}a+\frac{11\!\cdots\!49}{43\!\cdots\!83}$, $\frac{65\!\cdots\!49}{35\!\cdots\!64}a^{26}-\frac{67\!\cdots\!63}{17\!\cdots\!32}a^{25}+\frac{58\!\cdots\!11}{35\!\cdots\!64}a^{24}+\frac{21\!\cdots\!56}{43\!\cdots\!83}a^{23}-\frac{10\!\cdots\!65}{17\!\cdots\!32}a^{22}-\frac{30\!\cdots\!07}{87\!\cdots\!66}a^{21}-\frac{23\!\cdots\!99}{87\!\cdots\!66}a^{20}+\frac{24\!\cdots\!69}{17\!\cdots\!32}a^{19}+\frac{10\!\cdots\!21}{87\!\cdots\!66}a^{18}-\frac{21\!\cdots\!31}{17\!\cdots\!32}a^{17}-\frac{80\!\cdots\!07}{87\!\cdots\!66}a^{16}+\frac{31\!\cdots\!91}{17\!\cdots\!32}a^{15}-\frac{13\!\cdots\!15}{17\!\cdots\!32}a^{14}-\frac{15\!\cdots\!03}{17\!\cdots\!32}a^{13}-\frac{33\!\cdots\!21}{17\!\cdots\!32}a^{12}+\frac{89\!\cdots\!45}{17\!\cdots\!32}a^{11}-\frac{12\!\cdots\!63}{35\!\cdots\!64}a^{10}+\frac{65\!\cdots\!15}{87\!\cdots\!66}a^{9}-\frac{53\!\cdots\!47}{35\!\cdots\!64}a^{8}+\frac{28\!\cdots\!87}{17\!\cdots\!32}a^{7}-\frac{88\!\cdots\!89}{87\!\cdots\!66}a^{6}+\frac{95\!\cdots\!63}{17\!\cdots\!32}a^{5}-\frac{14\!\cdots\!83}{17\!\cdots\!32}a^{4}+\frac{46\!\cdots\!91}{43\!\cdots\!83}a^{3}-\frac{28\!\cdots\!44}{43\!\cdots\!83}a^{2}+\frac{16\!\cdots\!49}{87\!\cdots\!66}a-\frac{81\!\cdots\!47}{43\!\cdots\!83}$, $\frac{17\!\cdots\!47}{17\!\cdots\!32}a^{26}-\frac{17\!\cdots\!65}{87\!\cdots\!66}a^{25}+\frac{38\!\cdots\!28}{43\!\cdots\!83}a^{24}+\frac{22\!\cdots\!97}{87\!\cdots\!66}a^{23}-\frac{53\!\cdots\!91}{17\!\cdots\!32}a^{22}-\frac{32\!\cdots\!25}{17\!\cdots\!32}a^{21}-\frac{12\!\cdots\!23}{87\!\cdots\!66}a^{20}+\frac{33\!\cdots\!85}{43\!\cdots\!83}a^{19}+\frac{11\!\cdots\!15}{17\!\cdots\!32}a^{18}-\frac{11\!\cdots\!45}{17\!\cdots\!32}a^{17}-\frac{42\!\cdots\!93}{87\!\cdots\!66}a^{16}+\frac{42\!\cdots\!03}{43\!\cdots\!83}a^{15}-\frac{73\!\cdots\!75}{17\!\cdots\!32}a^{14}-\frac{83\!\cdots\!79}{17\!\cdots\!32}a^{13}-\frac{88\!\cdots\!77}{87\!\cdots\!66}a^{12}+\frac{11\!\cdots\!22}{43\!\cdots\!83}a^{11}-\frac{16\!\cdots\!55}{87\!\cdots\!66}a^{10}+\frac{69\!\cdots\!29}{17\!\cdots\!32}a^{9}-\frac{71\!\cdots\!55}{87\!\cdots\!66}a^{8}+\frac{75\!\cdots\!49}{87\!\cdots\!66}a^{7}-\frac{23\!\cdots\!25}{43\!\cdots\!83}a^{6}+\frac{25\!\cdots\!07}{87\!\cdots\!66}a^{5}-\frac{18\!\cdots\!48}{43\!\cdots\!83}a^{4}+\frac{24\!\cdots\!76}{43\!\cdots\!83}a^{3}-\frac{15\!\cdots\!03}{43\!\cdots\!83}a^{2}+\frac{43\!\cdots\!72}{43\!\cdots\!83}a-\frac{44\!\cdots\!61}{43\!\cdots\!83}$, $\frac{31\!\cdots\!09}{17\!\cdots\!32}a^{26}+\frac{10\!\cdots\!87}{17\!\cdots\!32}a^{25}-\frac{69\!\cdots\!86}{43\!\cdots\!83}a^{24}-\frac{21\!\cdots\!01}{43\!\cdots\!83}a^{23}+\frac{83\!