Properties

Label 27.3.919...336.1
Degree $27$
Signature $[3, 12]$
Discriminant $9.196\times 10^{40}$
Root discriminant \(32.90\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\SO(5,3)$ (as 27T1161)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^26 + 27*x^25 - 19*x^24 + 6*x^23 - 378*x^22 + 1324*x^21 - 1272*x^20 + 27*x^19 - 5467*x^18 + 21285*x^17 - 25389*x^16 + 8080*x^15 - 28104*x^14 + 120960*x^13 - 179344*x^12 + 107400*x^11 - 8856*x^10 + 10008*x^9 - 60120*x^8 + 70560*x^7 - 49536*x^6 + 29952*x^5 - 17280*x^4 + 9072*x^3 - 3888*x^2 + 1296*x - 144)
 
gp: K = bnfinit(y^27 - 9*y^26 + 27*y^25 - 19*y^24 + 6*y^23 - 378*y^22 + 1324*y^21 - 1272*y^20 + 27*y^19 - 5467*y^18 + 21285*y^17 - 25389*y^16 + 8080*y^15 - 28104*y^14 + 120960*y^13 - 179344*y^12 + 107400*y^11 - 8856*y^10 + 10008*y^9 - 60120*y^8 + 70560*y^7 - 49536*y^6 + 29952*y^5 - 17280*y^4 + 9072*y^3 - 3888*y^2 + 1296*y - 144, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 9*x^26 + 27*x^25 - 19*x^24 + 6*x^23 - 378*x^22 + 1324*x^21 - 1272*x^20 + 27*x^19 - 5467*x^18 + 21285*x^17 - 25389*x^16 + 8080*x^15 - 28104*x^14 + 120960*x^13 - 179344*x^12 + 107400*x^11 - 8856*x^10 + 10008*x^9 - 60120*x^8 + 70560*x^7 - 49536*x^6 + 29952*x^5 - 17280*x^4 + 9072*x^3 - 3888*x^2 + 1296*x - 144);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^26 + 27*x^25 - 19*x^24 + 6*x^23 - 378*x^22 + 1324*x^21 - 1272*x^20 + 27*x^19 - 5467*x^18 + 21285*x^17 - 25389*x^16 + 8080*x^15 - 28104*x^14 + 120960*x^13 - 179344*x^12 + 107400*x^11 - 8856*x^10 + 10008*x^9 - 60120*x^8 + 70560*x^7 - 49536*x^6 + 29952*x^5 - 17280*x^4 + 9072*x^3 - 3888*x^2 + 1296*x - 144)
 

\( x^{27} - 9 x^{26} + 27 x^{25} - 19 x^{24} + 6 x^{23} - 378 x^{22} + 1324 x^{21} - 1272 x^{20} + \cdots - 144 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(91964447569324266455397216763054796046336\) \(\medspace = 2^{60}\cdot 3^{48}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(32.90\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{12}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{14}-\frac{1}{4}a^{13}+\frac{1}{4}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{4}a^{7}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{12}-\frac{1}{2}a^{10}+\frac{1}{4}a^{8}-\frac{1}{4}a^{4}-\frac{1}{2}$, $\frac{1}{8}a^{17}-\frac{1}{8}a^{16}-\frac{1}{8}a^{15}+\frac{1}{8}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}+\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{8}a^{9}+\frac{1}{8}a^{8}+\frac{1}{8}a^{7}-\frac{1}{8}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{8}a^{18}+\frac{1}{8}a^{14}+\frac{1}{8}a^{10}-\frac{1}{2}a^{8}-\frac{3}{8}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{32}a^{19}-\frac{1}{32}a^{18}-\frac{1}{32}a^{17}+\frac{1}{32}a^{16}-\frac{1}{16}a^{15}+\frac{3}{16}a^{14}+\frac{3}{8}a^{12}-\frac{9}{32}a^{11}-\frac{15}{32}a^{10}+\frac{5}{32}a^{9}-\frac{5}{32}a^{8}-\frac{1}{2}a^{7}-\frac{3}{8}a^{5}+\frac{1}{8}a^{4}+\frac{1}{8}a^{3}+\frac{3}{8}a^{2}-\frac{3}{8}a-\frac{1}{8}$, $\frac{1}{32}a^{20}-\frac{1}{16}a^{18}-\frac{1}{32}a^{16}-\frac{1}{8}a^{15}-\frac{1}{16}a^{14}-\frac{3}{8}a^{13}+\frac{11}{32}a^{12}+\frac{1}{4}a^{11}-\frac{5}{16}a^{10}-\frac{1}{2}a^{9}-\frac{5}{32}a^{8}-\frac{1}{4}a^{7}-\frac{1}{8}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}+\frac{3}{8}$, $\frac{1}{96}a^{21}+\frac{1}{48}a^{18}