Properties

Label 27.3.952...000.1
Degree $27$
Signature $[3, 12]$
Discriminant $9.527\times 10^{39}$
Root discriminant \(30.25\)
Ramified primes $2,3,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_3^3:S_4$ (as 27T211)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^25 - 9*x^24 + 18*x^23 + 72*x^22 + 60*x^21 - 126*x^20 - 252*x^19 - 162*x^18 + 108*x^17 + 126*x^16 - 216*x^15 + 450*x^14 + 1692*x^13 + 2670*x^12 + 1899*x^11 - 900*x^10 - 1461*x^9 - 3591*x^8 - 6354*x^7 - 990*x^6 + 4392*x^5 + 2448*x^4 - 435*x^3 - 720*x^2 - 225*x - 25)
 
gp: K = bnfinit(y^27 - 9*y^25 - 9*y^24 + 18*y^23 + 72*y^22 + 60*y^21 - 126*y^20 - 252*y^19 - 162*y^18 + 108*y^17 + 126*y^16 - 216*y^15 + 450*y^14 + 1692*y^13 + 2670*y^12 + 1899*y^11 - 900*y^10 - 1461*y^9 - 3591*y^8 - 6354*y^7 - 990*y^6 + 4392*y^5 + 2448*y^4 - 435*y^3 - 720*y^2 - 225*y - 25, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 9*x^25 - 9*x^24 + 18*x^23 + 72*x^22 + 60*x^21 - 126*x^20 - 252*x^19 - 162*x^18 + 108*x^17 + 126*x^16 - 216*x^15 + 450*x^14 + 1692*x^13 + 2670*x^12 + 1899*x^11 - 900*x^10 - 1461*x^9 - 3591*x^8 - 6354*x^7 - 990*x^6 + 4392*x^5 + 2448*x^4 - 435*x^3 - 720*x^2 - 225*x - 25);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^25 - 9*x^24 + 18*x^23 + 72*x^22 + 60*x^21 - 126*x^20 - 252*x^19 - 162*x^18 + 108*x^17 + 126*x^16 - 216*x^15 + 450*x^14 + 1692*x^13 + 2670*x^12 + 1899*x^11 - 900*x^10 - 1461*x^9 - 3591*x^8 - 6354*x^7 - 990*x^6 + 4392*x^5 + 2448*x^4 - 435*x^3 - 720*x^2 - 225*x - 25)
 

\( x^{27} - 9 x^{25} - 9 x^{24} + 18 x^{23} + 72 x^{22} + 60 x^{21} - 126 x^{20} - 252 x^{19} - 162 x^{18} + \cdots - 25 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(9527252910578083379673525288960000000000\) \(\medspace = 2^{24}\cdot 3^{54}\cdot 5^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.25\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{8/9}3^{37/18}5^{1/2}\approx 39.61106018062899$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{5}$, $\frac{1}{3}a^{15}-\frac{1}{3}a^{6}$, $\frac{1}{3}a^{16}-\frac{1}{3}a^{7}$, $\frac{1}{3}a^{17}-\frac{1}{3}a^{8}$, $\frac{1}{9}a^{18}+\frac{1}{9}a^{9}-\frac{2}{9}$, $\frac{1}{9}a^{19}+\frac{1}{9}a^{10}-\frac{2}{9}a$, $\frac{1}{9}a^{20}+\frac{1}{9}a^{11}-\frac{2}{9}a^{2}$, $\frac{1}{9}a^{21}+\frac{1}{9}a^{12}-\frac{2}{9}a^{3}$, $\frac{1}{9}a^{22}+\frac{1}{9}a^{13}-\frac{2}{9}a^{4}$, $\frac{1}{135}a^{23}-\frac{2}{135}a^{22}+\frac{4}{135}a^{21}+\frac{1}{27}a^{20}-\frac{1}{135}a^{19}-\frac{1}{135}a^{18}+\frac{2}{15}a^{17}+\frac{1}{15}a^{16}-\frac{2}{15}a^{15}-\frac{4}{27}a^{14}-\frac{14}{135}a^{13}+\frac{19}{135}a^{12}-\frac{2}{27}a^{11}+\frac{11}{135}a^{10}+\frac{4}{27}a^{9}+\frac{1}{15}a^{8}-\frac{1}{15}a^{7}-\frac{4}{15}a^{6}+\frac{2}{27}a^{5}-\frac{4}{27}a^{4}-\frac{59}{135}a^{3}-\frac{67}{135}a^{2}-\frac{11}{27}a-\frac{2}{27}$, $\frac{1}{135}a^{24}-\frac{2}{135}a^{21}-\frac{2}{45}a^{20}-\frac{1}{45}a^{19}+\frac{1}{135}a^{18}-\frac{11}{135}a^{15}-\frac{1}{15}a^{14}-\frac{1}{15}a^{13}+\frac{13}{135}a^{12}+\frac{7}{45}a^{11}-\frac{1}{45}a^{10}-\frac{11}{135}a^{9}+\frac{2}{5}a^{8}-\frac{2}{5}a^{7}+\frac{28}{135