Properties

Label 27.3.638...544.1
Degree $27$
Signature $[3, 12]$
Discriminant $6.386\times 10^{38}$
Root discriminant \(27.37\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_3\wr S_3$ (as 27T298)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^25 + 36*x^23 - 18*x^22 - 144*x^21 - 54*x^20 + 423*x^19 + 42*x^18 - 405*x^17 - 1062*x^16 + 1188*x^15 + 1872*x^14 - 3258*x^13 - 1980*x^12 + 5724*x^11 + 504*x^10 - 9564*x^9 + 7128*x^8 + 3744*x^7 - 8640*x^6 + 4248*x^5 + 1008*x^4 - 1440*x^3 + 288*x - 64)
 
gp: K = bnfinit(y^27 - 9*y^25 + 36*y^23 - 18*y^22 - 144*y^21 - 54*y^20 + 423*y^19 + 42*y^18 - 405*y^17 - 1062*y^16 + 1188*y^15 + 1872*y^14 - 3258*y^13 - 1980*y^12 + 5724*y^11 + 504*y^10 - 9564*y^9 + 7128*y^8 + 3744*y^7 - 8640*y^6 + 4248*y^5 + 1008*y^4 - 1440*y^3 + 288*y - 64, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 9*x^25 + 36*x^23 - 18*x^22 - 144*x^21 - 54*x^20 + 423*x^19 + 42*x^18 - 405*x^17 - 1062*x^16 + 1188*x^15 + 1872*x^14 - 3258*x^13 - 1980*x^12 + 5724*x^11 + 504*x^10 - 9564*x^9 + 7128*x^8 + 3744*x^7 - 8640*x^6 + 4248*x^5 + 1008*x^4 - 1440*x^3 + 288*x - 64);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^25 + 36*x^23 - 18*x^22 - 144*x^21 - 54*x^20 + 423*x^19 + 42*x^18 - 405*x^17 - 1062*x^16 + 1188*x^15 + 1872*x^14 - 3258*x^13 - 1980*x^12 + 5724*x^11 + 504*x^10 - 9564*x^9 + 7128*x^8 + 3744*x^7 - 8640*x^6 + 4248*x^5 + 1008*x^4 - 1440*x^3 + 288*x - 64)
 

\( x^{27} - 9 x^{25} + 36 x^{23} - 18 x^{22} - 144 x^{21} - 54 x^{20} + 423 x^{19} + 42 x^{18} - 405 x^{17} + \cdots - 64 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(638641997009196294829147338632324972544\) \(\medspace = 2^{56}\cdot 3^{46}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(27.37\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{17/6}3^{31/18}\approx 47.27452225037032$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}$, $\frac{1}{6}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}+\frac{1}{3}a$, $\frac{1}{6}a^{11}-\frac{1}{6}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}+\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{6}a^{12}-\frac{1}{2}a^{4}+\frac{1}{3}a^{3}$, $\frac{1}{6}a^{13}-\frac{1}{2}a^{5}+\frac{1}{3}a^{4}$, $\frac{1}{36}a^{14}-\frac{1}{18}a^{13}-\frac{1}{18}a^{12}+\frac{1}{18}a^{11}+\frac{1}{18}a^{10}-\frac{1}{9}a^{9}-\frac{1}{6}a^{8}-\frac{1}{6}a^{7}-\frac{5}{12}a^{6}-\frac{5}{18}a^{5}+\frac{1}{18}a^{4}-\frac{4}{9}a^{3}-\frac{7}{18}a^{2}+\frac{1}{9}a-\frac{2}{9}$, $\frac{1}{36}a^{15}-\frac{1}{18}a^{12}+\frac{1}{9}a^{9}-\frac{1}{2}a^{8}-\frac{1}{4}a^{7}-\frac{1}{9}a^{6}-\frac{1}{2}a^{5}-\frac{5}{18}a^{3}-\frac{4}{9}$, $\frac{1}{36}a^{16}-\frac{1}{18}a^{13}-\frac{1}{18}a^{10}-\frac{1}{6}a^{9}+\frac{1}{4}a^{8}-\frac{1}{9}a^{7}+\frac{2}{9}a^{4}+\frac{2}{9}a-\frac{1}{3}$, $\frac{1}{36}a^{17}+\frac{1}{18}a^{13}+\frac{1}{18}a^{12}+\frac{1}{18}a^{11}-\frac{1}{18}a^{10}+\frac{1}{36}a^{9}-\frac{4}{9}a^{8}-\frac{1}{3}a^{7}+\frac{1}{6}a^{6}+\frac{1}{6}a^{5}-\frac{1}{18}a^{4}+\frac{4}{9}a^{3}+\frac{4}{9}a^{2}-\frac{1}{9}a-\frac{4}{9}$, $\frac{1}{108}a^{18}+\frac{1}{18}a^{12}-\frac{1}{12}a^{10}-\frac{7}{54}a^{9}-\frac{1}{2}a^{8}-\frac{1}{6}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}+\frac{1}{9}a^{3}+\frac{1}{3}a-\frac{8}{27}$, $\frac{1}{216}a^{19}-\frac{1}{216}a^{18}+\frac{1}{36}a^{13}+\frac{1}{18}a^{12}-\frac{1}{24}a^{11}-