Properties

Label 27.3.995...896.1
Degree $27$
Signature $[3, 12]$
Discriminant $9.956\times 10^{38}$
Root discriminant \(27.82\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\SO(5,3)$ (as 27T1161)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 12*x^26 + 63*x^25 - 192*x^24 + 378*x^23 - 480*x^22 + 246*x^21 + 624*x^20 - 2346*x^19 + 4608*x^18 - 5598*x^17 + 2304*x^16 + 6564*x^15 - 19824*x^14 + 34248*x^13 - 40080*x^12 + 27606*x^11 - 2784*x^10 - 23718*x^9 + 45552*x^8 - 47970*x^7 + 29328*x^6 - 11814*x^5 + 4704*x^4 - 1779*x^3 + 468*x^2 - 105*x + 16)
 
gp: K = bnfinit(y^27 - 12*y^26 + 63*y^25 - 192*y^24 + 378*y^23 - 480*y^22 + 246*y^21 + 624*y^20 - 2346*y^19 + 4608*y^18 - 5598*y^17 + 2304*y^16 + 6564*y^15 - 19824*y^14 + 34248*y^13 - 40080*y^12 + 27606*y^11 - 2784*y^10 - 23718*y^9 + 45552*y^8 - 47970*y^7 + 29328*y^6 - 11814*y^5 + 4704*y^4 - 1779*y^3 + 468*y^2 - 105*y + 16, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 12*x^26 + 63*x^25 - 192*x^24 + 378*x^23 - 480*x^22 + 246*x^21 + 624*x^20 - 2346*x^19 + 4608*x^18 - 5598*x^17 + 2304*x^16 + 6564*x^15 - 19824*x^14 + 34248*x^13 - 40080*x^12 + 27606*x^11 - 2784*x^10 - 23718*x^9 + 45552*x^8 - 47970*x^7 + 29328*x^6 - 11814*x^5 + 4704*x^4 - 1779*x^3 + 468*x^2 - 105*x + 16);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 12*x^26 + 63*x^25 - 192*x^24 + 378*x^23 - 480*x^22 + 246*x^21 + 624*x^20 - 2346*x^19 + 4608*x^18 - 5598*x^17 + 2304*x^16 + 6564*x^15 - 19824*x^14 + 34248*x^13 - 40080*x^12 + 27606*x^11 - 2784*x^10 - 23718*x^9 + 45552*x^8 - 47970*x^7 + 29328*x^6 - 11814*x^5 + 4704*x^4 - 1779*x^3 + 468*x^2 - 105*x + 16)
 

\( x^{27} - 12 x^{26} + 63 x^{25} - 192 x^{24} + 378 x^{23} - 480 x^{22} + 246 x^{21} + 624 x^{20} + \cdots + 16 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(995628422475629697764741523151987408896\) \(\medspace = 2^{82}\cdot 3^{30}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(27.82\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{13}+\frac{1}{3}a^{12}+\frac{1}{3}a^{11}-\frac{1}{3}a^{10}+\frac{1}{3}a^{9}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{15}-\frac{1}{3}a^{12}+\frac{1}{3}a^{9}+\frac{1}{3}a^{6}-\