}a^{6}-\frac{1}{3}a^{5}+\frac{4}{15}a^{4}-\frac{4}{27}a^{3}+\frac{22}{45}a^{2}+\frac{4}{9}a+\frac{11}{27}$, $\frac{1}{2565}a^{25}+\frac{1}{285}a^{24}-\frac{1}{855}a^{23}+\frac{49}{2565}a^{22}+\frac{2}{45}a^{21}-\frac{4}{855}a^{20}+\frac{142}{2565}a^{19}+\frac{1}{45}a^{18}-\frac{46}{285}a^{17}+\frac{7}{2565}a^{16}-\frac{46}{285}a^{15}+\frac{10}{171}a^{14}-\frac{116}{2565}a^{13}+\frac{137}{855}a^{12}+\frac{137}{855}a^{11}-\frac{41}{2565}a^{10}+\frac{23}{171}a^{9}-\frac{22}{57}a^{8}+\frac{1279}{2565}a^{7}+\frac{7}{19}a^{6}-\frac{193}{855}a^{5}-\frac{1076}{2565}a^{4}+\frac{14}{45}a^{3}-\frac{77}{171}a^{2}-\frac{4}{27}a+\frac{65}{171}$, $\frac{1}{24\!\cdots\!45}a^{26}+\frac{11\!\cdots\!63}{24\!\cdots\!45}a^{25}-\frac{27\!\cdots\!55}{85\!\cdots\!57}a^{24}+\frac{24\!\cdots\!83}{81\!\cdots\!15}a^{23}+\frac{12\!\cdots\!79}{27\!\cdots\!05}a^{22}+\frac{50\!\cdots\!48}{24\!\cdots\!45}a^{21}+\frac{84\!\cdots\!62}{24\!\cdots\!45}a^{20}-\frac{48\!\cdots\!33}{24\!\cdots\!45}a^{19}+\frac{82\!\cdots\!24}{24\!\cdots\!45}a^{18}+\frac{16\!\cdots\!97}{24\!\cdots\!45}a^{17}+\frac{50\!\cdots\!93}{12\!\cdots\!55}a^{16}-\frac{11\!\cdots\!13}{81\!\cdots\!15}a^{15}-\frac{97\!\cdots\!83}{81\!\cdots\!15}a^{14}+\frac{15\!\cdots\!74}{27\!\cdots\!05}a^{13}+\frac{35\!\cdots\!44}{24\!\cdots\!45}a^{12}+\frac{22\!\cdots\!54}{48\!\cdots\!49}a^{11}-\frac{29\!\cdots\!63}{24\!\cdots\!45}a^{10}+\frac{29\!\cdots\!48}{24\!\cdots\!45}a^{9}+\frac{50\!\cdots\!85}{48\!\cdots\!49}a^{8}-\frac{27\!\cdots\!39}{48\!\cdots\!49}a^{7}+\frac{15\!\cdots\!47}{16\!\cdots\!83}a^{6}-\frac{24\!\cdots\!24}{81\!\cdots\!15}a^{5}+\frac{74\!\cdots\!24}{27\!\cdots\!05}a^{4}-\frac{64\!\cdots\!81}{24\!\cdots\!45}a^{3}-\frac{28\!\cdots\!14}{21\!\cdots\!65}a^{2}+\frac{84\!\cdots\!64}{48\!\cdots\!49}a+\frac{10\!\cdots\!75}{48\!\cdots\!49}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{27\!\cdots\!04}{16\!\cdots\!83}a^{26}-\frac{24\!\cdots\!74}{18\!\cdots\!87}a^{25}-\frac{35\!\cdots\!34}{24\!\cdots\!45}a^{24}-\frac{25\!\cdots\!87}{81\!\cdots\!15}a^{23}+\frac{29\!\cdots\!89}{81\!\cdots\!15}a^{22}+\frac{22\!\cdots\!09}{24\!\cdots\!45}a^{21}+\frac{14\!\cdots\!88}{81\!\cdots\!15}a^{20}-\frac{20\!\cdots\!14}{81\!\cdots\!15}a^{19}-\frac{55\!\cdots\!78}{24\!\cdots\!45}a^{18}-\frac{28\!\cdots\!01}{81\!\cdots\!15}a^{17}+\frac{71\!\cdots\!99}{27\!\cdots\!05}a^{16}+\frac{22\!\cdots\!27}{24\!\cdots\!45}a^{15}-\frac{34\!\cdots\!83}{81\!\cdots\!15}a^{14}+\frac{17\!\cdots\!31}{16\!\cdots\!83}a^{13}+\frac{49\!\cdots\!39}{24\!\cdots\!45}a^{12}+\frac{21\!\cdots\!37}{81\!\cdots\!15}a^{11}+\frac{50\!\cdots\!47}{81\!\cdots\!15}a^{10}-\frac{63\!\cdots\!61}{24\!\cdots\!45}a^{9}-\frac{82\!\cdots\!83}{16\!\cdots\!83}a^{8}-\frac{27\!\cdots\!11}{54\!\cdots\!61}a^{7}-\frac{15\!\cdots\!11}{24\!\cdots\!45}a^{6}+\frac{75\!\cdots\!46}{16\!\cdots\!83}a^{5}+\frac{41\!\cdots\!07}{81\!\cdots\!15}a^{4}-\frac{21\!\cdots\!36}{24\!\cdots\!45}a^{3}-\frac{90\!\cdots\!13}{71\!\cdots\!55}a^{2}-\frac{26\!\cdots\!83}{16\!\cdots\!83}a+\frac{15\!\cdots\!85}{48\!\cdots\!49}$, $\frac{28\!\cdots\!00}{16\!\cdots\!83}a^{26}+\frac{25\!\cdots\!29}{24\!