-\frac{1}{32}a^{17}+\frac{1}{16}a^{16}+\frac{5}{48}a^{15}-\frac{1}{8}a^{14}+\frac{9}{32}a^{13}+\frac{1}{12}a^{12}+\frac{3}{8}a^{11}+\frac{1}{16}a^{10}+\frac{37}{96}a^{9}+\frac{1}{16}a^{8}+\frac{1}{8}a^{7}+\frac{5}{24}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{8}a+\frac{1}{4}$, $\frac{1}{96}a^{22}-\frac{1}{96}a^{19}-\frac{1}{32}a^{17}-\frac{5}{96}a^{16}+\frac{1}{16}a^{15}-\frac{1}{32}a^{14}-\frac{5}{12}a^{13}-\frac{1}{4}a^{12}+\frac{3}{32}a^{11}-\frac{19}{48}a^{10}+\frac{1}{32}a^{9}-\frac{3}{32}a^{8}-\frac{5}{12}a^{7}-\frac{1}{8}a^{6}-\frac{1}{8}a^{5}-\frac{3}{8}a^{4}-\frac{3}{8}a^{3}+\frac{1}{4}a^{2}-\frac{3}{8}a-\frac{3}{8}$, $\frac{1}{384}a^{23}-\frac{1}{384}a^{22}-\frac{1}{384}a^{21}+\frac{5}{384}a^{20}+\frac{1}{96}a^{19}-\frac{1}{48}a^{18}+\frac{5}{192}a^{17}+\frac{7}{192}a^{16}+\frac{11}{384}a^{15}-\frac{19}{384}a^{14}-\frac{11}{384}a^{13}-\frac{113}{384}a^{12}-\frac{67}{192}a^{11}-\frac{17}{192}a^{10}-\frac{95}{192}a^{9}+\frac{73}{192}a^{8}+\frac{37}{96}a^{7}+\frac{31}{96}a^{6}-\frac{15}{32}a^{5}+\frac{7}{32}a^{4}+\frac{5}{16}a^{3}-\frac{5}{16}a^{2}-\frac{3}{16}a+\frac{1}{16}$, $\frac{1}{384}a^{24}-\frac{1}{192}a^{22}-\frac{1}{128}a^{20}-\frac{1}{96}a^{19}+\frac{3}{64}a^{18}-\frac{1}{32}a^{17}-\frac{35}{384}a^{16}-\frac{1}{8}a^{15}+\frac{15}{64}a^{14}-\frac{23}{48}a^{13}+\frac{55}{128}a^{12}-\frac{5}{16}a^{11}+\frac{5}{12}a^{10}-\frac{3}{8}a^{9}-\frac{1}{64}a^{8}-\frac{1}{24}a^{7}-\frac{17}{48}a^{6}+\frac{1}{32}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{7}{16}$, $\frac{1}{28416}a^{25}-\frac{29}{28416}a^{24}-\frac{19}{28416}a^{23}+\frac{5}{9472}a^{22}+\frac{65}{14208}a^{21}+\frac{143}{14208}a^{20}-\frac{51}{4736}a^{19}+\frac{781}{14208}a^{18}-\frac{1273}{28416}a^{17}-\frac{13}{256}a^{16}+\frac{3295}{28416}a^{15}-\frac{4931}{28416}a^{14}-\frac{697}{2368}a^{13}-\frac{1301}{3552}a^{12}+\frac{4273}{14208}a^{11}-\frac{1261}{4736}a^{10}+\frac{515}{3552}a^{9}+\frac{317}{888}a^{8}+\frac{1085}{7104}a^{7}+\frac{2587}{7104}a^{6}-\frac{261}{592}a^{5}+\frac{27}{148}a^{4}+\frac{209}{1184}a^{3}-\frac{219}{1184}a^{2}+\frac{269}{592}a+\frac{149}{592}$, $\frac{1}{53\!\cdots\!88}a^{26}+\frac{22\!\cdots\!09}{17\!\cdots\!96}a^{25}-\frac{18\!\cdots\!73}{17\!\cdots\!96}a^{24}-\frac{45\!\cdots\!37}{53\!\cdots\!88}a^{23}-\frac{31\!\cdots\!35}{88\!\cdots\!48}a^{22}+\frac{28\!\cdots\!51}{88\!\cdots\!48}a^{21}+\frac{24\!\cdots\!71}{26\!\cdots\!44}a^{20}-\frac{64\!\cdots\!33}{88\!\cdots\!48}a^{19}-\frac{44\!\cdots\!11}{17\!\cdots\!96}a^{18}-\frac{15\!\cdots\!75}{53\!\cdots\!88}a^{17}-\frac{16\!\cdots\!39}{17\!\cdots\!96}a^{16}-\frac{12\!\cdots\!05}{17\!\cdots\!96}a^{15}+\frac{60\!\cdots\!85}{33\!\cdots\!68}a^{14}-\frac{34\!\cdots\!75}{44\!\cdots\!24}a^{13}-\frac{11\!\cdots\!17}{88\!\cdots\!48}a^{12}+\frac{13\!\cdots\!29}{26\!\cdots\!44}a^{11}-\frac{45\!\cdots\!47}{27\!\cdots\!64}a^{10}-\frac{81\!\cdots\!51}{22\!\cdots\!12}a^{9}+\frac{28\!\cdots\!23}{13\!\cdots\!72}a^{8}-\frac{95\!\cdots\!35}{44\!\cdots\!24}a^{7}-\frac{31\!\cdots\!42}{69\!\cdots\!41}a^{6}+\frac{40\!\cdots\!81}{11\!\cdots\!56}a^{5}-\frac{25\!\cdots\!99}{22\!\cdots\!12}a^{4}-\frac{28\!\cdots\!35}{22\!\cdots\!12}a^{3}-\frac{39\!\cdots\!93}{11\!\cdots\!56}a^{2}-\frac{25\!\cdots\!97}{11\!\cdots\!56}a-\frac{67\!\cdots\!51}{55\!\cdots\!28}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{24\!