\frac{5}{216}a^{10}+\frac{4}{27}a^{9}+\frac{1}{4}a^{8}+\frac{5}{12}a^{7}-\frac{1}{6}a^{6}+\frac{1}{18}a^{4}+\frac{1}{9}a^{3}+\frac{1}{6}a^{2}+\frac{5}{27}a-\frac{5}{27}$, $\frac{1}{216}a^{20}-\frac{1}{216}a^{18}-\frac{1}{36}a^{13}+\frac{5}{72}a^{12}+\frac{5}{108}a^{11}+\frac{5}{72}a^{10}+\frac{1}{108}a^{9}-\frac{1}{6}a^{8}-\frac{1}{12}a^{7}+\frac{1}{4}a^{6}+\frac{1}{3}a^{5}-\frac{2}{9}a^{4}-\frac{5}{18}a^{3}+\frac{2}{27}a^{2}-\frac{1}{9}a+\frac{1}{27}$, $\frac{1}{432}a^{21}-\frac{1}{432}a^{19}-\frac{1}{72}a^{17}-\frac{1}{72}a^{16}-\frac{1}{72}a^{15}-\frac{1}{72}a^{14}+\frac{5}{144}a^{13}-\frac{13}{216}a^{12}-\frac{11}{144}a^{11}-\frac{5}{216}a^{10}-\frac{11}{72}a^{9}-\frac{4}{9}a^{8}+\frac{2}{9}a^{7}-\frac{1}{9}a^{6}-\frac{7}{36}a^{5}+\frac{5}{18}a^{4}+\frac{31}{108}a^{3}+\frac{1}{18}a^{2}-\frac{11}{54}a+\frac{4}{9}$, $\frac{1}{432}a^{22}-\frac{1}{432}a^{20}-\frac{1}{216}a^{18}-\frac{1}{72}a^{17}-\frac{1}{72}a^{16}-\frac{1}{72}a^{15}+\frac{1}{144}a^{14}-\frac{1}{216}a^{13}+\frac{5}{144}a^{12}-\frac{17}{216}a^{11}+\frac{1}{24}a^{10}-\frac{7}{54}a^{9}-\frac{1}{9}a^{8}+\frac{1}{18}a^{7}+\frac{1}{18}a^{6}+\frac{1}{18}a^{5}-\frac{29}{108}a^{4}-\frac{7}{18}a^{3}+\frac{5}{27}a^{2}+\frac{1}{3}a-\frac{11}{27}$, $\frac{1}{432}a^{23}-\frac{1}{432}a^{19}-\frac{1}{144}a^{15}+\frac{1}{108}a^{14}+\frac{1}{24}a^{13}+\frac{1}{36}a^{12}+\frac{5}{144}a^{11}-\frac{7}{108}a^{10}+\frac{1}{24}a^{9}-\frac{1}{2}a^{8}+\frac{1}{12}a^{7}+\frac{7}{36}a^{6}+\frac{23}{54}a^{5}+\frac{1}{6}a^{4}-\frac{7}{36}a^{3}-\frac{7}{18}a^{2}+\frac{7}{54}a$, $\frac{1}{432}a^{24}-\frac{1}{432}a^{20}-\frac{1}{144}a^{16}+\frac{1}{108}a^{15}-\frac{1}{72}a^{14}-\frac{1}{36}a^{13}-\frac{1}{48}a^{12}-\frac{1}{108}a^{11}-\frac{5}{72}a^{10}-\frac{1}{9}a^{9}+\frac{5}{12}a^{8}+\frac{1}{36}a^{7}+\frac{7}{27}a^{6}-\frac{5}{18}a^{5}-\frac{5}{36}a^{4}+\frac{1}{6}a^{3}+\frac{13}{54}a^{2}-\frac{2}{9}a-\frac{2}{9}$, $\frac{1}{864}a^{25}-\frac{1}{864}a^{23}-\frac{1}{432}a^{20}+\frac{1}{432}a^{18}+\frac{1}{288}a^{17}+\frac{5}{432}a^{16}+\frac{1}{288}a^{15}+\frac{1}{432}a^{14}-\frac{1}{18}a^{13}-\frac{1}{18}a^{12}+\frac{23}{432}a^{11}+\frac{1}{72}a^{10}+\frac{7}{108}a^{9}-\frac{5}{36}a^{8}+\frac{103}{216}a^{7}-\frac{1}{18}a^{6}+\frac{7}{27}a^{5}+\frac{7}{18}a^{4}-\frac{7}{36}a^{3}+\frac{2}{27}a^{2}-\frac{7}{18}a+\frac{1}{27}$, $\frac{1}{55\!\cdots\!32}a^{26}+\frac{43\!\cdots\!53}{13\!\cdots\!08}a^{25}+\frac{19\!\cdots\!33}{55\!\cdots\!32}a^{24}-\frac{11\!\cdots\!19}{15\!\cdots\!12}a^{23}+\frac{17\!\cdots\!33}{27\!\cdots\!16}a^{22}+\frac{41\!\cdots\!91}{92\!\cdots\!72}a^{21}+\frac{28\!\cdots\!83}{13\!\cdots\!08}a^{20}+\frac{60\!\cdots\!85}{27\!\cdots\!16}a^{19}-\frac{14\!\cdots\!81}{55\!\cdots\!32}a^{18}+\frac{35\!\cdots\!41}{27\!\cdots\!16}a^{17}+\frac{30\!\cdots\!13}{55\!\cdots\!32}a^{16}-\frac{32\!\cdots\!51}{27\!\cdots\!16}a^{15}+\frac{12\!\cdots\!83}{92\!\cdots\!72}a^{14}+\frac{16\!\cdots\!49}{69\!\cdots\!04}a^{13}+\frac{64\!\cdots\!97}{30\!\cdots\!24}a^{12}+\frac{23\!\cdots\!33}{34\!\cdots\!52}a^{11}-\frac{36\!\cdots\!15}{69\!\cdots\!04}a^{10}-\frac{35\!\cdots\!35}{69\!\cdots\!04}a^{9}+\frac{74\!\cdots\!91}{44\!\cdots\!68}a^{8}+\frac{11\!\cdots\!99}{69\!\cdots\!04}a^{7}-\frac{15\!\cdots\!83}{69\!\cdots\!04}a^{6}-\frac{15\!\cdots\!55}{57\!\cdots\!42}a^{5}-\frac{89\!\cdots\!51}{69\!\cdots\!04}a^{4}-\frac{10\!\cdots\!89}{28\!