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{3}a^{16}-\frac{1}{3}a^{13}+\frac{1}{3}a^{10}+\frac{1}{3}a^{7}-\frac{1}{3}a^{4}+\frac{1}{3}a$, $\frac{1}{3}a^{17}-\frac{1}{3}a^{13}+\frac{1}{3}a^{12}-\frac{1}{3}a^{11}-\frac{1}{3}a^{10}+\frac{1}{3}a^{9}+\frac{1}{3}a^{8}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{18}-\frac{1}{3}a^{9}+\frac{1}{3}$, $\frac{1}{3}a^{19}-\frac{1}{3}a^{10}+\frac{1}{3}a$, $\frac{1}{3}a^{20}-\frac{1}{3}a^{11}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{21}-\frac{1}{3}a^{12}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{22}-\frac{1}{3}a^{13}+\frac{1}{3}a^{4}$, $\frac{1}{3}a^{23}-\frac{1}{3}a^{13}+\frac{1}{3}a^{12}+\frac{1}{3}a^{11}-\frac{1}{3}a^{10}+\frac{1}{3}a^{9}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{24}-\frac{1}{3}a^{12}+\frac{1}{3}a^{9}-\frac{1}{3}a^{6}-\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{6}a^{25}+\frac{1}{3}a^{13}-\frac{1}{3}a^{10}+\frac{1}{3}a^{7}+\frac{1}{3}a^{4}+\frac{1}{6}a$, $\frac{1}{73\!\cdots\!80}a^{26}+\frac{63\!\cdots\!29}{14\!\cdots\!96}a^{25}-\frac{13\!\cdots\!58}{18\!\cdots\!45}a^{24}-\frac{11\!\cdots\!44}{18\!\cdots\!45}a^{23}+\frac{44\!\cdots\!73}{36\!\cdots\!90}a^{22}-\frac{70\!\cdots\!03}{12\!\cdots\!30}a^{21}+\frac{11\!\cdots\!61}{36\!\cdots\!49}a^{20}+\frac{97\!\cdots\!07}{61\!\cdots\!15}a^{19}+\frac{19\!\cdots\!27}{12\!\cdots\!30}a^{18}+\frac{24\!\cdots\!61}{36\!\cdots\!90}a^{17}-\frac{31\!\cdots\!11}{18\!\cdots\!45}a^{16}-\frac{22\!\cdots\!01}{18\!\cdots\!45}a^{15}+\frac{21\!\cdots\!84}{18\!\cdots\!45}a^{14}+\frac{25\!\cdots\!59}{61\!\cdots\!15}a^{13}-\frac{84\!\cdots\!34}{18\!\cdots\!45}a^{12}+\frac{56\!\cdots\!34}{61\!\cdots\!15}a^{11}+\frac{85\!\cdots\!81}{36\!\cdots\!90}a^{10}-\frac{38\!\cdots\!63}{73\!\cdots\!98}a^{9}-\frac{69\!\cdots\!17}{18\!\cdots\!45}a^{8}+\frac{44\!\cdots\!49}{18\!\cdots\!45}a^{7}+\frac{12\!\cdots\!11}{36\!\cdots\!90}a^{6}-\frac{39\!\cdots\!43}{12\!\cdots\!30}a^{5}+\frac{93\!\cdots\!50}{36\!\cdots\!49}a^{4}-\frac{84\!\cdots\!09}{18\!\cdots\!45}a^{3}-\frac{35\!\cdots\!91}{73\!\cdots\!80}a^{2}+\frac{16\!\cdots\!01}{73\!\cdots\!80}a-\frac{30\!\cdots\!77}{18\!\cdots\!45}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{32\!