\cdots\!69}{17\!\cdots\!32}a^{22}+\frac{29\!\cdots\!05}{87\!\cdots\!66}a^{21}+\frac{13\!\cdots\!46}{43\!\cdots\!83}a^{20}-\frac{11\!\cdots\!41}{87\!\cdots\!66}a^{19}-\frac{23\!\cdots\!95}{17\!\cdots\!32}a^{18}+\frac{82\!\cdots\!71}{87\!\cdots\!66}a^{17}+\frac{77\!\cdots\!63}{87\!\cdots\!66}a^{16}-\frac{70\!\cdots\!28}{43\!\cdots\!83}a^{15}+\frac{96\!\cdots\!61}{17\!\cdots\!32}a^{14}+\frac{39\!\cdots\!25}{43\!\cdots\!83}a^{13}+\frac{85\!\cdots\!38}{43\!\cdots\!83}a^{12}-\frac{40\!\cdots\!31}{87\!\cdots\!66}a^{11}+\frac{11\!\cdots\!22}{43\!\cdots\!83}a^{10}-\frac{11\!\cdots\!85}{17\!\cdots\!32}a^{9}+\frac{12\!\cdots\!73}{87\!\cdots\!66}a^{8}-\frac{59\!\cdots\!41}{43\!\cdots\!83}a^{7}+\frac{35\!\cdots\!31}{43\!\cdots\!83}a^{6}-\frac{38\!\cdots\!67}{87\!\cdots\!66}a^{5}+\frac{32\!\cdots\!07}{43\!\cdots\!83}a^{4}-\frac{40\!\cdots\!59}{43\!\cdots\!83}a^{3}+\frac{22\!\cdots\!89}{43\!\cdots\!83}a^{2}-\frac{56\!\cdots\!14}{43\!\cdots\!83}a+\frac{49\!\cdots\!95}{43\!\cdots\!83}$, $\frac{40\!\cdots\!89}{35\!\cdots\!64}a^{26}+\frac{98\!\cdots\!43}{43\!\cdots\!83}a^{25}-\frac{36\!\cdots\!99}{35\!\cdots\!64}a^{24}-\frac{51\!\cdots\!43}{17\!\cdots\!32}a^{23}+\frac{62\!\cdots\!67}{17\!\cdots\!32}a^{22}+\frac{93\!\cdots\!13}{43\!\cdots\!83}a^{21}+\frac{72\!\cdots\!99}{43\!\cdots\!83}a^{20}-\frac{15\!\cdots\!35}{17\!\cdots\!32}a^{19}-\frac{12\!\cdots\!43}{17\!\cdots\!32}a^{18}+\frac{13\!\cdots\!17}{17\!\cdots\!32}a^{17}+\frac{99\!\cdots\!59}{17\!\cdots\!32}a^{16}-\frac{49\!\cdots\!15}{43\!\cdots\!83}a^{15}+\frac{87\!\cdots\!13}{17\!\cdots\!32}a^{14}+\frac{48\!\cdots\!69}{87\!\cdots\!66}a^{13}+\frac{20\!\cdots\!53}{17\!\cdots\!32}a^{12}-\frac{55\!\cdots\!61}{17\!\cdots\!32}a^{11}+\frac{76\!\cdots\!09}{35\!\cdots\!64}a^{10}-\frac{80\!\cdots\!19}{17\!\cdots\!32}a^{9}+\frac{33\!\cdots\!93}{35\!\cdots\!64}a^{8}-\frac{17\!\cdots\!73}{17\!\cdots\!32}a^{7}+\frac{55\!\cdots\!51}{87\!\cdots\!66}a^{6}-\frac{30\!\cdots\!41}{87\!\cdots\!66}a^{5}+\frac{88\!\cdots\!45}{17\!\cdots\!32}a^{4}-\frac{58\!\cdots\!29}{87\!\cdots\!66}a^{3}+\frac{18\!\cdots\!46}{43\!\cdots\!83}a^{2}-\frac{51\!\cdots\!17}{43\!\cdots\!83}a+\frac{53\!\cdots\!47}{43\!\cdots\!83}$, $\frac{67\!\cdots\!59}{35\!\cdots\!64}a^{26}-\frac{13\!\cdots\!15}{35\!\cdots\!64}a^{25}+\frac{15\!\cdots\!11}{87\!\cdots\!66}a^{24}+\frac{86\!\cdots\!53}{17\!\cdots\!32}a^{23}-\frac{10\!\cdots\!19}{17\!\cdots\!32}a^{22}-\frac{62\!\cdots\!69}{17\!\cdots\!32}a^{21}-\frac{12\!\cdots\!89}{43\!\cdots\!83}a^{20}+\frac{25\!\cdots\!07}{17\!\cdots\!32}a^{19}+\frac{21\!\cdots\!59}{17\!\cdots\!32}a^{18}-\frac{54\!