\cdots\!71}a^{3}-\frac{87\!\cdots\!93}{34\!\cdots\!52}a^{2}+\frac{43\!\cdots\!55}{86\!\cdots\!13}a-\frac{21\!\cdots\!41}{86\!\cdots\!13}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{51\!\cdots\!39}{55\!\cdots\!32}a^{26}+\frac{22\!\cdots\!17}{69\!\cdots\!04}a^{25}-\frac{45\!\cdots\!33}{55\!\cdots\!32}a^{24}-\frac{44\!\cdots\!03}{15\!\cdots\!12}a^{23}+\frac{90\!\cdots\!93}{27\!\cdots\!16}a^{22}-\frac{54\!\cdots\!85}{92\!\cdots\!72}a^{21}-\frac{23\!\cdots\!01}{17\!\cdots\!26}a^{20}-\frac{27\!\cdots\!05}{27\!\cdots\!16}a^{19}+\frac{19\!\cdots\!37}{55\!\cdots\!32}a^{18}+\frac{43\!\cdots\!97}{27\!\cdots\!16}a^{17}-\frac{17\!\cdots\!29}{55\!\cdots\!32}a^{16}-\frac{30\!\cdots\!17}{27\!\cdots\!16}a^{15}+\frac{68\!\cdots\!75}{92\!\cdots\!72}a^{14}+\frac{27\!\cdots\!83}{13\!\cdots\!08}a^{13}-\frac{22\!\cdots\!05}{92\!\cdots\!72}a^{12}-\frac{91\!\cdots\!53}{34\!\cdots\!52}a^{11}+\frac{31\!\cdots\!53}{69\!\cdots\!04}a^{10}+\frac{13\!\cdots\!37}{69\!\cdots\!04}a^{9}-\frac{37\!\cdots\!63}{44\!\cdots\!68}a^{8}+\frac{26\!\cdots\!99}{69\!\cdots\!04}a^{7}+\frac{33\!\cdots\!71}{69\!\cdots\!04}a^{6}-\frac{75\!\cdots\!45}{11\!\cdots\!84}a^{5}+\frac{12\!\cdots\!69}{69\!\cdots\!04}a^{4}+\frac{89\!\cdots\!01}{57\!\cdots\!42}a^{3}-\frac{27\!\cdots\!85}{34\!\cdots\!52}a^{2}-\frac{25\!\cdots\!96}{86\!\cdots\!13}a+\frac{15\!\cdots\!96}{86\!\cdots\!13}$, $\frac{16\!\cdots\!39}{55\!\cdots\!32}a^{26}-\frac{16\!\cdots\!88}{96\!\cdots\!57}a^{25}+\frac{16\!\cdots\!25}{61\!\cdots\!48}a^{24}+\frac{22\!\cdots\!51}{15\!\cdots\!12}a^{23}-\frac{27\!\cdots\!61}{27\!\cdots\!16}a^{22}-\frac{70\!\cdots\!01}{27\!\cdots\!16}a^{21}+\frac{15\!\cdots\!05}{34\!\cdots\!52}a^{20}+\frac{37\!\cdots\!83}{92\!\cdots\!72}a^{19}-\frac{58\!\cdots\!05}{55\!\cdots\!32}a^{18}-\frac{19\!\cdots\!73}{27\!\cdots\!16}a^{17}+\frac{15\!\cdots\!91}{18\!\cdots\!44}a^{16}+\frac{33\!\cdots\!03}{92\!\cdots\!72}a^{15}-\frac{13\!\cdots\!59}{92\!\cdots\!72}a^{14}-\frac{90\!\cdots\!47}{13\!\cdots\!08}a^{13}+\frac{17\!\cdots\!83}{27\!\cdots\!16}a^{12}+\frac{65\!\cdots\!83}{69\!\cdots\!04}a^{11}-\frac{34\!\cdots\!24}{28\!\cdots\!71}a^{10}-\frac{57\!\cdots\!05}{69\!\cdots\!04}a^{9}+\frac{10\!\cdots\!27}{44\!\cdots\!68}a^{8}-\frac{17\!\cdots\!49}{23\!\cdots\!68}a^{7}-\frac{36\!\cdots\!55}{23\!\cdots\!68}a^{6}+\frac{19\!\cdots\!65}{11\!\cdots\!84}a^{5}-\frac{21\!\cdots\!81}{69\!\cdots\!04}a^{4}-\frac{41\!\cdots\!27}{86\!\cdots\!13}a^{3}+\frac{55\!\cdots\!97}{34\!\cdots\!52}a^{2}+\frac{26\!\cdots\!88}{28\!\cdots\!71}a-\frac{28\!\cdots\!32}{86\!\cdots\!13}$, $\frac{59\!\cdots\!91}{55\!\cdots\!32}a^{26}-\frac{55\!\cdots\!41}{69\!\cdots\!04}a^{25}+\frac{50\!\cdots\!53}{55\!\cdots\!32}a^{24}+\frac{96\!\cdots\!27}{13\!\cdots\!08}a^{23}-\frac{94\!\cdots\!07}{27\!\cdots\!16}a^{22}-\frac{65\!\cdots\!35}{92\!\cdots\!72}a^{21}+\frac{26\!\cdots\!99}{17\!\cdots\!26}a^{20}+\frac{15\!\cdots\!51}{92\!\cdots\!72}a^{19}-\frac{18\!\cdots\!29}{55\!\cdots\!32}a^{18}-\frac{86\!\cdots\!97}{27\!\cdots\!16}a^{17}+\frac{12\!\cdots\!81}{55\!\cdots\!32}a^{16}+\frac{36\!\cdots\!97}{27\!\cdots\!16}a^{15}-\frac{77\!\cdots\!55}{27\!\cdots\!16}a^{14}-\frac{32\!\cdots\!45}{13\!\cdots\!08}a^{13}+\frac{53\!\cdots\!07}{30\!\cdots\!24}a^{12}+\frac{25\!\cdots\!97}{69\!\cdots\!04}a^{11}-\frac{40\!\cdots\!89}{11\!\cdots\!84}a^{10}-\frac{24\!\cdots\!29}{69\!\cdots\!04}a^{9}+\frac{34\!