\cdots\!01}{73\!\cdots\!80}a^{26}+\frac{62\!\cdots\!63}{14\!\cdots\!96}a^{25}-\frac{28\!\cdots\!77}{18\!\cdots\!45}a^{24}+\frac{17\!\cdots\!78}{61\!\cdots\!15}a^{23}-\frac{58\!\cdots\!23}{36\!\cdots\!90}a^{22}-\frac{47\!\cdots\!77}{12\!\cdots\!30}a^{21}+\frac{16\!\cdots\!07}{12\!\cdots\!83}a^{20}-\frac{15\!\cdots\!22}{61\!\cdots\!15}a^{19}+\frac{40\!\cdots\!93}{12\!\cdots\!30}a^{18}-\frac{64\!\cdots\!41}{36\!\cdots\!90}a^{17}-\frac{10\!\cdots\!89}{18\!\cdots\!45}a^{16}+\frac{10\!\cdots\!27}{61\!\cdots\!15}a^{15}-\frac{38\!\cdots\!29}{18\!\cdots\!45}a^{14}+\frac{11\!\cdots\!96}{61\!\cdots\!15}a^{13}-\frac{87\!\cdots\!86}{18\!\cdots\!45}a^{12}-\frac{22\!\cdots\!09}{61\!\cdots\!15}a^{11}+\frac{86\!\cdots\!53}{12\!\cdots\!30}a^{10}-\frac{12\!\cdots\!03}{24\!\cdots\!66}a^{9}+\frac{19\!\cdots\!59}{61\!\cdots\!15}a^{8}+\frac{93\!\cdots\!42}{61\!\cdots\!15}a^{7}-\frac{25\!\cdots\!71}{36\!\cdots\!90}a^{6}+\frac{25\!\cdots\!29}{36\!\cdots\!90}a^{5}-\frac{52\!\cdots\!60}{36\!\cdots\!49}a^{4}+\frac{15\!\cdots\!54}{18\!\cdots\!45}a^{3}-\frac{84\!\cdots\!63}{24\!\cdots\!60}a^{2}+\frac{12\!\cdots\!33}{24\!\cdots\!60}a+\frac{10\!\cdots\!49}{61\!\cdots\!15}$, $\frac{88\!\cdots\!39}{36\!\cdots\!90}a^{26}+\frac{69\!\cdots\!65}{24\!\cdots\!66}a^{25}-\frac{26\!\cdots\!81}{18\!\cdots\!45}a^{24}+\frac{79\!\cdots\!87}{18\!\cdots\!45}a^{23}-\frac{49\!\cdots\!04}{61\!\cdots\!15}a^{22}+\frac{17\!\cdots\!31}{18\!\cdots\!45}a^{21}-\frac{40\!\cdots\!53}{12\!\cdots\!83}a^{20}-\frac{30\!\cdots\!83}{18\!\cdots\!45}a^{19}+\frac{98\!\cdots\!31}{18\!\cdots\!45}a^{18}-\frac{18\!\cdots\!19}{18\!\cdots\!45}a^{17}+\frac{20\!\cdots\!68}{18\!\cdots\!45}a^{16}-\frac{45\!\cdots\!62}{18\!\cdots\!45}a^{15}-\frac{10\!\cdots\!94}{61\!\cdots\!15}a^{14}+\frac{81\!\cdots\!94}{18\!\cdots\!45}a^{13}-\frac{44\!\cdots\!76}{61\!\cdots\!15}a^{12}+\frac{14\!\cdots\!34}{18\!\cdots\!45}a^{11}-\frac{82\!\cdots\!14}{18\!\cdots\!45}a^{10}-\frac{92\!\cdots\!24}{12\!\cdots\!83}a^{9}+\frac{10\!\cdots\!46}{18\!\cdots\!45}a^{8}-\frac{17\!\cdots\!87}{18\!\cdots\!45}a^{7}+\frac{16\!\cdots\!96}{18\!\cdots\!45}a^{6}-\frac{82\!\cdots\!79}{18\!\cdots\!45}a^{5}+\frac{53\!\cdots\!82}{36\!