\cdots\!21}{26\!\cdots\!44}a^{26}-\frac{63\!\cdots\!73}{88\!\cdots\!48}a^{25}+\frac{43\!\cdots\!43}{26\!\cdots\!44}a^{24}+\frac{22\!\cdots\!27}{26\!\cdots\!44}a^{23}+\frac{11\!\cdots\!91}{13\!\cdots\!72}a^{22}-\frac{73\!\cdots\!89}{22\!\cdots\!12}a^{21}+\frac{27\!\cdots\!75}{33\!\cdots\!68}a^{20}-\frac{34\!\cdots\!41}{13\!\cdots\!72}a^{19}-\frac{18\!\cdots\!79}{88\!\cdots\!48}a^{18}-\frac{13\!\cdots\!01}{26\!\cdots\!44}a^{17}+\frac{35\!\cdots\!81}{26\!\cdots\!44}a^{16}-\frac{75\!\cdots\!01}{88\!\cdots\!48}a^{15}-\frac{55\!\cdots\!99}{33\!\cdots\!68}a^{14}-\frac{33\!\cdots\!69}{13\!\cdots\!72}a^{13}+\frac{17\!\cdots\!15}{22\!\cdots\!12}a^{12}-\frac{10\!\cdots\!51}{13\!\cdots\!72}a^{11}+\frac{87\!\cdots\!29}{66\!\cdots\!36}a^{10}+\frac{17\!\cdots\!49}{11\!\cdots\!56}a^{9}+\frac{36\!\cdots\!41}{22\!\cdots\!12}a^{8}-\frac{25\!\cdots\!89}{66\!\cdots\!36}a^{7}+\frac{21\!\cdots\!53}{82\!\cdots\!92}a^{6}-\frac{14\!\cdots\!67}{11\!\cdots\!56}a^{5}+\frac{56\!\cdots\!53}{69\!\cdots\!41}a^{4}-\frac{54\!\cdots\!87}{11\!\cdots\!56}a^{3}+\frac{30\!\cdots\!01}{13\!\cdots\!82}a^{2}-\frac{33\!\cdots\!05}{55\!\cdots\!28}a+\frac{18\!\cdots\!43}{27\!\cdots\!64}$, $\frac{59\!\cdots\!31}{26\!\cdots\!44}a^{26}-\frac{11\!\cdots\!65}{66\!\cdots\!36}a^{25}+\frac{34\!\cdots\!87}{88\!\cdots\!48}a^{24}+\frac{43\!\cdots\!27}{16\!\cdots\!84}a^{23}+\frac{90\!\cdots\!85}{26\!\cdots\!44}a^{22}-\frac{26\!\cdots\!97}{33\!\cdots\!68}a^{21}+\frac{50\!\cdots\!81}{26\!\cdots\!44}a^{20}-\frac{11\!\cdots\!37}{16\!\cdots\!84}a^{19}+\frac{36\!\cdots\!09}{26\!\cdots\!44}a^{18}-\frac{21\!\cdots\!09}{16\!\cdots\!84}a^{17}+\frac{82\!\cdots\!77}{26\!\cdots\!44}a^{16}-\frac{69\!\cdots\!45}{33\!\cdots\!68}a^{15}+\frac{15\!\cdots\!77}{26\!\cdots\!44}a^{14}-\frac{47\!\cdots\!47}{66\!\cdots\!36}a^{13}+\frac{48\!\cdots\!83}{26\!\cdots\!44}a^{12}-\frac{76\!\cdots\!53}{41\!\cdots\!46}a^{11}+\frac{11\!\cdots\!71}{13\!\cdots\!72}a^{10}-\frac{30\!\cdots\!27}{82\!\cdots\!92}a^{9}+\frac{58\!\cdots\!43}{13\!\cdots\!72}a^{8}-\frac{33\!\cdots\!73}{69\!\cdots\!41}a^{7}+\frac{43\!\cdots\!19}{66\!\cdots\!36}a^{6}-\frac{40\!\cdots\!21}{55\!\cdots\!28}a^{5}+\frac{96\!\cdots\!79}{22\!\cdots\!12}a^{4}-\frac{22\!\cdots\!85}{13\!\cdots\!82}a^{3}+\frac{63\!\cdots\!09}{11\!\cdots\!56}a^{2}-\frac{12\!\cdots\!53}{13\!\cdots\!82}a+\frac{14\!\cdots\!09}{11\!\cdots\!56}$, $\frac{54\!\cdots\!61}{17\!\cdots\!96}a^{26}-\frac{12\!\cdots\!61}{53\!\cdots\!88}a^{25}+\frac{99\!\cdots\!69}{17\!\cdots\!96}a^{24}-\frac{79\!\cdots\!75}{17\!\cdots\!96}a^{23}+\frac{11\!\cdots\!27}{22\!\cdots\!12}a^{22}-\frac{10\!\cdots\!43}{88\!\cdots\!48}a^{21}+\frac{12\!\cdots\!21}{44\!\cdots\!24}a^{20}-\frac{10\!\cdots\!49}{88\!\cdots\!48}a^{19}+\frac{11\!\cdots\!43}{17\!\cdots\!96}a^{18}-\frac{31\!\cdots\!09}{17\!\cdots\!96}a^{17}+\frac{77\!\cdots\!83}{17\!\cdots\!96}a^{16}-\frac{59\!\cdots\!57}{17\!\cdots\!96}a^{15}+\frac{15\!\cdots\!75}{88\!\cdots\!48}a^{14}-\frac{14\!\cdots\!49}{13\!\cdots\!82}a^{13}+\frac{11\!\cdots\!77}{44\!\cdots\!24}a^{12}-\frac{25\!\cdots\!29}{88\!\cdots\!48}a^{11}+\frac{76\!\cdots\!35}{44\!\cdots\!24}a^{10}-\frac{15\!\cdots\!41}{22\!\cdots\!12}a^{9}+\frac{73\!\cdots\!83}{11\!\cdots\!56}a^{8}-\frac{12\!\cdots\!41}{13\!\cdots\!72}a^{7}+\frac{23\!\cdots\!73}{22\!\cdots\!12}a^{6}-\frac{13\!\cdots\!47}{13\!\cdots\!82}a^{5}+\frac{81\!