\cdots\!11}{44\!\cdots\!68}a^{8}-\frac{10\!\cdots\!87}{69\!\cdots\!04}a^{7}-\frac{38\!\cdots\!31}{69\!\cdots\!04}a^{6}+\frac{17\!\cdots\!27}{34\!\cdots\!52}a^{5}-\frac{25\!\cdots\!69}{69\!\cdots\!04}a^{4}-\frac{48\!\cdots\!73}{28\!\cdots\!71}a^{3}+\frac{11\!\cdots\!45}{34\!\cdots\!52}a^{2}+\frac{89\!\cdots\!44}{28\!\cdots\!71}a-\frac{69\!\cdots\!14}{86\!\cdots\!13}$, $\frac{93\!\cdots\!81}{18\!\cdots\!44}a^{26}+\frac{44\!\cdots\!59}{34\!\cdots\!52}a^{25}-\frac{25\!\cdots\!69}{55\!\cdots\!32}a^{24}-\frac{17\!\cdots\!01}{13\!\cdots\!08}a^{23}+\frac{49\!\cdots\!23}{27\!\cdots\!16}a^{22}-\frac{10\!\cdots\!17}{27\!\cdots\!16}a^{21}-\frac{10\!\cdots\!05}{13\!\cdots\!08}a^{20}-\frac{13\!\cdots\!43}{27\!\cdots\!16}a^{19}+\frac{36\!\cdots\!11}{18\!\cdots\!44}a^{18}+\frac{25\!\cdots\!81}{30\!\cdots\!24}a^{17}-\frac{90\!\cdots\!57}{55\!\cdots\!32}a^{16}-\frac{16\!\cdots\!61}{27\!\cdots\!16}a^{15}+\frac{11\!\cdots\!47}{27\!\cdots\!16}a^{14}+\frac{72\!\cdots\!99}{69\!\cdots\!04}a^{13}-\frac{35\!\cdots\!61}{27\!\cdots\!16}a^{12}-\frac{17\!\cdots\!55}{13\!\cdots\!08}a^{11}+\frac{16\!\cdots\!23}{69\!\cdots\!04}a^{10}+\frac{25\!\cdots\!22}{28\!\cdots\!71}a^{9}-\frac{64\!\cdots\!05}{14\!\cdots\!56}a^{8}+\frac{16\!\cdots\!33}{69\!\cdots\!04}a^{7}+\frac{15\!\cdots\!85}{69\!\cdots\!04}a^{6}-\frac{29\!\cdots\!75}{86\!\cdots\!13}a^{5}+\frac{91\!\cdots\!99}{69\!\cdots\!04}a^{4}+\frac{18\!\cdots\!53}{34\!\cdots\!52}a^{3}-\frac{13\!\cdots\!53}{34\!\cdots\!52}a^{2}-\frac{25\!\cdots\!19}{17\!\cdots\!26}a+\frac{75\!\cdots\!97}{96\!\cdots\!57}$, $\frac{25\!\cdots\!37}{61\!\cdots\!48}a^{26}-\frac{28\!\cdots\!53}{92\!\cdots\!72}a^{25}+\frac{66\!\cdots\!25}{18\!\cdots\!44}a^{24}+\frac{75\!\cdots\!65}{27\!\cdots\!16}a^{23}-\frac{38\!\cdots\!47}{27\!\cdots\!16}a^{22}-\frac{91\!\cdots\!49}{27\!\cdots\!16}a^{21}+\frac{21\!\cdots\!87}{34\!\cdots\!52}a^{20}+\frac{18\!\cdots\!01}{27\!\cdots\!16}a^{19}-\frac{78\!\cdots\!03}{55\!\cdots\!32}a^{18}-\frac{31\!\cdots\!15}{23\!\cdots\!68}a^{17}+\frac{70\!\cdots\!79}{61\!\cdots\!48}a^{16}+\frac{24\!\cdots\!21}{46\!\cdots\!36}a^{15}-\frac{34\!\cdots\!57}{27\!\cdots\!16}a^{14}-\frac{34\!\cdots\!97}{34\!\cdots\!52}a^{13}+\frac{19\!\cdots\!43}{27\!\cdots\!16}a^{12}+\frac{54\!\cdots\!01}{34\!\cdots\!52}a^{11}-\frac{10\!\cdots\!71}{69\!\cdots\!04}a^{10}-\frac{56\!\cdots\!99}{34\!\cdots\!52}a^{9}+\frac{49\!\cdots\!67}{14\!\cdots\!56}a^{8}-\frac{34\!\cdots\!03}{11\!\cdots\!84}a^{7}-\frac{66\!\cdots\!07}{23\!\cdots\!68}a^{6}+\frac{37\!\cdots\!99}{17\!\cdots\!26}a^{5}+\frac{19\!\cdots\!63}{69\!\cdots\!04}a^{4}-\frac{20\!\cdots\!39}{17\!\cdots\!26}a^{3}+\frac{10\!\cdots\!93}{34\!\cdots\!52}a^{2}+\frac{17\!\cdots\!86}{86\!\cdots\!13}a-\frac{70\!\cdots\!36}{86\!\cdots\!13}$, $\frac{15\!\cdots\!43}{13\!\cdots\!08}a^{26}+\frac{30\!\cdots\!09}{30\!\cdots\!24}a^{25}-\frac{16\!\cdots\!51}{17\!\cdots\!26}a^{24}-\frac{23\!\cdots\!79}{27\!\cdots\!16}a^{23}+\frac{47\!\cdots\!41}{13\!\cdots\!08}a^{22}+\frac{19\!\cdots\!95}{17\!\cdots\!26}a^{21}-\frac{21\!\cdots\!11}{13\!\cdots\!08}a^{20}-\frac{27\!\cdots\!91}{13\!\cdots\!08}a^{19}+\frac{18\!\cdots\!25}{57\!\cdots\!42}a^{18}+\frac{98\!\cdots\!35}{27\!\cdots\!16}a^{17}-\frac{85\!\cdots\!95}{46\!\cdots\!36}a^{16}-\frac{38\!\cdots\!99}{27\!\cdots\!16}a^{15}+\frac{80\!\cdots\!11}{69\!\cdots\!04}a^{14}+\frac{16\!\cdots\!83}{69\!