\cdots\!45}a^{25}+\frac{37\!\cdots\!44}{24\!\cdots\!45}a^{24}+\frac{35\!\cdots\!44}{48\!\cdots\!49}a^{23}-\frac{28\!\cdots\!91}{81\!\cdots\!15}a^{22}-\frac{26\!\cdots\!27}{24\!\cdots\!45}a^{21}-\frac{11\!\cdots\!81}{24\!\cdots\!45}a^{20}+\frac{60\!\cdots\!47}{24\!\cdots\!45}a^{19}+\frac{24\!\cdots\!88}{81\!\cdots\!15}a^{18}+\frac{19\!\cdots\!14}{16\!\cdots\!83}a^{17}-\frac{62\!\cdots\!89}{24\!\cdots\!45}a^{16}-\frac{38\!\cdots\!43}{48\!\cdots\!49}a^{15}+\frac{10\!\cdots\!53}{24\!\cdots\!45}a^{14}-\frac{44\!\cdots\!27}{42\!\cdots\!85}a^{13}-\frac{58\!\cdots\!79}{24\!\cdots\!45}a^{12}-\frac{83\!\cdots\!03}{24\!\cdots\!45}a^{11}-\frac{35\!\cdots\!96}{24\!\cdots\!45}a^{10}+\frac{19\!\cdots\!84}{81\!\cdots\!15}a^{9}+\frac{20\!\cdots\!48}{16\!\cdots\!83}a^{8}+\frac{14\!\cdots\!31}{24\!\cdots\!45}a^{7}+\frac{19\!\cdots\!07}{24\!\cdots\!45}a^{6}-\frac{63\!\cdots\!31}{24\!\cdots\!45}a^{5}-\frac{50\!\cdots\!27}{81\!\cdots\!15}a^{4}-\frac{27\!\cdots\!81}{24\!\cdots\!45}a^{3}+\frac{26\!\cdots\!23}{21\!\cdots\!65}a^{2}+\frac{31\!\cdots\!20}{48\!\cdots\!49}a+\frac{15\!\cdots\!53}{16\!\cdots\!83}$, $\frac{19\!\cdots\!40}{54\!\cdots\!61}a^{26}+\frac{18\!\cdots\!49}{81\!\cdots\!15}a^{25}+\frac{24\!\cdots\!93}{81\!\cdots\!15}a^{24}+\frac{30\!\cdots\!69}{24\!\cdots\!45}a^{23}-\frac{17\!\cdots\!82}{24\!\cdots\!45}a^{22}-\frac{51\!\cdots\!14}{24\!\cdots\!45}a^{21}-\frac{38\!\cdots\!25}{48\!\cdots\!49}a^{20}+\frac{12\!\cdots\!36}{24\!\cdots\!45}a^{19}+\frac{28\!\cdots\!80}{48\!\cdots\!49}a^{18}+\frac{57\!\cdots\!93}{27\!\cdots\!05}a^{17}-\frac{42\!\cdots\!27}{81\!\cdots\!15}a^{16}-\frac{95\!\cdots\!48}{81\!\cdots\!15}a^{15}+\frac{20\!\cdots\!61}{24\!\cdots\!45}a^{14}-\frac{51\!\cdots\!06}{24\!\cdots\!45}a^{13}-\frac{22\!\cdots\!10}{48\!\cdots\!49}a^{12}-\frac{16\!\cdots\!02}{24\!\cdots\!45}a^{11}-\frac{66\!\cdots\!95}{25\!\cdots\!71}a^{10}+\frac{11\!\cdots\!04}{24\!\cdots\!45}a^{9}+\frac{58\!\cdots\!81}{27\!\cdots\!05}a^{8}+\frac{93\!\cdots\!38}{81\!\cdots\!15}a^{7}+\frac{12\!\cdots\!56}{81\!\cdots\!15}a^{6}-\frac{14\!\cdots\!58}{24\!\cdots\!45}a^{5}-\frac{28\!\cdots\!91}{24\!\cdots\!45}a^{4}-\frac{35\!\cdots\!14}{24\!\cdots\!45}a^{3}+\frac{52\!\cdots\!32}{21\!\cdots\!65}a^{2}+\frac{51\!\cdots\!05}{48\!\cdots\!49}a+\frac{64\!\cdots\!83}{48\!\cdots\!49}$, $\frac{81\!\cdots\!71}{81\!\cdots\!15}a^{26}+\frac{67\!\cdots\!63}{81\!\cdots\!15}a^{25}+\frac{67\!\cdots\!27}{81\!\cdots\!15}a^{24}+\frac{53\!\cdots\!76}{24\!\cdots\!45}a^{23}-\frac{94\!\cdots\!79}{48\!\cdots\!49}a^{22}-\frac{13\!\cdots\!62}{24\!\cdots\!45}a^{21}-\frac{37\!\cdots\!66}{24\!\cdots\!45}a^{20}+\frac{32\!\cdots\!26}{24\!\cdots\!45}a^{19}+\frac{34\!\cdots\!56}{24\!\cdots\!45}a^{18}+\frac{47\!\cdots\!36}{81\!\cdots\!15}a^{17}-\frac{11\!\cdots\!39}{81\!\cdots\!15}a^{16}-\frac{76\!\cdots\!16}{16\!\cdots\!83}a^{15}+\frac{51\!\cdots\!86}{24\!\cdots\!45}a^{14}-\frac{30\!\cdots\!92}{48\!\cdots\!49}a^{13}-\frac{28\!\cdots\!59}{24\!\cdots\!45}a^{12}-\frac{43\!\cdots\!78}{24\!\cdots\!45}a^{11}-\frac{13\!\cdots\!94}{24\!\cdots\!45}a^{10}+\frac{30\!\cdots\!12}{24\!\cdots\!45}a^{9}+\frac{30\!