\cdots\!51}{11\!\cdots\!56}a^{4}-\frac{82\!\cdots\!47}{22\!\cdots\!12}a^{3}+\frac{92\!\cdots\!63}{55\!\cdots\!28}a^{2}-\frac{65\!\cdots\!57}{11\!\cdots\!56}a+\frac{28\!\cdots\!05}{11\!\cdots\!56}$, $\frac{32\!\cdots\!23}{26\!\cdots\!44}a^{26}+\frac{33\!\cdots\!81}{33\!\cdots\!68}a^{25}-\frac{68\!\cdots\!27}{26\!\cdots\!44}a^{24}+\frac{21\!\cdots\!13}{26\!\cdots\!44}a^{23}-\frac{18\!\cdots\!85}{13\!\cdots\!72}a^{22}+\frac{39\!\cdots\!93}{88\!\cdots\!48}a^{21}-\frac{16\!\cdots\!33}{13\!\cdots\!72}a^{20}+\frac{53\!\cdots\!97}{66\!\cdots\!36}a^{19}-\frac{31\!\cdots\!43}{88\!\cdots\!48}a^{18}+\frac{91\!\cdots\!65}{13\!\cdots\!72}a^{17}-\frac{54\!\cdots\!41}{26\!\cdots\!44}a^{16}+\frac{16\!\cdots\!57}{88\!\cdots\!48}a^{15}-\frac{87\!\cdots\!39}{16\!\cdots\!84}a^{14}+\frac{96\!\cdots\!33}{26\!\cdots\!44}a^{13}-\frac{52\!\cdots\!91}{44\!\cdots\!24}a^{12}+\frac{19\!\cdots\!09}{13\!\cdots\!72}a^{11}-\frac{24\!\cdots\!55}{33\!\cdots\!68}a^{10}+\frac{37\!\cdots\!05}{44\!\cdots\!24}a^{9}-\frac{11\!\cdots\!21}{66\!\cdots\!36}a^{8}+\frac{11\!\cdots\!83}{22\!\cdots\!12}a^{7}-\frac{95\!\cdots\!65}{16\!\cdots\!84}a^{6}+\frac{93\!\cdots\!93}{22\!\cdots\!12}a^{5}-\frac{27\!\cdots\!93}{11\!\cdots\!56}a^{4}+\frac{14\!\cdots\!25}{11\!\cdots\!56}a^{3}-\frac{38\!\cdots\!53}{55\!\cdots\!28}a^{2}+\frac{34\!\cdots\!83}{11\!\cdots\!56}a-\frac{23\!\cdots\!73}{27\!\cdots\!64}$, $\frac{18\!\cdots\!99}{13\!\cdots\!72}a^{26}+\frac{82\!\cdots\!31}{53\!\cdots\!88}a^{25}-\frac{10\!\cdots\!95}{17\!\cdots\!96}a^{24}+\frac{11\!\cdots\!71}{17\!\cdots\!96}a^{23}+\frac{59\!\cdots\!59}{53\!\cdots\!88}a^{22}+\frac{78\!\cdots\!97}{13\!\cdots\!72}a^{21}-\frac{25\!\cdots\!11}{88\!\cdots\!48}a^{20}+\frac{96\!\cdots\!21}{26\!\cdots\!44}a^{19}-\frac{15\!\cdots\!81}{26\!\cdots\!44}a^{18}+\frac{14\!\cdots\!67}{17\!\cdots\!96}a^{17}-\frac{23\!\cdots\!55}{53\!\cdots\!88}a^{16}+\frac{35\!\cdots\!87}{53\!\cdots\!88}a^{15}-\frac{44\!\cdots\!73}{17\!\cdots\!96}a^{14}+\frac{10\!\cdots\!39}{26\!\cdots\!44}a^{13}-\frac{20\!\cdots\!45}{82\!\cdots\!92}a^{12}+\frac{38\!\cdots\!59}{88\!\cdots\!48}a^{11}-\frac{81\!\cdots\!51}{26\!\cdots\!44}a^{10}+\frac{49\!\cdots\!87}{13\!\cdots\!72}a^{9}+\frac{49\!\cdots\!03}{66\!\cdots\!36}a^{8}+\frac{53\!\cdots\!83}{44\!\cdots\!24}a^{7}-\frac{23\!\cdots\!37}{13\!\cdots\!72}a^{6}+\frac{29\!\cdots\!55}{22\!\cdots\!12}a^{5}-\frac{10\!\cdots\!87}{13\!\cdots\!82}a^{4}+\frac{91\!\cdots\!89}{22\!\cdots\!12}a^{3}-\frac{43\!\cdots\!79}{22\!\cdots\!12}a^{2}+\frac{10\!\cdots\!73}{13\!\cdots\!82}a-\frac{28\!\cdots\!01}{11\!\cdots\!56}$, $\frac{22\!\cdots\!15}{88\!\cdots\!48}a^{26}+\frac{28\!\cdots\!19}{14\!\cdots\!24}a^{25}-\frac{25\!\cdots\!31}{53\!\cdots\!88}a^{24}+\frac{23\!\cdots\!81}{53\!\cdots\!88}a^{23}-\frac{19\!\cdots\!35}{53\!\cdots\!88}a^{22}+\frac{20\!\cdots\!95}{22\!\cdots\!12}a^{21}-\frac{31\!\cdots\!19}{13\!\cdots\!72}a^{20}+\frac{27\!\cdots\!21}{26\!\cdots\!44}a^{19}-\frac{37\!\cdots\!63}{44\!\cdots\!24}a^{18}+\frac{79\!\cdots\!69}{53\!\cdots\!88}a^{17}-\frac{20\!\cdots\!17}{53\!\cdots\!88}a^{16}+\frac{49\!\cdots\!69}{17\!\cdots\!96}a^{15}-\frac{35\!\cdots\!13}{53\!\cdots\!88}a^{14}+\frac{22\!\cdots\!01}{26\!\cdots\!44}a^{13}-\frac{20\!\cdots\!57}{88\!\cdots\!48}a^{12}+\frac{63\!\cdots\!81}{26\!\cdots\!44}a^{11}-\frac{27\!\cdots\!49}{26\!\cdots\!44}a^{10}+\frac{27\!