\cdots\!04}a^{13}-\frac{54\!\cdots\!35}{34\!\cdots\!52}a^{12}-\frac{34\!\cdots\!70}{86\!\cdots\!13}a^{11}+\frac{22\!\cdots\!63}{69\!\cdots\!04}a^{10}+\frac{99\!\cdots\!97}{25\!\cdots\!52}a^{9}-\frac{87\!\cdots\!31}{11\!\cdots\!92}a^{8}+\frac{15\!\cdots\!37}{23\!\cdots\!68}a^{7}+\frac{20\!\cdots\!33}{34\!\cdots\!52}a^{6}-\frac{41\!\cdots\!84}{86\!\cdots\!13}a^{5}-\frac{17\!\cdots\!99}{17\!\cdots\!26}a^{4}+\frac{30\!\cdots\!51}{17\!\cdots\!26}a^{3}-\frac{22\!\cdots\!04}{86\!\cdots\!13}a^{2}-\frac{26\!\cdots\!64}{86\!\cdots\!13}a+\frac{15\!\cdots\!17}{28\!\cdots\!71}$, $\frac{21\!\cdots\!35}{69\!\cdots\!04}a^{26}+\frac{54\!\cdots\!59}{30\!\cdots\!24}a^{25}-\frac{12\!\cdots\!07}{46\!\cdots\!36}a^{24}-\frac{43\!\cdots\!29}{27\!\cdots\!16}a^{23}+\frac{75\!\cdots\!35}{69\!\cdots\!04}a^{22}+\frac{46\!\cdots\!39}{13\!\cdots\!08}a^{21}-\frac{53\!\cdots\!67}{11\!\cdots\!84}a^{20}-\frac{24\!\cdots\!25}{57\!\cdots\!42}a^{19}+\frac{53\!\cdots\!17}{46\!\cdots\!36}a^{18}+\frac{21\!\cdots\!21}{27\!\cdots\!16}a^{17}-\frac{63\!\cdots\!25}{64\!\cdots\!38}a^{16}-\frac{39\!\cdots\!79}{10\!\cdots\!08}a^{15}+\frac{22\!\cdots\!77}{13\!\cdots\!08}a^{14}+\frac{10\!\cdots\!15}{13\!\cdots\!08}a^{13}-\frac{92\!\cdots\!91}{13\!\cdots\!08}a^{12}-\frac{48\!\cdots\!13}{46\!\cdots\!36}a^{11}+\frac{15\!\cdots\!57}{11\!\cdots\!84}a^{10}+\frac{26\!\cdots\!05}{28\!\cdots\!71}a^{9}-\frac{30\!\cdots\!89}{11\!\cdots\!92}a^{8}+\frac{63\!\cdots\!13}{77\!\cdots\!56}a^{7}+\frac{22\!\cdots\!93}{11\!\cdots\!84}a^{6}-\frac{71\!\cdots\!97}{34\!\cdots\!52}a^{5}+\frac{85\!\cdots\!61}{34\!\cdots\!52}a^{4}+\frac{27\!\cdots\!75}{34\!\cdots\!52}a^{3}-\frac{10\!\cdots\!63}{28\!\cdots\!71}a^{2}-\frac{54\!\cdots\!89}{57\!\cdots\!42}a+\frac{21\!\cdots\!72}{32\!\cdots\!19}$, $\frac{66\!\cdots\!61}{46\!\cdots\!36}a^{26}+\frac{98\!\cdots\!77}{92\!\cdots\!72}a^{25}-\frac{47\!\cdots\!21}{38\!\cdots\!28}a^{24}-\frac{84\!\cdots\!67}{92\!\cdots\!72}a^{23}+\frac{31\!\cdots\!69}{69\!\cdots\!04}a^{22}+\frac{10\!\cdots\!23}{11\!\cdots\!84}a^{21}-\frac{15\!\cdots\!31}{77\!\cdots\!56}a^{20}-\frac{31\!\cdots\!17}{13\!\cdots\!08}a^{19}+\frac{31\!\cdots\!87}{69\!\cdots\!04}a^{18}+\frac{37\!\cdots\!83}{92\!\cdots\!72}a^{17}-\frac{14\!\cdots\!79}{46\!\cdots\!36}a^{16}-\frac{55\!\cdots\!93}{30\!\cdots\!24}a^{15}+\frac{18\!\cdots\!97}{46\!\cdots\!36}a^{14}+\frac{10\!\cdots\!89}{34\!\cdots\!52}a^{13}-\frac{10\!\cdots\!63}{46\!\cdots\!36}a^{12}-\frac{37\!\cdots\!37}{77\!\cdots\!56}a^{11}+\frac{32\!\cdots\!35}{69\!\cdots\!04}a^{10}+\frac{31\!\cdots\!51}{69\!\cdots\!04}a^{9}-\frac{19\!\cdots\!51}{18\!\cdots\!82}a^{8}+\frac{15\!\cdots\!69}{77\!\cdots\!56}a^{7}+\frac{28\!\cdots\!45}{38\!\cdots\!28}a^{6}-\frac{19\!\cdots\!96}{28\!\cdots\!71}a^{5}+\frac{18\!\cdots\!05}{34\!\cdots\!52}a^{4}+\frac{69\!\cdots\!91}{32\!\cdots\!19}a^{3}-\frac{30\!\cdots\!47}{64\!\cdots\!38}a^{2}-\frac{35\!\cdots\!66}{86\!\cdots\!13}a+\frac{95\!\cdots\!97}{86\!\cdots\!13}$, $\frac{14\!\cdots\!17}{13\!\cdots\!08}a^{26}+\frac{73\!\cdots\!53}{15\!\cdots\!12}a^{25}-\frac{68\!\cdots\!53}{77\!\cdots\!56}a^{24}-\frac{19\!\cdots\!97}{46\!\cdots\!36}a^{23}+\frac{39\!\cdots\!45}{11\!\cdots\!84}a^{22}-\frac{36\!\cdots\!87}{13\!\cdots\!08}a^{21}-\frac{20\!\cdots\!19}{13\!\cdots\!08}a^{20}-\frac{56\!\cdots\!71}{46\!\cdots\!36}a^{19}+\frac{50\!\cdots\!17}{13\!\cdots\!08}a^{18}+\frac{28\!