\cdots\!43}{81\!\cdots\!15}a^{8}+\frac{27\!\cdots\!86}{81\!\cdots\!15}a^{7}+\frac{59\!\cdots\!07}{16\!\cdots\!83}a^{6}-\frac{44\!\cdots\!86}{24\!\cdots\!45}a^{5}-\frac{61\!\cdots\!42}{24\!\cdots\!45}a^{4}-\frac{11\!\cdots\!51}{24\!\cdots\!45}a^{3}+\frac{10\!\cdots\!67}{21\!\cdots\!65}a^{2}+\frac{14\!\cdots\!18}{48\!\cdots\!49}a+\frac{27\!\cdots\!66}{48\!\cdots\!49}$, $\frac{48\!\cdots\!77}{24\!\cdots\!45}a^{26}+\frac{15\!\cdots\!32}{24\!\cdots\!45}a^{25}+\frac{42\!\cdots\!64}{24\!\cdots\!45}a^{24}+\frac{29\!\cdots\!01}{24\!\cdots\!45}a^{23}-\frac{96\!\cdots\!86}{24\!\cdots\!45}a^{22}-\frac{31\!\cdots\!41}{24\!\cdots\!45}a^{21}-\frac{18\!\cdots\!62}{24\!\cdots\!45}a^{20}+\frac{66\!\cdots\!08}{24\!\cdots\!45}a^{19}+\frac{10\!\cdots\!17}{24\!\cdots\!45}a^{18}+\frac{24\!\cdots\!87}{12\!\cdots\!55}a^{17}-\frac{66\!\cdots\!76}{24\!\cdots\!45}a^{16}-\frac{77\!\cdots\!67}{48\!\cdots\!49}a^{15}+\frac{23\!\cdots\!66}{48\!\cdots\!49}a^{14}-\frac{50\!\cdots\!13}{48\!\cdots\!49}a^{13}-\frac{73\!\cdots\!67}{24\!\cdots\!45}a^{12}-\frac{21\!\cdots\!98}{48\!\cdots\!49}a^{11}-\frac{11\!\cdots\!56}{48\!\cdots\!49}a^{10}+\frac{61\!\cdots\!47}{24\!\cdots\!45}a^{9}+\frac{52\!\cdots\!47}{25\!\cdots\!71}a^{8}+\frac{15\!\cdots\!92}{24\!\cdots\!45}a^{7}+\frac{25\!\cdots\!38}{24\!\cdots\!45}a^{6}-\frac{34\!\cdots\!23}{24\!\cdots\!45}a^{5}-\frac{20\!\cdots\!28}{24\!\cdots\!45}a^{4}-\frac{52\!\cdots\!56}{24\!\cdots\!45}a^{3}+\frac{66\!\cdots\!06}{43\!\cdots\!73}a^{2}+\frac{42\!\cdots\!67}{48\!\cdots\!49}a+\frac{66\!\cdots\!97}{48\!\cdots\!49}$, $\frac{13\!\cdots\!24}{81\!\cdots\!15}a^{26}-\frac{11\!\cdots\!48}{24\!\cdots\!45}a^{25}-\frac{35\!\cdots\!32}{24\!\cdots\!45}a^{24}-\frac{50\!\cdots\!95}{48\!\cdots\!49}a^{23}+\frac{27\!\cdots\!22}{81\!\cdots\!15}a^{22}+\frac{26\!\cdots\!77}{24\!\cdots\!45}a^{21}+\frac{15\!\cdots\!03}{24\!\cdots\!45}a^{20}-\frac{56\!\cdots\!71}{24\!\cdots\!45}a^{19}-\frac{28\!\cdots\!57}{81\!\cdots\!15}a^{18}-\frac{23\!\cdots\!85}{16\!\cdots\!83}a^{17}+\frac{55\!\cdots\!66}{24\!\cdots\!45}a^{16}+\frac{34\!\cdots\!44}{24\!\cdots\!45}a^{15}-\frac{10\!\cdots\!19}{24\!\cdots\!45}a^{14}+\frac{13\!\cdots\!23}{16\!\cdots\!83}a^{13}+\frac{62\!\cdots\!01}{24\!\cdots\!45}a^{12}+\frac{17\!\cdots\!14}{48\!\cdots\!49}a^{11}+\frac{48\!\cdots\!96}{24\!\cdots\!45}a^{10}-\frac{17\!\cdots\!76}{81\!\cdots\!15}a^{9}-\frac{14\!\cdots\!28}{81\!\cdots\!15}a^{8}-\frac{12\!\cdots\!57}{24\!\cdots\!45}a^{7}-\frac{21\!\cdots\!58}{24\!\cdots\!45}a^{6}+\frac{32\!\cdots\!02}{24\!\cdots\!45}a^{5}+\frac{11\!\cdots\!37}{16\!\cdots\!83}a^{4}+\frac{37\!\cdots\!91}{24\!\cdots\!45}a^{3}-\frac{59\!\cdots\!92}{43\!\cdots\!73}a^{2}-\frac{34\!\cdots\!35}{48\!\cdots\!49}a-\frac{18\!\cdots\!19}{16\!\cdots\!83}$, $\frac{44\!\cdots\!38}{81\!\cdots\!15}a^{26}-\frac{74\!\cdots\!78}{24\!\cdots\!45}a^{25}-\frac{43\!\cdots\!58}{90\!\cdots\!35}a^{24}-\frac{63\!\cdots\!16}{27\!\cdots\!05}a^{23}+\frac{27\!\cdots\!39}{24\!\cdots\!45}a^{22}+\frac{27\!\cdots\!83}{81\!\cdots\!15}a^{21}+\frac{13\!\cdots\!97}{90\!\cdots\!35}a^{20}-\frac{19\!\cdots\!24}{24\!\cdots\!45}a^{19}-\frac{52\!