\cdots\!49}a^{4}-\frac{13\!\cdots\!98}{18\!\cdots\!45}a^{3}+\frac{80\!\cdots\!69}{36\!\cdots\!90}a^{2}-\frac{16\!\cdots\!39}{36\!\cdots\!90}a+\frac{21\!\cdots\!31}{18\!\cdots\!45}$, $\frac{31\!\cdots\!83}{73\!\cdots\!80}a^{26}-\frac{23\!\cdots\!81}{49\!\cdots\!32}a^{25}+\frac{42\!\cdots\!01}{18\!\cdots\!45}a^{24}-\frac{11\!\cdots\!02}{18\!\cdots\!45}a^{23}+\frac{40\!\cdots\!39}{36\!\cdots\!90}a^{22}-\frac{43\!\cdots\!57}{36\!\cdots\!90}a^{21}+\frac{56\!\cdots\!41}{36\!\cdots\!49}a^{20}+\frac{50\!\cdots\!68}{18\!\cdots\!45}a^{19}-\frac{28\!\cdots\!47}{36\!\cdots\!90}a^{18}+\frac{49\!\cdots\!03}{36\!\cdots\!90}a^{17}-\frac{24\!\cdots\!53}{18\!\cdots\!45}a^{16}-\frac{45\!\cdots\!93}{18\!\cdots\!45}a^{15}+\frac{49\!\cdots\!37}{18\!\cdots\!45}a^{14}-\frac{11\!\cdots\!89}{18\!\cdots\!45}a^{13}+\frac{59\!\cdots\!66}{61\!\cdots\!15}a^{12}-\frac{17\!\cdots\!34}{18\!\cdots\!45}a^{11}+\frac{16\!\cdots\!53}{36\!\cdots\!90}a^{10}+\frac{50\!\cdots\!87}{24\!\cdots\!66}a^{9}-\frac{15\!\cdots\!71}{18\!\cdots\!45}a^{8}+\frac{23\!\cdots\!42}{18\!\cdots\!45}a^{7}-\frac{12\!\cdots\!09}{12\!\cdots\!30}a^{6}+\frac{17\!\cdots\!53}{36\!\cdots\!90}a^{5}-\frac{19\!\cdots\!16}{12\!\cdots\!83}a^{4}+\frac{13\!\cdots\!43}{18\!\cdots\!45}a^{3}-\frac{15\!\cdots\!93}{73\!\cdots\!80}a^{2}+\frac{10\!\cdots\!91}{24\!\cdots\!60}a-\frac{20\!\cdots\!61}{18\!\cdots\!45}$, $\frac{16\!\cdots\!69}{14\!\cdots\!96}a^{26}+\frac{18\!\cdots\!07}{14\!\cdots\!96}a^{25}-\frac{21\!\cdots\!20}{36\!\cdots\!49}a^{24}+\frac{20\!\cdots\!54}{12\!\cdots\!83}a^{23}-\frac{21\!\cdots\!79}{73\!\cdots\!98}a^{22}+\frac{23\!\cdots\!95}{73\!\cdots\!98}a^{21}-\frac{17\!\cdots\!02}{36\!\cdots\!49}a^{20}-\frac{25\!\cdots\!59}{36\!\cdots\!49}a^{19}+\frac{14\!\cdots\!65}{73\!\cdots\!98}a^{18}-\frac{26\!\cdots\!19}{73\!\cdots\!98}a^{17}+\frac{13\!\cdots\!56}{36\!\cdots\!49}a^{16}-\frac{47\!\cdots\!60}{36\!\cdots\!49}a^{15}-\frac{86\!\cdots\!14}{12\!\cdots\!83}a^{14}+\frac{60\!\cdots\!30}{36\!\cdots\!49}a^{13}-\frac{93\!\cdots\!75}{36\!\cdots\!49}a^{12}+\frac{93\!\cdots\!50}{36\!\cdots\!49}a^{11}-\frac{90\!\cdots\!65}{73\!\cdots\!98}a^{10}-\frac{37\!\cdots\!07}{73\!\cdots\!98}a^{9}+\frac{80\!\cdots\!17}{36\!