\cdots\!55}{13\!\cdots\!08}a^{17}-\frac{70\!\cdots\!81}{23\!\cdots\!68}a^{16}-\frac{55\!\cdots\!37}{46\!\cdots\!36}a^{15}+\frac{16\!\cdots\!85}{25\!\cdots\!52}a^{14}+\frac{99\!\cdots\!51}{46\!\cdots\!36}a^{13}-\frac{32\!\cdots\!89}{13\!\cdots\!08}a^{12}-\frac{41\!\cdots\!21}{13\!\cdots\!08}a^{11}+\frac{12\!\cdots\!54}{28\!\cdots\!71}a^{10}+\frac{16\!\cdots\!07}{69\!\cdots\!04}a^{9}-\frac{47\!\cdots\!57}{55\!\cdots\!46}a^{8}+\frac{99\!\cdots\!44}{28\!\cdots\!71}a^{7}+\frac{30\!\cdots\!99}{57\!\cdots\!42}a^{6}-\frac{74\!\cdots\!91}{11\!\cdots\!84}a^{5}+\frac{17\!\cdots\!87}{11\!\cdots\!84}a^{4}+\frac{57\!\cdots\!13}{34\!\cdots\!52}a^{3}-\frac{65\!\cdots\!55}{86\!\cdots\!13}a^{2}-\frac{58\!\cdots\!69}{19\!\cdots\!14}a+\frac{15\!\cdots\!98}{86\!\cdots\!13}$, $\frac{91\!\cdots\!41}{27\!\cdots\!16}a^{26}+\frac{55\!\cdots\!23}{27\!\cdots\!16}a^{25}-\frac{79\!\cdots\!99}{27\!\cdots\!16}a^{24}-\frac{16\!\cdots\!31}{92\!\cdots\!72}a^{23}+\frac{25\!\cdots\!59}{23\!\cdots\!68}a^{22}+\frac{27\!\cdots\!87}{34\!\cdots\!52}a^{21}-\frac{18\!\cdots\!37}{38\!\cdots\!28}a^{20}-\frac{64\!\cdots\!15}{13\!\cdots\!08}a^{19}+\frac{31\!\cdots\!97}{27\!\cdots\!16}a^{18}+\frac{23\!\cdots\!91}{27\!\cdots\!16}a^{17}-\frac{23\!\cdots\!17}{27\!\cdots\!16}a^{16}-\frac{11\!\cdots\!83}{27\!\cdots\!16}a^{15}+\frac{22\!\cdots\!73}{15\!\cdots\!12}a^{14}+\frac{33\!\cdots\!31}{46\!\cdots\!36}a^{13}-\frac{22\!\cdots\!79}{34\!\cdots\!52}a^{12}-\frac{49\!\cdots\!31}{46\!\cdots\!36}a^{11}+\frac{10\!\cdots\!33}{86\!\cdots\!13}a^{10}+\frac{16\!\cdots\!31}{17\!\cdots\!26}a^{9}-\frac{58\!\cdots\!11}{22\!\cdots\!84}a^{8}+\frac{51\!\cdots\!81}{69\!\cdots\!04}a^{7}+\frac{60\!\cdots\!19}{34\!\cdots\!52}a^{6}-\frac{20\!\cdots\!03}{11\!\cdots\!84}a^{5}+\frac{15\!\cdots\!69}{57\!\cdots\!42}a^{4}+\frac{18\!\cdots\!83}{34\!\cdots\!52}a^{3}-\frac{85\!\cdots\!85}{57\!\cdots\!42}a^{2}-\frac{17\!\cdots\!65}{17\!\cdots\!26}a+\frac{27\!\cdots\!04}{86\!\cdots\!13}$, $\frac{27\!\cdots\!89}{30\!\cdots\!24}a^{26}-\frac{13\!\cdots\!47}{28\!\cdots\!71}a^{25}+\frac{21\!\cdots\!87}{27\!\cdots\!16}a^{24}+\frac{28\!\cdots\!89}{69\!\cdots\!04}a^{23}-\frac{43\!\cdots\!63}{13\!\cdots\!08}a^{22}-\frac{54\!\cdots\!95}{69\!\cdots\!04}a^{21}+\frac{45\!\cdots\!31}{34\!\cdots\!52}a^{20}+\frac{82\!\cdots\!41}{69\!\cdots\!04}a^{19}-\frac{93\!\cdots\!67}{27\!\cdots\!16}a^{18}-\frac{10\!\cdots\!75}{46\!\cdots\!36}a^{17}+\frac{26\!\cdots\!45}{92\!\cdots\!72}a^{16}+\frac{16\!\cdots\!89}{13\!\cdots\!08}a^{15}-\frac{69\!\cdots\!77}{13\!\cdots\!08}a^{14}-\frac{29\!\cdots\!47}{13\!\cdots\!08}a^{13}+\frac{24\!\cdots\!59}{13\!\cdots\!08}a^{12}+\frac{43\!\cdots\!75}{13\!\cdots\!08}a^{11}-\frac{30\!\cdots\!08}{86\!\cdots\!13}a^{10}-\frac{20\!\cdots\!97}{69\!\cdots\!04}a^{9}+\frac{53\!\cdots\!85}{74\!\cdots\!28}a^{8}-\frac{71\!\cdots\!93}{38\!\cdots\!28}a^{7}-\frac{42\!\cdots\!91}{86\!\cdots\!13}a^{6}+\frac{16\!\cdots\!51}{34\!\cdots\!52}a^{5}-\frac{24\!\cdots\!79}{34\!\cdots\!52}a^{4}-\frac{43\!\cdots\!41}{34\!\cdots\!52}a^{3}+\frac{37\!\cdots\!15}{86\!\cdots\!13}a^{2}+\frac{39\!\cdots\!83}{17\!\cdots\!26}a-\frac{90\!\cdots\!82}{86\!\cdots\!13}$, $\frac{12\!\cdots\!57}{30\!\cdots\!24}a^{26}+\frac{30\!\cdots\!69}{92\!\cdots\!72}a^{25}-\frac{90\!\cdots\!59}{27\!\cdots\!16}a^{24}-\frac{79\!\cdots\!09}{27\!\cdots\!16}a^{23}+\frac{18\!\cdots\!43}{15\!