\cdots\!89}{43\!\cdots\!83}a^{17}-\frac{16\!\cdots\!83}{17\!\cdots\!32}a^{16}+\frac{16\!\cdots\!47}{87\!\cdots\!66}a^{15}-\frac{35\!\cdots\!76}{43\!\cdots\!83}a^{14}-\frac{16\!\cdots\!29}{17\!\cdots\!32}a^{13}-\frac{85\!\cdots\!42}{43\!\cdots\!83}a^{12}+\frac{92\!\cdots\!33}{17\!\cdots\!32}a^{11}-\frac{12\!\cdots\!63}{35\!\cdots\!64}a^{10}+\frac{26\!\cdots\!35}{35\!\cdots\!64}a^{9}-\frac{27\!\cdots\!57}{17\!\cdots\!32}a^{8}+\frac{29\!\cdots\!01}{17\!\cdots\!32}a^{7}-\frac{18\!\cdots\!57}{17\!\cdots\!32}a^{6}+\frac{24\!\cdots\!58}{43\!\cdots\!83}a^{5}-\frac{36\!\cdots\!79}{43\!\cdots\!83}a^{4}+\frac{96\!\cdots\!71}{87\!\cdots\!66}a^{3}-\frac{29\!\cdots\!40}{43\!\cdots\!83}a^{2}+\frac{16\!\cdots\!69}{87\!\cdots\!66}a-\frac{85\!\cdots\!27}{43\!\cdots\!83}$, $\frac{52\!\cdots\!51}{43\!\cdots\!83}a^{26}-\frac{84\!\cdots\!85}{35\!\cdots\!64}a^{25}+\frac{37\!\cdots\!19}{35\!\cdots\!64}a^{24}+\frac{13\!\cdots\!99}{43\!\cdots\!83}a^{23}-\frac{16\!\cdots\!14}{43\!\cdots\!83}a^{22}-\frac{38\!\cdots\!67}{17\!\cdots\!32}a^{21}-\frac{75\!\cdots\!57}{43\!\cdots\!83}a^{20}+\frac{79\!\cdots\!69}{87\!\cdots\!66}a^{19}+\frac{33\!\cdots\!56}{43\!\cdots\!83}a^{18}-\frac{34\!\cdots\!37}{43\!\cdots\!83}a^{17}-\frac{10\!\cdots\!75}{17\!\cdots\!32}a^{16}+\frac{50\!\cdots\!40}{43\!\cdots\!83}a^{15}-\frac{44\!\cdots\!49}{87\!\cdots\!66}a^{14}-\frac{50\!\cdots\!73}{87\!\cdots\!66}a^{13}-\frac{21\!\cdots\!47}{17\!\cdots\!32}a^{12}+\frac{14\!\cdots\!65}{43\!\cdots\!83}a^{11}-\frac{19\!\cdots\!73}{87\!\cdots\!66}a^{10}+\frac{16\!\cdots\!69}{35\!\cdots\!64}a^{9}-\frac{34\!\cdots\!89}{35\!\cdots\!64}a^{8}+\frac{45\!\cdots\!37}{43\!\cdots\!83}a^{7}-\frac{56\!\cdots\!79}{87\!\cdots\!66}a^{6}+\frac{61\!\cdots\!85}{17\!\cdots\!32}a^{5}-\frac{90\!\cdots\!23}{17\!\cdots\!32}a^{4}+\frac{59\!\cdots\!75}{87\!\cdots\!66}a^{3}-\frac{36\!\cdots\!31}{87\!\cdots\!66}a^{2}+\frac{52\!\cdots\!02}{43\!\cdots\!83}a-\frac{53\!\cdots\!69}{43\!\cdots\!83}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1792932755853.2527 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{12}\cdot 1792932755853.2527 \cdot 1}{2\cdot\sqrt{4190130142377336890374035688766684144861184}}\cr\approx \mathstrut & 13.2638211502638 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^25 - 24*x^24 + 36*x^23 + 180*x^22 + 108*x^21 - 792*x^20 - 486*x^19 + 784*x^18 + 4806*x^17 - 10800*x^16 + 6240*x^15 + 3960*x^14 + 9216*x^13 - 29544*x^12 + 24237*x^11 - 43704*x^10 + 90435*x^9 - 103320*x^8 + 71820*x^7 - 40524*x^6 + 49716*x^5 - 66528*x^4 + 47076*x^3 - 17208*x^2 + 3060*x - 