\cdots\!49}a^{8}-\frac{12\!\cdots\!81}{36\!\cdots\!49}a^{7}+\frac{20\!\cdots\!47}{73\!\cdots\!98}a^{6}-\frac{30\!\cdots\!59}{24\!\cdots\!66}a^{5}+\frac{16\!\cdots\!67}{36\!\cdots\!49}a^{4}-\frac{76\!\cdots\!57}{36\!\cdots\!49}a^{3}+\frac{84\!\cdots\!83}{14\!\cdots\!96}a^{2}-\frac{19\!\cdots\!25}{14\!\cdots\!96}a+\frac{10\!\cdots\!41}{36\!\cdots\!49}$, $\frac{89\!\cdots\!87}{14\!\cdots\!96}a^{26}-\frac{35\!\cdots\!91}{49\!\cdots\!32}a^{25}+\frac{13\!\cdots\!71}{36\!\cdots\!49}a^{24}-\frac{13\!\cdots\!59}{12\!\cdots\!83}a^{23}+\frac{14\!\cdots\!75}{73\!\cdots\!98}a^{22}-\frac{17\!\cdots\!05}{73\!\cdots\!98}a^{21}+\frac{31\!\cdots\!98}{36\!\cdots\!49}a^{20}+\frac{14\!\cdots\!54}{36\!\cdots\!49}a^{19}-\frac{96\!\cdots\!91}{73\!\cdots\!98}a^{18}+\frac{17\!\cdots\!77}{73\!\cdots\!98}a^{17}-\frac{33\!\cdots\!49}{12\!\cdots\!83}a^{16}+\frac{24\!\cdots\!40}{36\!\cdots\!49}a^{15}+\frac{15\!\cdots\!27}{36\!\cdots\!49}a^{14}-\frac{39\!\cdots\!81}{36\!\cdots\!49}a^{13}+\frac{21\!\cdots\!21}{12\!\cdots\!83}a^{12}-\frac{24\!\cdots\!62}{12\!\cdots\!83}a^{11}+\frac{85\!\cdots\!75}{73\!\cdots\!98}a^{10}+\frac{75\!\cdots\!53}{73\!\cdots\!98}a^{9}-\frac{16\!\cdots\!69}{12\!\cdots\!83}a^{8}+\frac{28\!\cdots\!60}{12\!\cdots\!83}a^{7}-\frac{55\!\cdots\!13}{24\!\cdots\!66}a^{6}+\frac{86\!\cdots\!83}{73\!\cdots\!98}a^{5}-\frac{18\!\cdots\!13}{36\!\cdots\!49}a^{4}+\frac{96\!\cdots\!62}{36\!\cdots\!49}a^{3}-\frac{11\!\cdots\!29}{14\!\cdots\!96}a^{2}+\frac{27\!\cdots\!71}{14\!\cdots\!96}a-\frac{48\!\cdots\!93}{12\!\cdots\!83}$, $\frac{50\!\cdots\!23}{73\!\cdots\!80}a^{26}+\frac{38\!\cdots\!25}{49\!\cdots\!32}a^{25}-\frac{23\!\cdots\!62}{61\!\cdots\!15}a^{24}+\frac{20\!\cdots\!97}{18\!\cdots\!45}a^{23}-\frac{73\!\cdots\!89}{36\!\cdots\!90}a^{22}+\frac{82\!\cdots\!07}{36\!\cdots\!90}a^{21}-\frac{20\!\cdots\!38}{36\!\cdots\!49}a^{20}-\frac{27\!\cdots\!16}{61\!\cdots\!15}a^{19}+\frac{49\!\cdots\!77}{36\!\cdots\!90}a^{18}-\frac{29\!\cdots\!21}{12\!\cdots\!30}a^{17}+\frac{47\!\cdots\!93}{18\!\cdots\!45}a^{16}-\frac{17\!\cdots\!69}{61\!\cdots\!15}a^{15}-\frac{83\!\cdots\!22}{18\!\cdots\!45}a^{14}+\frac{20\!\cdots\!34}{18\!\cdots\!45}a^{13}-\frac{32\!\cdots\!53}{18\!