\cdots\!37}{54\!\cdots\!61}a^{18}-\frac{28\!\cdots\!04}{81\!\cdots\!15}a^{17}+\frac{19\!\cdots\!43}{24\!\cdots\!45}a^{16}+\frac{13\!\cdots\!82}{54\!\cdots\!61}a^{15}-\frac{36\!\cdots\!03}{27\!\cdots\!05}a^{14}+\frac{78\!\cdots\!33}{24\!\cdots\!45}a^{13}+\frac{61\!\cdots\!76}{81\!\cdots\!15}a^{12}+\frac{28\!\cdots\!76}{27\!\cdots\!05}a^{11}+\frac{11\!\cdots\!16}{24\!\cdots\!45}a^{10}-\frac{20\!\cdots\!18}{27\!\cdots\!05}a^{9}-\frac{32\!\cdots\!43}{81\!\cdots\!15}a^{8}-\frac{42\!\cdots\!21}{24\!\cdots\!45}a^{7}-\frac{68\!\cdots\!22}{27\!\cdots\!05}a^{6}+\frac{23\!\cdots\!63}{27\!\cdots\!05}a^{5}+\frac{48\!\cdots\!33}{24\!\cdots\!45}a^{4}+\frac{19\!\cdots\!47}{81\!\cdots\!15}a^{3}-\frac{97\!\cdots\!07}{23\!\cdots\!85}a^{2}-\frac{83\!\cdots\!19}{48\!\cdots\!49}a-\frac{12\!\cdots\!31}{54\!\cdots\!61}$, $\frac{22\!\cdots\!49}{90\!\cdots\!35}a^{26}-\frac{41\!\cdots\!36}{24\!\cdots\!45}a^{25}-\frac{11\!\cdots\!86}{54\!\cdots\!61}a^{24}-\frac{58\!\cdots\!53}{81\!\cdots\!15}a^{23}+\frac{25\!\cdots\!32}{48\!\cdots\!49}a^{22}+\frac{23\!\cdots\!01}{16\!\cdots\!83}a^{21}+\frac{33\!\cdots\!27}{81\!\cdots\!15}a^{20}-\frac{88\!\cdots\!63}{24\!\cdots\!45}a^{19}-\frac{34\!\cdots\!51}{90\!\cdots\!35}a^{18}-\frac{21\!\cdots\!13}{27\!\cdots\!05}a^{17}+\frac{94\!\cdots\!02}{24\!\cdots\!45}a^{16}+\frac{16\!\cdots\!99}{27\!\cdots\!05}a^{15}-\frac{51\!\cdots\!99}{81\!\cdots\!15}a^{14}+\frac{37\!\cdots\!22}{24\!\cdots\!45}a^{13}+\frac{26\!\cdots\!96}{81\!\cdots\!15}a^{12}+\frac{67\!\cdots\!96}{16\!\cdots\!83}a^{11}+\frac{62\!\cdots\!46}{48\!\cdots\!49}a^{10}-\frac{34\!\cdots\!78}{90\!\cdots\!35}a^{9}-\frac{34\!\cdots\!56}{27\!\cdots\!05}a^{8}-\frac{17\!\cdots\!01}{24\!\cdots\!45}a^{7}-\frac{92\!\cdots\!07}{90\!\cdots\!35}a^{6}+\frac{46\!\cdots\!63}{81\!\cdots\!15}a^{5}+\frac{21\!\cdots\!73}{24\!\cdots\!45}a^{4}-\frac{50\!\cdots\!08}{81\!\cdots\!15}a^{3}-\frac{15\!\cdots\!66}{71\!\cdots\!55}a^{2}-\frac{15\!\cdots\!13}{48\!\cdots\!49}a+\frac{99\!\cdots\!54}{18\!\cdots\!87}$, $\frac{84\!\cdots\!39}{24\!\cdots\!45}a^{26}+\frac{25\!\cdots\!81}{24\!\cdots\!45}a^{25}+\frac{77\!\cdots\!36}{24\!\cdots\!45}a^{24}+\frac{73\!\cdots\!47}{24\!\cdots\!45}a^{23}-\frac{16\!\cdots\!51}{24\!\cdots\!45}a^{22}-\frac{12\!\cdots\!87}{48\!\cdots\!49}a^{21}-\frac{47\!\cdots\!58}{24\!\cdots\!45}a^{20}+\frac{11\!\cdots\!49}{24\!\cdots\!45}a^{19}+\frac{21\!\cdots\!77}{24\!\cdots\!45}a^{18}+\frac{11\!\cdots\!01}{24\!\cdots\!45}a^{17}-\frac{10\!\cdots\!69}{24\!\cdots\!45}a^{16}-\frac{10\!\cdots\!06}{24\!\cdots\!45}a^{15}+\frac{40\!\cdots\!30}{48\!\cdots\!49}a^{14}-\frac{38\!\cdots\!41}{24\!\cdots\!45}a^{13}-\frac{14\!\cdots\!53}{24\!\cdots\!45}a^{12}-\frac{21\!\cdots\!48}{24\!\cdots\!45}a^{11}-\frac{14\!\cdots\!71}{24\!\cdots\!45}a^{10}+\frac{95\!\cdots\!69}{24\!\cdots\!45}a^{9}+\frac{12\!\cdots\!74}{24\!\cdots\!45}a^{8}+\frac{28\!\cdots\!68}{24\!\cdots\!45}a^{7}+\frac{10\!\cdots\!14}{48\!\cdots\!49}a^{6}+\frac{40\!\cdots\!11}{24\!\cdots\!45}a^{5}-\frac{41\!\cdots\!18}{24\!\cdots\!45}a^{4}-\frac{34\!\cdots\!88}{48\!\cdots\!49}a^{3}+\frac{65\!\cdots\!31}{21\!\cdots\!65}a^{2}+\frac{11\!