\cdots\!01}{44\!\cdots\!24}a^{9}-\frac{44\!\cdots\!85}{35\!\cdots\!56}a^{8}+\frac{15\!\cdots\!05}{13\!\cdots\!72}a^{7}-\frac{19\!\cdots\!79}{35\!\cdots\!56}a^{6}+\frac{12\!\cdots\!33}{22\!\cdots\!12}a^{5}-\frac{15\!\cdots\!15}{22\!\cdots\!12}a^{4}+\frac{11\!\cdots\!25}{22\!\cdots\!12}a^{3}-\frac{44\!\cdots\!21}{22\!\cdots\!12}a^{2}+\frac{14\!\cdots\!03}{27\!\cdots\!64}a-\frac{53\!\cdots\!39}{55\!\cdots\!28}$, $\frac{19\!\cdots\!11}{17\!\cdots\!96}a^{26}+\frac{45\!\cdots\!55}{53\!\cdots\!88}a^{25}-\frac{33\!\cdots\!43}{17\!\cdots\!96}a^{24}+\frac{24\!\cdots\!19}{53\!\cdots\!88}a^{23}-\frac{89\!\cdots\!27}{44\!\cdots\!24}a^{22}+\frac{10\!\cdots\!23}{26\!\cdots\!44}a^{21}-\frac{30\!\cdots\!39}{33\!\cdots\!68}a^{20}+\frac{34\!\cdots\!31}{88\!\cdots\!48}a^{19}-\frac{89\!\cdots\!99}{53\!\cdots\!88}a^{18}+\frac{31\!\cdots\!81}{53\!\cdots\!88}a^{17}-\frac{26\!\cdots\!81}{17\!\cdots\!96}a^{16}+\frac{61\!\cdots\!09}{53\!\cdots\!88}a^{15}-\frac{10\!\cdots\!53}{26\!\cdots\!44}a^{14}+\frac{19\!\cdots\!99}{59\!\cdots\!76}a^{13}-\frac{58\!\cdots\!69}{66\!\cdots\!36}a^{12}+\frac{26\!\cdots\!13}{26\!\cdots\!44}a^{11}-\frac{20\!\cdots\!11}{44\!\cdots\!24}a^{10}+\frac{10\!\cdots\!03}{33\!\cdots\!68}a^{9}-\frac{64\!\cdots\!01}{66\!\cdots\!36}a^{8}+\frac{46\!\cdots\!27}{13\!\cdots\!72}a^{7}-\frac{27\!\cdots\!91}{66\!\cdots\!36}a^{6}+\frac{80\!\cdots\!29}{27\!\cdots\!64}a^{5}-\frac{78\!\cdots\!79}{55\!\cdots\!28}a^{4}+\frac{15\!\cdots\!61}{22\!\cdots\!12}a^{3}-\frac{26\!\cdots\!83}{69\!\cdots\!41}a^{2}+\frac{19\!\cdots\!81}{11\!\cdots\!56}a-\frac{42\!\cdots\!93}{11\!\cdots\!56}$, $\frac{10\!\cdots\!25}{53\!\cdots\!88}a^{26}-\frac{37\!\cdots\!89}{26\!\cdots\!44}a^{25}+\frac{63\!\cdots\!67}{26\!\cdots\!44}a^{24}+\frac{68\!\cdots\!77}{26\!\cdots\!44}a^{23}+\frac{14\!\cdots\!59}{53\!\cdots\!88}a^{22}-\frac{38\!\cdots\!13}{55\!\cdots\!28}a^{21}+\frac{16\!\cdots\!69}{13\!\cdots\!72}a^{20}+\frac{83\!\cdots\!73}{13\!\cdots\!72}a^{19}-\frac{81\!\cdots\!81}{17\!\cdots\!96}a^{18}-\frac{29\!\cdots\!23}{26\!\cdots\!44}a^{17}+\frac{53\!\cdots\!51}{26\!\cdots\!44}a^{16}+\frac{75\!\cdots\!45}{88\!\cdots\!48}a^{15}-\frac{56\!\cdots\!69}{53\!\cdots\!88}a^{14}-\frac{10\!\cdots\!95}{17\!\cdots\!28}a^{13}+\frac{10\!\cdots\!45}{88\!\cdots\!48}a^{12}-\frac{22\!\cdots\!99}{41\!\cdots\!46}a^{11}-\frac{15\!\cdots\!29}{26\!\cdots\!44}a^{10}+\frac{10\!\cdots\!57}{22\!\cdots\!12}a^{9}+\frac{14\!\cdots\!77}{44\!\cdots\!24}a^{8}-\frac{34\!\cdots\!01}{66\!\cdots\!36}a^{7}+\frac{29\!\cdots\!29}{13\!\cdots\!72}a^{6}+\frac{37\!\cdots\!51}{27\!\cdots\!64}a^{5}-\frac{97\!\cdots\!57}{22\!\cdots\!12}a^{4}-\frac{16\!\cdots\!67}{55\!\cdots\!28}a^{3}-\frac{14\!\cdots\!79}{22\!\cdots\!12}a^{2}+\frac{43\!\cdots\!87}{27\!\cdots\!64}a-\frac{11\!\cdots\!23}{11\!\cdots\!56}$, $\frac{13\!\cdots\!43}{53\!\cdots\!88}a^{26}+\frac{27\!\cdots\!29}{17\!\cdots\!96}a^{25}-\frac{12\!\cdots\!71}{53\!\cdots\!88}a^{24}-\frac{63\!\cdots\!73}{53\!\cdots\!88}a^{23}-\frac{27\!\cdots\!71}{26\!\cdots\!44}a^{22}+\frac{19\!\cdots\!21}{26\!\cdots\!44}a^{21}-\frac{29\!\cdots\!89}{26\!\cdots\!44}a^{20}+\frac{17\!\cdots\!13}{71\!\cdots\!12}a^{19}-\frac{11\!\cdots\!81}{53\!\cdots\!88}a^{18}+\frac{59\!\cdots\!93}{53\!\cdots\!88}a^{17}-\frac{94\!\cdots\!09}{53\!\cdots\!88}a^{16}+\frac{78\!\cdots\!93}{53\!\cdots\!88}a^{15}-\frac{32\!\cdots\!43}{13\!