\cdots\!12}a^{22}+\frac{53\!\cdots\!87}{13\!\cdots\!08}a^{21}-\frac{24\!\cdots\!89}{46\!\cdots\!36}a^{20}-\frac{11\!\cdots\!63}{17\!\cdots\!26}a^{19}+\frac{30\!\cdots\!49}{27\!\cdots\!16}a^{18}+\frac{12\!\cdots\!53}{10\!\cdots\!08}a^{17}-\frac{52\!\cdots\!51}{92\!\cdots\!72}a^{16}-\frac{13\!\cdots\!79}{27\!\cdots\!16}a^{15}+\frac{21\!\cdots\!91}{69\!\cdots\!04}a^{14}+\frac{95\!\cdots\!95}{11\!\cdots\!84}a^{13}-\frac{69\!\cdots\!65}{13\!\cdots\!08}a^{12}-\frac{75\!\cdots\!17}{57\!\cdots\!42}a^{11}+\frac{36\!\cdots\!35}{34\!\cdots\!52}a^{10}+\frac{88\!\cdots\!53}{69\!\cdots\!04}a^{9}-\frac{63\!\cdots\!89}{24\!\cdots\!76}a^{8}+\frac{26\!\cdots\!03}{77\!\cdots\!56}a^{7}+\frac{15\!\cdots\!60}{86\!\cdots\!13}a^{6}-\frac{13\!\cdots\!63}{86\!\cdots\!13}a^{5}+\frac{16\!\cdots\!79}{11\!\cdots\!84}a^{4}+\frac{85\!\cdots\!13}{17\!\cdots\!26}a^{3}-\frac{18\!\cdots\!31}{19\!\cdots\!14}a^{2}-\frac{78\!\cdots\!74}{86\!\cdots\!13}a+\frac{23\!\cdots\!07}{86\!\cdots\!13}$, $\frac{24\!\cdots\!21}{34\!\cdots\!52}a^{26}+\frac{56\!\cdots\!71}{13\!\cdots\!08}a^{25}-\frac{90\!\cdots\!19}{13\!\cdots\!08}a^{24}-\frac{60\!\cdots\!19}{13\!\cdots\!08}a^{23}+\frac{25\!\cdots\!99}{96\!\cdots\!57}a^{22}+\frac{37\!\cdots\!53}{46\!\cdots\!36}a^{21}-\frac{15\!\cdots\!57}{13\!\cdots\!08}a^{20}-\frac{15\!\cdots\!95}{13\!\cdots\!08}a^{19}+\frac{10\!\cdots\!35}{34\!\cdots\!52}a^{18}+\frac{43\!\cdots\!95}{13\!\cdots\!08}a^{17}-\frac{30\!\cdots\!03}{13\!\cdots\!08}a^{16}-\frac{15\!\cdots\!45}{13\!\cdots\!08}a^{15}+\frac{12\!\cdots\!95}{69\!\cdots\!04}a^{14}+\frac{32\!\cdots\!01}{15\!\cdots\!12}a^{13}-\frac{34\!\cdots\!99}{46\!\cdots\!36}a^{12}-\frac{42\!\cdots\!41}{13\!\cdots\!08}a^{11}+\frac{14\!\cdots\!05}{69\!\cdots\!04}a^{10}+\frac{24\!\cdots\!17}{69\!\cdots\!04}a^{9}-\frac{54\!\cdots\!79}{11\!\cdots\!92}a^{8}-\frac{10\!\cdots\!39}{34\!\cdots\!52}a^{7}+\frac{15\!\cdots\!19}{34\!\cdots\!52}a^{6}-\frac{71\!\cdots\!41}{34\!\cdots\!52}a^{5}-\frac{21\!\cdots\!65}{38\!\cdots\!28}a^{4}+\frac{34\!\cdots\!23}{38\!\cdots\!28}a^{3}+\frac{11\!\cdots\!80}{86\!\cdots\!13}a^{2}-\frac{46\!\cdots\!75}{17\!\cdots\!26}a-\frac{10\!\cdots\!36}{86\!\cdots\!13}$, $\frac{34\!\cdots\!93}{55\!\cdots\!32}a^{26}+\frac{56\!\cdots\!87}{17\!\cdots\!26}a^{25}-\frac{10\!\cdots\!21}{18\!\cdots\!44}a^{24}-\frac{99\!\cdots\!29}{34\!\cdots\!52}a^{23}+\frac{19\!\cdots\!35}{92\!\cdots\!72}a^{22}-\frac{12\!\cdots\!25}{27\!\cdots\!16}a^{21}-\frac{62\!\cdots\!29}{69\!\cdots\!04}a^{20}-\frac{22\!\cdots\!93}{27\!\cdots\!16}a^{19}+\frac{12\!\cdots\!67}{55\!\cdots\!32}a^{18}+\frac{40\!\cdots\!67}{27\!\cdots\!16}a^{17}-\frac{10\!\cdots\!75}{55\!\cdots\!32}a^{16}-\frac{78\!\cdots\!91}{10\!\cdots\!08}a^{15}+\frac{98\!\cdots\!17}{27\!\cdots\!16}a^{14}+\frac{21\!\cdots\!57}{15\!\cdots\!12}a^{13}-\frac{36\!\cdots\!93}{27\!\cdots\!16}a^{12}-\frac{27\!\cdots\!41}{13\!\cdots\!08}a^{11}+\frac{45\!\cdots\!73}{17\!\cdots\!26}a^{10}+\frac{61\!\cdots\!13}{34\!\cdots\!52}a^{9}-\frac{23\!\cdots\!53}{44\!\cdots\!68}a^{8}+\frac{11\!\cdots\!21}{69\!\cdots\!04}a^{7}+\frac{79\!\cdots\!77}{23\!\cdots\!68}a^{6}-\frac{12\!\cdots\!75}{34\!\cdots\!52}a^{5}+\frac{13\!\cdots\!77}{23\!\cdots\!68}a^{4}+\frac{37\!\cdots\!39}{34\!\cdots\!52}a^{3}-\frac{11\!\cdots\!09}{34\!\cdots\!52}a^{2}-\frac{37\!\cdots\!67}{17\!\cdots\!26}a+\frac{65\!\cdots\!39}{86\!