\cdots\!37}{48\!\cdots\!49}a+\frac{19\!\cdots\!89}{48\!\cdots\!49}$, $\frac{30\!\cdots\!99}{48\!\cdots\!49}a^{26}+\frac{13\!\cdots\!67}{24\!\cdots\!45}a^{25}+\frac{12\!\cdots\!69}{24\!\cdots\!45}a^{24}+\frac{81\!\cdots\!03}{81\!\cdots\!15}a^{23}-\frac{10\!\cdots\!74}{81\!\cdots\!15}a^{22}-\frac{82\!\cdots\!44}{24\!\cdots\!45}a^{21}-\frac{30\!\cdots\!35}{48\!\cdots\!49}a^{20}+\frac{21\!\cdots\!41}{24\!\cdots\!45}a^{19}+\frac{13\!\cdots\!05}{16\!\cdots\!83}a^{18}+\frac{42\!\cdots\!57}{24\!\cdots\!45}a^{17}-\frac{22\!\cdots\!96}{24\!\cdots\!45}a^{16}+\frac{45\!\cdots\!31}{24\!\cdots\!45}a^{15}+\frac{63\!\cdots\!58}{42\!\cdots\!85}a^{14}-\frac{33\!\cdots\!52}{81\!\cdots\!15}a^{13}-\frac{18\!\cdots\!58}{25\!\cdots\!71}a^{12}-\frac{23\!\cdots\!67}{24\!\cdots\!45}a^{11}-\frac{11\!\cdots\!26}{48\!\cdots\!49}a^{10}+\frac{72\!\cdots\!13}{81\!\cdots\!15}a^{9}+\frac{33\!\cdots\!19}{24\!\cdots\!45}a^{8}+\frac{47\!\cdots\!04}{24\!\cdots\!45}a^{7}+\frac{54\!\cdots\!03}{24\!\cdots\!45}a^{6}-\frac{13\!\cdots\!11}{81\!\cdots\!15}a^{5}-\frac{13\!\cdots\!07}{81\!\cdots\!15}a^{4}+\frac{51\!\cdots\!36}{24\!\cdots\!45}a^{3}+\frac{70\!\cdots\!37}{21\!\cdots\!65}a^{2}+\frac{42\!\cdots\!93}{48\!\cdots\!49}a+\frac{18\!\cdots\!22}{16\!\cdots\!83}$, $\frac{18\!\cdots\!58}{24\!\cdots\!45}a^{26}+\frac{46\!\cdots\!40}{48\!\cdots\!49}a^{25}+\frac{29\!\cdots\!69}{48\!\cdots\!49}a^{24}-\frac{11\!\cdots\!49}{81\!\cdots\!15}a^{23}-\frac{44\!\cdots\!79}{27\!\cdots\!05}a^{22}-\frac{84\!\cdots\!53}{24\!\cdots\!45}a^{21}+\frac{26\!\cdots\!37}{24\!\cdots\!45}a^{20}+\frac{27\!\cdots\!68}{24\!\cdots\!45}a^{19}+\frac{43\!\cdots\!16}{81\!\cdots\!15}a^{18}-\frac{64\!\cdots\!96}{24\!\cdots\!45}a^{17}-\frac{63\!\cdots\!57}{48\!\cdots\!49}a^{16}+\frac{11\!\cdots\!56}{24\!\cdots\!45}a^{15}+\frac{14\!\cdots\!02}{81\!\cdots\!15}a^{14}-\frac{15\!\cdots\!09}{27\!\cdots\!05}a^{13}-\frac{16\!\cdots\!18}{24\!\cdots\!45}a^{12}-\frac{19\!\cdots\!02}{24\!\cdots\!45}a^{11}+\frac{13\!\cdots\!15}{48\!\cdots\!49}a^{10}+\frac{10\!\cdots\!49}{81\!\cdots\!15}a^{9}-\frac{54\!\cdots\!71}{24\!\cdots\!45}a^{8}+\frac{53\!\cdots\!92}{24\!\cdots\!45}a^{7}+\frac{83\!\cdots\!10}{48\!\cdots\!49}a^{6}-\frac{51\!\cdots\!08}{16\!\cdots\!83}a^{5}-\frac{13\!\cdots\!59}{90\!\cdots\!35}a^{4}+\frac{29\!\cdots\!42}{24\!\cdots\!45}a^{3}+\frac{10\!\cdots\!77}{21\!\cdots\!65}a^{2}-\frac{67\!\cdots\!17}{48\!\cdots\!49}a-\frac{94\!\cdots\!98}{16\!\cdots\!83}$, $\frac{70\!\cdots\!22}{24\!\cdots\!45}a^{26}+\frac{13\!\cdots\!61}{81\!\cdots\!15}a^{25}+\frac{59\!\cdots\!58}{24\!\cdots\!45}a^{24}+\frac{32\!\cdots\!08}{27\!\cdots\!05}a^{23}-\frac{27\!\cdots\!91}{48\!\cdots\!49}a^{22}-\frac{42\!\cdots\!31}{24\!\cdots\!45}a^{21}-\frac{19\!\cdots\!79}{24\!\cdots\!45}a^{20}+\frac{93\!\cdots\!66}{24\!\cdots\!45}a^{19}+\frac{80\!\cdots\!48}{16\!\cdots\!83}a^{18}+\frac{56\!\cdots\!41}{24\!\cdots\!45}a^{17}-\frac{31\!\cdots\!51}{81\!\cdots\!15}a^{16}-\frac{23\!\cdots\!81}{24\!\cdots\!45}a^{15}+\frac{11\!\cdots\!50}{18\!\cdots\!87}a^{14}-\frac{39\!\cdots\!17}{24\!\cdots\!45}a^{13}-\frac{18\!\cdots\!14}{48\!\cdots\!49}a^{12}-\frac{13\!