\cdots\!72}a^{14}+\frac{82\!\cdots\!67}{13\!\cdots\!72}a^{13}-\frac{28\!\cdots\!55}{26\!\cdots\!44}a^{12}+\frac{37\!\cdots\!01}{26\!\cdots\!44}a^{11}-\frac{85\!\cdots\!67}{66\!\cdots\!36}a^{10}+\frac{15\!\cdots\!39}{33\!\cdots\!68}a^{9}+\frac{82\!\cdots\!09}{13\!\cdots\!72}a^{8}+\frac{55\!\cdots\!47}{13\!\cdots\!72}a^{7}-\frac{27\!\cdots\!91}{33\!\cdots\!68}a^{6}+\frac{59\!\cdots\!67}{11\!\cdots\!56}a^{5}-\frac{54\!\cdots\!47}{22\!\cdots\!12}a^{4}+\frac{10\!\cdots\!33}{59\!\cdots\!76}a^{3}-\frac{99\!\cdots\!71}{11\!\cdots\!56}a^{2}+\frac{39\!\cdots\!53}{11\!\cdots\!56}a-\frac{37\!\cdots\!75}{27\!\cdots\!64}$, $\frac{11\!\cdots\!65}{13\!\cdots\!72}a^{26}+\frac{12\!\cdots\!03}{26\!\cdots\!44}a^{25}-\frac{88\!\cdots\!81}{26\!\cdots\!44}a^{24}+\frac{59\!\cdots\!75}{88\!\cdots\!48}a^{23}+\frac{19\!\cdots\!67}{88\!\cdots\!48}a^{22}+\frac{17\!\cdots\!13}{22\!\cdots\!12}a^{21}-\frac{72\!\cdots\!15}{44\!\cdots\!24}a^{20}+\frac{14\!\cdots\!67}{44\!\cdots\!24}a^{19}-\frac{37\!\cdots\!25}{22\!\cdots\!12}a^{18}+\frac{19\!\cdots\!11}{88\!\cdots\!48}a^{17}-\frac{23\!\cdots\!05}{88\!\cdots\!48}a^{16}+\frac{48\!\cdots\!37}{88\!\cdots\!48}a^{15}-\frac{20\!\cdots\!55}{88\!\cdots\!48}a^{14}-\frac{54\!\cdots\!35}{44\!\cdots\!24}a^{13}-\frac{31\!\cdots\!11}{22\!\cdots\!12}a^{12}+\frac{14\!\cdots\!47}{44\!\cdots\!24}a^{11}-\frac{11\!\cdots\!17}{44\!\cdots\!24}a^{10}+\frac{30\!\cdots\!05}{55\!\cdots\!28}a^{9}-\frac{12\!\cdots\!99}{16\!\cdots\!84}a^{8}+\frac{51\!\cdots\!57}{66\!\cdots\!36}a^{7}-\frac{73\!\cdots\!51}{66\!\cdots\!36}a^{6}+\frac{11\!\cdots\!53}{11\!\cdots\!56}a^{5}-\frac{42\!\cdots\!87}{55\!\cdots\!28}a^{4}+\frac{40\!\cdots\!01}{11\!\cdots\!56}a^{3}-\frac{20\!\cdots\!95}{11\!\cdots\!56}a^{2}+\frac{55\!\cdots\!67}{55\!\cdots\!28}a-\frac{25\!\cdots\!23}{55\!\cdots\!28}$, $\frac{64\!\cdots\!19}{66\!\cdots\!36}a^{26}-\frac{13\!\cdots\!65}{17\!\cdots\!96}a^{25}+\frac{90\!\cdots\!51}{53\!\cdots\!88}a^{24}+\frac{27\!\cdots\!31}{53\!\cdots\!88}a^{23}+\frac{91\!\cdots\!93}{53\!\cdots\!88}a^{22}-\frac{40\!\cdots\!45}{11\!\cdots\!56}a^{21}+\frac{57\!\cdots\!55}{66\!\cdots\!36}a^{20}-\frac{11\!\cdots\!57}{26\!\cdots\!44}a^{19}-\frac{47\!\cdots\!65}{88\!\cdots\!48}a^{18}-\frac{31\!\cdots\!85}{53\!\cdots\!88}a^{17}+\frac{76\!\cdots\!53}{53\!\cdots\!88}a^{16}-\frac{90\!\cdots\!73}{17\!\cdots\!96}a^{15}-\frac{34\!\cdots\!25}{53\!\cdots\!88}a^{14}-\frac{81\!\cdots\!85}{26\!\cdots\!44}a^{13}+\frac{76\!\cdots\!61}{88\!\cdots\!48}a^{12}-\frac{15\!\cdots\!33}{26\!\cdots\!44}a^{11}-\frac{37\!\cdots\!65}{26\!\cdots\!44}a^{10}+\frac{68\!\cdots\!65}{44\!\cdots\!24}a^{9}+\frac{38\!\cdots\!45}{13\!\cdots\!72}a^{8}-\frac{42\!\cdots\!93}{13\!\cdots\!72}a^{7}+\frac{20\!\cdots\!17}{13\!\cdots\!72}a^{6}-\frac{25\!\cdots\!57}{22\!\cdots\!12}a^{5}+\frac{12\!\cdots\!07}{22\!\cdots\!12}a^{4}-\frac{38\!\cdots\!13}{22\!\cdots\!12}a^{3}+\frac{39\!\cdots\!03}{22\!\cdots\!12}a^{2}-\frac{19\!\cdots\!67}{55\!\cdots\!28}a-\frac{60\!\cdots\!85}{55\!\cdots\!28}$, $\frac{57\!\cdots\!67}{88\!\cdots\!48}a^{26}+\frac{13\!\cdots\!11}{26\!\cdots\!44}a^{25}-\frac{32\!\cdots\!95}{27\!\cdots\!64}a^{24}+\frac{43\!\cdots\!29}{26\!\cdots\!44}a^{23}-\frac{63\!\cdots\!27}{66\!\cdots\!36}a^{22}+\frac{50\!\cdots\!07}{22\!\cdots\!12}a^{21}-\frac{15\!\cdots\!57}{26\!\cdots\!44}a^{20}+\frac{39\!\cdots\!35}{13\!