208)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 9*x^25 - 24*x^24 + 36*x^23 + 180*x^22 + 108*x^21 - 792*x^20 - 486*x^19 + 784*x^18 + 4806*x^17 - 10800*x^16 + 6240*x^15 + 3960*x^14 + 9216*x^13 - 29544*x^12 + 24237*x^11 - 43704*x^10 + 90435*x^9 - 103320*x^8 + 71820*x^7 - 40524*x^6 + 49716*x^5 - 66528*x^4 + 47076*x^3 - 17208*x^2 + 3060*x - 208, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 9*x^25 - 24*x^24 + 36*x^23 + 180*x^22 + 108*x^21 - 792*x^20 - 486*x^19 + 784*x^18 + 4806*x^17 - 10800*x^16 + 6240*x^15 + 3960*x^14 + 9216*x^13 - 29544*x^12 + 24237*x^11 - 43704*x^10 + 90435*x^9 - 103320*x^8 + 71820*x^7 - 40524*x^6 + 49716*x^5 - 66528*x^4 + 47076*x^3 - 17208*x^2 + 3060*x - 208);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^25 - 24*x^24 + 36*x^23 + 180*x^22 + 108*x^21 - 792*x^20 - 486*x^19 + 784*x^18 + 4806*x^17 - 10800*x^16 + 6240*x^15 + 3960*x^14 + 9216*x^13 - 29544*x^12 + 24237*x^11 - 43704*x^10 + 90435*x^9 - 103320*x^8 + 71820*x^7 - 40524*x^6 + 49716*x^5 - 66528*x^4 + 47076*x^3 - 17208*x^2 + 3060*x - 208);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\SO(5,3)$ (as 27T1161):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 51840
The 25 conjugacy class representatives for $\SO(5,3)$
Character table for $\SO(5,3)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.5.0.1}{5} }^{5}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.5.0.1}{5} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.5.0.1}{5} }^{5}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{4}{,}\,{\href{/padicField/17.3.0.1}{3} }$ ${\href{/padicField/19.5.0.1}{5} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.6.0.1}{6} }^{4}{,}\,{\href{/padicField/29.3.0.1}{3} }$ ${\href{/padicField/31.12.0.1}{12} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.4.0.1}{4} }^{5}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.8.0.1}{8} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.12.0.1}{12} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }$ ${\href{/padicField/47.10.0.1}{10} }{,}\,{\href{/padicField/47.5.0.1}{5} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.5.0.1}{5} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.8.0.1}{8} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.8.16.18$x^{8} + 12 x^{6} + 4 x^{5} + 52 x^{4} + 24 x^{3} + 112 x^{2} + 56 x + 76$$4$$2$$16$$C_2^3: C_4$$[2, 3, 3]^{4}$
2.8.20.75$x^{8} + 4 x^{6} + 4 x^{5} + 2 x^{4} + 2$$8$$1$$20$$C_2^3 : C_4 $$[2, 3, 3]^{2}$
2.8.20.62$x^{8} + 4 x^{5} + 2 x^{4} + 6$$8$$1$$20$$C_2^3 : C_4 $$[2, 3, 3]^{4}$
\(3\) Copy content Toggle raw display Deg $27$$9$$3$$54$