\cdots\!39}{24\!\cdots\!45}a^{11}-\frac{64\!\cdots\!32}{24\!\cdots\!45}a^{10}+\frac{26\!\cdots\!39}{81\!\cdots\!15}a^{9}+\frac{48\!\cdots\!06}{24\!\cdots\!45}a^{8}+\frac{15\!\cdots\!00}{16\!\cdots\!83}a^{7}+\frac{31\!\cdots\!49}{24\!\cdots\!45}a^{6}-\frac{90\!\cdots\!48}{27\!\cdots\!05}a^{5}-\frac{22\!\cdots\!44}{24\!\cdots\!45}a^{4}-\frac{50\!\cdots\!84}{24\!\cdots\!45}a^{3}+\frac{35\!\cdots\!59}{21\!\cdots\!65}a^{2}+\frac{54\!\cdots\!42}{48\!\cdots\!49}a+\frac{36\!\cdots\!94}{16\!\cdots\!83}$, $\frac{85\!\cdots\!88}{24\!\cdots\!45}a^{26}+\frac{57\!\cdots\!73}{24\!\cdots\!45}a^{25}+\frac{76\!\cdots\!62}{24\!\cdots\!45}a^{24}+\frac{26\!\cdots\!12}{24\!\cdots\!45}a^{23}-\frac{39\!\cdots\!64}{48\!\cdots\!49}a^{22}-\frac{51\!\cdots\!29}{24\!\cdots\!45}a^{21}-\frac{40\!\cdots\!08}{81\!\cdots\!15}a^{20}+\frac{46\!\cdots\!27}{81\!\cdots\!15}a^{19}+\frac{49\!\cdots\!12}{81\!\cdots\!15}a^{18}+\frac{99\!\cdots\!41}{24\!\cdots\!45}a^{17}-\frac{18\!\cdots\!62}{24\!\cdots\!45}a^{16}-\frac{13\!\cdots\!42}{48\!\cdots\!49}a^{15}+\frac{22\!\cdots\!51}{24\!\cdots\!45}a^{14}-\frac{50\!\cdots\!76}{24\!\cdots\!45}a^{13}-\frac{11\!\cdots\!53}{24\!\cdots\!45}a^{12}-\frac{45\!\cdots\!18}{81\!\cdots\!15}a^{11}-\frac{77\!\cdots\!46}{16\!\cdots\!83}a^{10}+\frac{64\!\cdots\!54}{81\!\cdots\!15}a^{9}+\frac{10\!\cdots\!81}{24\!\cdots\!45}a^{8}+\frac{26\!\cdots\!72}{24\!\cdots\!45}a^{7}+\frac{34\!\cdots\!42}{24\!\cdots\!45}a^{6}-\frac{26\!\cdots\!17}{24\!\cdots\!45}a^{5}-\frac{44\!\cdots\!46}{24\!\cdots\!45}a^{4}-\frac{42\!\cdots\!16}{24\!\cdots\!45}a^{3}+\frac{70\!\cdots\!52}{14\!\cdots\!91}a^{2}+\frac{32\!\cdots\!01}{16\!\cdots\!83}a+\frac{38\!\cdots\!83}{16\!\cdots\!83}$, $\frac{10\!\cdots\!07}{81\!\cdots\!15}a^{26}-\frac{84\!\cdots\!04}{24\!\cdots\!45}a^{25}-\frac{28\!\cdots\!11}{24\!\cdots\!45}a^{24}-\frac{20\!\cdots\!39}{24\!\cdots\!45}a^{23}+\frac{20\!\cdots\!67}{81\!\cdots\!15}a^{22}+\frac{14\!\cdots\!82}{16\!\cdots\!83}a^{21}+\frac{13\!\cdots\!79}{24\!\cdots\!45}a^{20}-\frac{43\!\cdots\!34}{24\!\cdots\!45}a^{19}-\frac{67\!\cdots\!19}{24\!\cdots\!45}a^{18}-\frac{10\!\cdots\!64}{81\!\cdots\!15}a^{17}+\frac{42\!\cdots\!32}{24\!\cdots\!45}a^{16}+\frac{27\!\cdots\!09}{24\!\cdots\!45}a^{15}-\frac{77\!\cdots\!42}{24\!\cdots\!45}a^{14}+\frac{28\!\cdots\!63}{42\!\cdots\!85}a^{13}+\frac{16\!\cdots\!89}{81\!\cdots\!15}a^{12}+\frac{14\!\cdots\!71}{48\!\cdots\!49}a^{11}+\frac{41\!\cdots\!74}{24\!\cdots\!45}a^{10}-\frac{38\!\cdots\!74}{24\!\cdots\!45}a^{9}-\frac{11\!\cdots\!01}{81\!\cdots\!15}a^{8}-\frac{20\!\cdots\!35}{48\!\cdots\!49}a^{7}-\frac{34\!\cdots\!89}{48\!\cdots\!49}a^{6}+\frac{14\!\cdots\!16}{24\!\cdots\!45}a^{5}+\frac{88\!\cdots\!21}{16\!\cdots\!83}a^{4}+\frac{12\!\cdots\!73}{81\!\cdots\!15}a^{3}-\frac{23\!\cdots\!79}{21\!\cdots\!65}a^{2}-\frac{29\!\cdots\!94}{48\!\cdots\!49}a-\frac{26\!\cdots\!37}{48\!