\cdots\!72}a^{19}-\frac{27\!\cdots\!15}{88\!\cdots\!48}a^{18}+\frac{90\!\cdots\!69}{26\!\cdots\!44}a^{17}-\frac{12\!\cdots\!07}{13\!\cdots\!72}a^{16}+\frac{69\!\cdots\!01}{88\!\cdots\!48}a^{15}-\frac{23\!\cdots\!65}{13\!\cdots\!72}a^{14}+\frac{22\!\cdots\!41}{13\!\cdots\!72}a^{13}-\frac{48\!\cdots\!95}{88\!\cdots\!48}a^{12}+\frac{85\!\cdots\!55}{13\!\cdots\!72}a^{11}-\frac{18\!\cdots\!59}{66\!\cdots\!36}a^{10}-\frac{10\!\cdots\!15}{22\!\cdots\!12}a^{9}-\frac{63\!\cdots\!93}{13\!\cdots\!72}a^{8}+\frac{57\!\cdots\!55}{22\!\cdots\!12}a^{7}-\frac{29\!\cdots\!33}{11\!\cdots\!56}a^{6}+\frac{15\!\cdots\!73}{11\!\cdots\!56}a^{5}-\frac{15\!\cdots\!77}{22\!\cdots\!12}a^{4}+\frac{56\!\cdots\!27}{11\!\cdots\!56}a^{3}-\frac{18\!\cdots\!43}{69\!\cdots\!41}a^{2}+\frac{37\!\cdots\!72}{69\!\cdots\!41}a+\frac{13\!\cdots\!67}{11\!\cdots\!56}$, $\frac{44\!\cdots\!19}{17\!\cdots\!96}a^{26}-\frac{16\!\cdots\!61}{88\!\cdots\!48}a^{25}+\frac{83\!\cdots\!13}{22\!\cdots\!12}a^{24}+\frac{25\!\cdots\!03}{26\!\cdots\!44}a^{23}+\frac{23\!\cdots\!87}{53\!\cdots\!88}a^{22}-\frac{15\!\cdots\!77}{17\!\cdots\!28}a^{21}+\frac{49\!\cdots\!01}{26\!\cdots\!44}a^{20}-\frac{43\!\cdots\!73}{13\!\cdots\!72}a^{19}+\frac{11\!\cdots\!49}{53\!\cdots\!88}a^{18}-\frac{36\!\cdots\!09}{26\!\cdots\!44}a^{17}+\frac{20\!\cdots\!95}{66\!\cdots\!36}a^{16}-\frac{44\!\cdots\!55}{26\!\cdots\!44}a^{15}+\frac{19\!\cdots\!63}{53\!\cdots\!88}a^{14}-\frac{50\!\cdots\!53}{66\!\cdots\!36}a^{13}+\frac{24\!\cdots\!23}{13\!\cdots\!72}a^{12}-\frac{55\!\cdots\!89}{33\!\cdots\!68}a^{11}+\frac{14\!\cdots\!03}{26\!\cdots\!44}a^{10}-\frac{11\!\cdots\!31}{82\!\cdots\!92}a^{9}+\frac{16\!\cdots\!49}{33\!\cdots\!68}a^{8}-\frac{46\!\cdots\!95}{66\!\cdots\!36}a^{7}+\frac{83\!\cdots\!49}{13\!\cdots\!72}a^{6}-\frac{26\!\cdots\!21}{55\!\cdots\!28}a^{5}+\frac{33\!\cdots\!41}{11\!\cdots\!56}a^{4}-\frac{89\!\cdots\!89}{55\!\cdots\!28}a^{3}+\frac{17\!\cdots\!85}{22\!\cdots\!12}a^{2}-\frac{19\!\cdots\!97}{55\!\cdots\!28}a+\frac{19\!\cdots\!19}{27\!\cdots\!64}$, $\frac{54\!\cdots\!27}{17\!\cdots\!96}a^{26}+\frac{83\!\cdots\!49}{26\!\cdots\!44}a^{25}-\frac{74\!\cdots\!77}{66\!\cdots\!36}a^{24}+\frac{26\!\cdots\!81}{22\!\cdots\!12}a^{23}+\frac{24\!\cdots\!17}{17\!\cdots\!96}a^{22}+\frac{31\!\cdots\!87}{26\!\cdots\!44}a^{21}-\frac{24\!\cdots\!51}{44\!\cdots\!24}a^{20}+\frac{30\!\cdots\!01}{44\!\cdots\!24}a^{19}+\frac{13\!\cdots\!87}{53\!\cdots\!88}a^{18}+\frac{13\!\cdots\!07}{88\!\cdots\!48}a^{17}-\frac{39\!\cdots\!95}{44\!\cdots\!24}a^{16}+\frac{42\!\cdots\!87}{33\!\cdots\!68}a^{15}-\frac{67\!\cdots\!87}{17\!\cdots\!96}a^{14}+\frac{63\!\cdots\!91}{88\!\cdots\!48}a^{13}-\frac{35\!\cdots\!97}{71\!\cdots\!12}a^{12}+\frac{37\!\cdots\!03}{44\!\cdots\!24}a^{11}-\frac{46\!\cdots\!11}{88\!\cdots\!48}a^{10}-\frac{16\!\cdots\!89}{13\!\cdots\!72}a^{9}+\frac{22\!\cdots\!09}{44\!\cdots\!24}a^{8}+\frac{91\!\cdots\!51}{33\!\cdots\!68}a^{7}-\frac{14\!\cdots\!81}{44\!\cdots\!24}a^{6}+\frac{47\!\cdots\!85}{22\!\cdots\!12}a^{5}-\frac{28\!\cdots\!81}{22\!\cdots\!12}a^{4}+\frac{83\!\cdots\!19}{11\!\cdots\!56}a^{3}-\frac{90\!\cdots\!79}{22\!\cdots\!12}a^{2}+\frac{17\!\cdots\!81}{11\!\cdots\!56}a-\frac{55\!\cdots\!17}{11\!