\cdots\!13}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 19428990967.59157 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{12}\cdot 19428990967.59157 \cdot 1}{2\cdot\sqrt{638641997009196294829147338632324972544}}\cr\approx \mathstrut & 11.6423304215491 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^25 + 36*x^23 - 18*x^22 - 144*x^21 - 54*x^20 + 423*x^19 + 42*x^18 - 405*x^17 - 1062*x^16 + 1188*x^15 + 1872*x^14 - 3258*x^13 - 1980*x^12 + 5724*x^11 + 504*x^10 - 9564*x^9 + 7128*x^8 + 3744*x^7 - 8640*x^6 + 4248*x^5 + 1008*x^4 - 1440*x^3 + 288*x - 64)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 9*x^25 + 36*x^23 - 18*x^22 - 144*x^21 - 54*x^20 + 423*x^19 + 42*x^18 - 405*x^17 - 1062*x^16 + 1188*x^15 + 1872*x^14 - 3258*x^13 - 1980*x^12 + 5724*x^11 + 504*x^10 - 9564*x^9 + 7128*x^8 + 3744*x^7 - 8640*x^6 + 4248*x^5 + 1008*x^4 - 1440*x^3 + 288*x - 64, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 9*x^25 + 36*x^23 - 18*x^22 - 144*x^21 - 54*x^20 + 423*x^19 + 42*x^18 - 405*x^17 - 1062*x^16 + 1188*x^15 + 1872*x^14 - 3258*x^13 - 1980*x^12 + 5724*x^11 + 504*x^10 - 9564*x^9 + 7128*x^8 + 3744*x^7 - 8640*x^6 + 4248*x^5 + 1008*x^4 - 1440*x^3 + 288*x - 64);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^25 + 36*x^23 - 18*x^22 - 144*x^21 - 54*x^20 + 423*x^19 + 42*x^18 - 405*x^17 - 1062*x^16 + 1188*x^15 + 1872*x^14 - 3258*x^13 - 1980*x^12 + 5724*x^11 + 504*x^10 - 9564*x^9 + 7128*x^8 + 3744*x^7 - 8640*x^6 + 4248*x^5 + 1008*x^4 - 1440*x^3 + 288*x - 64);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\wr S_3$ (as 27T298):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 1296
The 22 conjugacy class representatives for $S_3\wr S_3$
Character table for $S_3\wr S_3$

Intermediate fields

3.1.324.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 9 sibling: data not computed
Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 27 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 9.1.117546246144.3

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.9.0.1}{9} }^{3}$ ${\href{/padicField/7.4.0.1}{4} }^{5}{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.6.0.1}{6} }^{4}{,}\,{\href{/padicField/11.3.0.1}{3} }$ ${\href{/padicField/13.6.0.1}{6} }^{4}{,}\,{\href{/padicField/13.3.0.1}{3} }$ ${\href{/padicField/17.6.0.1}{6} }^{4}{,}\,{\href{/padicField/17.3.0.1}{3} }$ ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.6.0.1}{6} }^{4}{,}\,{\href{/padicField/23.3.0.1}{3} }$ ${\href{/padicField/29.9.0.1}{9} }^{3}$ ${\href{/padicField/31.4.0.1}{4} }^{5}{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.6.0.1}{6} }^{4}{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{5}$ ${\href{/padicField/43.6.0.1}{6} }^{4}{,}\,{\href{/padicField/43.3.0.1}{3} }$ ${\href{/padicField/47.4.0.1}{4} }^{5}{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.3.0.1}{3} }^{9}$ ${\href{/padicField/59.6.0.1}{6} }^{4}{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.4.10.3$x^{4} + 4 x^{3} + 8 x^{2} + 2$$4$$1$$10$$D_{4}$$[2, 3, 7/2]$
2.4.9.1$x^{4} + 10 x^{2} + 2$$4$$1$$9$$D_{4}$$[2, 3, 7/2]$
2.6.8.1$x^{6} + 2 x^{3} + 2$$6$$1$$8$$D_{6}$$[2]_{3}^{2}$
2.12.29.25$x^{12} + 10 x^{6} + 2$$12$$1$$29$12T28$[2, 3, 7/2]_{3}^{2}$
\(3\) Copy content Toggle raw display 3.9.15.30$x^{9} + 3 x^{8} + 6 x^{7} + 6 x^{6} + 6 x^{3} + 12$$9$$1$$15$$S_3^2$$[3/2, 2]_{2}^{2}$
Deg $18$$18$$1$$31$