\cdots\!49}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 7929164662.056825 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{12}\cdot 7929164662.056825 \cdot 1}{2\cdot\sqrt{9527252910578083379673525288960000000000}}\cr\approx \mathstrut & 1.23016113293332 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^25 - 9*x^24 + 18*x^23 + 72*x^22 + 60*x^21 - 126*x^20 - 252*x^19 - 162*x^18 + 108*x^17 + 126*x^16 - 216*x^15 + 450*x^14 + 1692*x^13 + 2670*x^12 + 1899*x^11 - 900*x^10 - 1461*x^9 - 3591*x^8 - 6354*x^7 - 990*x^6 + 4392*x^5 + 2448*x^4 - 435*x^3 - 720*x^2 - 225*x - 25)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 9*x^25 - 9*x^24 + 18*x^23 + 72*x^22 + 60*x^21 - 126*x^20 - 252*x^19 - 162*x^18 + 108*x^17 + 126*x^16 - 216*x^15 + 450*x^14 + 1692*x^13 + 2670*x^12 + 1899*x^11 - 900*x^10 - 1461*x^9 - 3591*x^8 - 6354*x^7 - 990*x^6 + 4392*x^5 + 2448*x^4 - 435*x^3 - 720*x^2 - 225*x - 25, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 9*x^25 - 9*x^24 + 18*x^23 + 72*x^22 + 60*x^21 - 126*x^20 - 252*x^19 - 162*x^18 + 108*x^17 + 126*x^16 - 216*x^15 + 450*x^14 + 1692*x^13 + 2670*x^12 + 1899*x^11 - 900*x^10 - 1461*x^9 - 3591*x^8 - 6354*x^7 - 990*x^6 + 4392*x^5 + 2448*x^4 - 435*x^3 - 720*x^2 - 225*x - 25);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^25 - 9*x^24 + 18*x^23 + 72*x^22 + 60*x^21 - 126*x^20 - 252*x^19 - 162*x^18 + 108*x^17 + 126*x^16 - 216*x^15 + 450*x^14 + 1692*x^13 + 2670*x^12 + 1899*x^11 - 900*x^10 - 1461*x^9 - 3591*x^8 - 6354*x^7 - 990*x^6 + 4392*x^5 + 2448*x^4 - 435*x^3 - 720*x^2 - 225*x - 25);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^3:S_4$ (as 27T211):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 648
The 14 conjugacy class representatives for $C_3^3:S_4$
Character table for $C_3^3:S_4$

Intermediate fields

3.1.972.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 9 sibling: data not computed
Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 27 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 9.1.2479491129600.3

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.9.0.1}{9} }^{3}$ ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.2.0.1}{2} }^{10}{,}\,{\href{/padicField/19.1.0.1}{1} }^{7}$ ${\href{/padicField/23.4.0.1}{4} }^{5}{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.6.0.1}{6} }^{4}{,}\,{\href{/padicField/29.3.0.1}{3} }$ ${\href{/padicField/31.9.0.1}{9} }^{3}$ ${\href{/padicField/37.9.0.1}{9} }^{3}$ ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.3.0.1}{3} }^{9}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.6.0.1}{6} }^{4}{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $27$$9$$3$$24$
\(3\) Copy content Toggle raw display 3.9.18.2$x^{9} + 3 x^{3} + 9 x^{2} + 9 x + 3$$9$$1$$18$$C_3^2:C_2$$[3/2, 5/2]_{2}$
3.9.18.2$x^{9} + 3 x^{3} + 9 x^{2} + 9 x + 3$$9$$1$$18$$C_3^2:C_2$$[3/2, 5/2]_{2}$
3.9.18.2$x^{9} + 3 x^{3} + 9 x^{2} + 9 x + 3$$9$$1$$18$$C_3^2:C_2$$[3/2, 5/2]_{2}$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.4.2.2$x^{4} - 20 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.4.2.2$x^{4} - 20 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.6.0.1$x^{6} + x^{4} + 4 x^{3} + x^{2} + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
5.12.6.2$x^{12} + 25 x^{8} - 500 x^{6} + 625 x^{4} + 31250$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$