\cdots\!56}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 76916706852.12234 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{12}\cdot 76916706852.12234 \cdot 1}{2\cdot\sqrt{91964447569324266455397216763054796046336}}\cr\approx \mathstrut & 3.84086559789079 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^26 + 27*x^25 - 19*x^24 + 6*x^23 - 378*x^22 + 1324*x^21 - 1272*x^20 + 27*x^19 - 5467*x^18 + 21285*x^17 - 25389*x^16 + 8080*x^15 - 28104*x^14 + 120960*x^13 - 179344*x^12 + 107400*x^11 - 8856*x^10 + 10008*x^9 - 60120*x^8 + 70560*x^7 - 49536*x^6 + 29952*x^5 - 17280*x^4 + 9072*x^3 - 3888*x^2 + 1296*x - 144)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 9*x^26 + 27*x^25 - 19*x^24 + 6*x^23 - 378*x^22 + 1324*x^21 - 1272*x^20 + 27*x^19 - 5467*x^18 + 21285*x^17 - 25389*x^16 + 8080*x^15 - 28104*x^14 + 120960*x^13 - 179344*x^12 + 107400*x^11 - 8856*x^10 + 10008*x^9 - 60120*x^8 + 70560*x^7 - 49536*x^6 + 29952*x^5 - 17280*x^4 + 9072*x^3 - 3888*x^2 + 1296*x - 144, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 9*x^26 + 27*x^25 - 19*x^24 + 6*x^23 - 378*x^22 + 1324*x^21 - 1272*x^20 + 27*x^19 - 5467*x^18 + 21285*x^17 - 25389*x^16 + 8080*x^15 - 28104*x^14 + 120960*x^13 - 179344*x^12 + 107400*x^11 - 8856*x^10 + 10008*x^9 - 60120*x^8 + 70560*x^7 - 49536*x^6 + 29952*x^5 - 17280*x^4 + 9072*x^3 - 3888*x^2 + 1296*x - 144);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^26 + 27*x^25 - 19*x^24 + 6*x^23 - 378*x^22 + 1324*x^21 - 1272*x^20 + 27*x^19 - 5467*x^18 + 21285*x^17 - 25389*x^16 + 8080*x^15 - 28104*x^14 + 120960*x^13 - 179344*x^12 + 107400*x^11 - 8856*x^10 + 10008*x^9 - 60120*x^8 + 70560*x^7 - 49536*x^6 + 29952*x^5 - 17280*x^4 + 9072*x^3 - 3888*x^2 + 1296*x - 144);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\SO(5,3)$ (as 27T1161):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 51840
The 25 conjugacy class representatives for $\SO(5,3)$
Character table for $\SO(5,3)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.10.0.1}{10} }{,}\,{\href{/padicField/5.5.0.1}{5} }^{3}{,}\,{\href{/padicField/5.2.0.1}{2} }$ ${\href{/padicField/7.9.0.1}{9} }^{3}$ ${\href{/padicField/11.8.0.1}{8} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.9.0.1}{9} }^{3}$ ${\href{/padicField/17.8.0.1}{8} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.6.0.1}{6} }^{4}{,}\,{\href{/padicField/19.3.0.1}{3} }$ ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.5.0.1}{5} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.8.0.1}{8} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.9.0.1}{9} }^{3}$ ${\href{/padicField/37.4.0.1}{4} }^{5}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ ${\href{/padicField/43.9.0.1}{9} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }^{4}{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.6.0.1}{6} }^{4}{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.8.0.1}{8} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.10.18.5$x^{10} + 2 x^{9} + 4 x^{6} + 4 x^{5} + 4 x^{4} + 4 x^{3} + 2$$10$$1$$18$$(C_2^4 : C_5):C_4$$[14/5, 14/5, 14/5, 14/5]_{5}^{4}$
Deg $16$$16$$1$$42$
\(3\) Copy content Toggle raw display 3.6.10.8$x^{6} + 3 x^{5} + 18 x^{2} + 18 x + 21$$6$$1$$10$$C_3^2:D_4$$[9/4, 9/4]_{4}^{2}$
3.9.18.37$x^{9} + 18 x^{3} + 9 x^{2} + 18 x + 3$$9$$1$$18$$S_3^2:C_2$$[9/4, 9/4]_{4}^{2}$
3.12.20.39$x^{12} + 6 x^{11} + 9 x^{10} - 6 x^{9} + 54 x^{7} + 6 x^{6} - 90 x^{5} + 81 x^{4} + 144 x^{3} - 108 x^{2} + 360$$6$$2$$20$12T34$[9/4, 9/4]_{4}^{2}$