\cdots\!45}a^{12}+\frac{33\!\cdots\!49}{18\!\cdots\!45}a^{11}-\frac{35\!\cdots\!93}{36\!\cdots\!90}a^{10}-\frac{19\!\cdots\!83}{73\!\cdots\!98}a^{9}+\frac{26\!\cdots\!86}{18\!\cdots\!45}a^{8}-\frac{43\!\cdots\!42}{18\!\cdots\!45}a^{7}+\frac{25\!\cdots\!59}{12\!\cdots\!30}a^{6}-\frac{11\!\cdots\!11}{12\!\cdots\!30}a^{5}+\frac{40\!\cdots\!66}{12\!\cdots\!83}a^{4}-\frac{28\!\cdots\!93}{18\!\cdots\!45}a^{3}+\frac{11\!\cdots\!31}{24\!\cdots\!60}a^{2}-\frac{72\!\cdots\!13}{73\!\cdots\!80}a+\frac{45\!\cdots\!51}{18\!\cdots\!45}$, $\frac{29\!\cdots\!74}{18\!\cdots\!45}a^{26}+\frac{23\!\cdots\!05}{12\!\cdots\!83}a^{25}-\frac{17\!\cdots\!37}{18\!\cdots\!45}a^{24}+\frac{51\!\cdots\!24}{18\!\cdots\!45}a^{23}-\frac{31\!\cdots\!38}{61\!\cdots\!15}a^{22}+\frac{10\!\cdots\!42}{18\!\cdots\!45}a^{21}-\frac{23\!\cdots\!51}{12\!\cdots\!83}a^{20}-\frac{66\!\cdots\!37}{61\!\cdots\!15}a^{19}+\frac{21\!\cdots\!59}{61\!\cdots\!15}a^{18}-\frac{11\!\cdots\!78}{18\!\cdots\!45}a^{17}+\frac{42\!\cdots\!22}{61\!\cdots\!15}a^{16}-\frac{24\!\cdots\!29}{18\!\cdots\!45}a^{15}-\frac{20\!\cdots\!74}{18\!\cdots\!45}a^{14}+\frac{51\!\cdots\!63}{18\!\cdots\!45}a^{13}-\frac{83\!\cdots\!56}{18\!\cdots\!45}a^{12}+\frac{89\!\cdots\!88}{18\!\cdots\!45}a^{11}-\frac{50\!\cdots\!63}{18\!\cdots\!45}a^{10}-\frac{20\!\cdots\!30}{36\!\cdots\!49}a^{9}+\frac{22\!\cdots\!74}{61\!\cdots\!15}a^{8}-\frac{37\!\cdots\!53}{61\!\cdots\!15}a^{7}+\frac{10\!\cdots\!42}{18\!\cdots\!45}a^{6}-\frac{50\!\cdots\!48}{18\!\cdots\!45}a^{5}+\frac{33\!\cdots\!74}{36\!\cdots\!49}a^{4}-\frac{25\!\cdots\!52}{61\!\cdots\!15}a^{3}+\frac{24\!\cdots\!74}{18\!\cdots\!45}a^{2}-\frac{48\!\cdots\!09}{18\!\cdots\!45}a+\frac{11\!\cdots\!87}{18\!\cdots\!45}$, $\frac{37\!\cdots\!63}{36\!\cdots\!49}a^{26}+\frac{12\!\cdots\!44}{12\!\cdots\!83}a^{25}-\frac{50\!\cdots\!69}{12\!\cdots\!83}a^{24}+\frac{11\!\cdots\!23}{12\!\cdots\!83}a^{23}-\frac{43\!\cdots\!58}{36\!\cdots\!49}a^{22}+\frac{21\!\cdots\!67}{36\!\cdots\!49}a^{21}+\frac{54\!\cdots\!23}{36\!\cdots\!49}a^{20}-\frac{66\!\cdots\!09}{12\!\cdots\!83}a^{19}+\frac{40\!\cdots\!32}{36\!\cdots\!49}a^{18}-\frac{52\!\cdots\!66}{36\!\cdots\!49}a^{17}+\frac{17\!\cdots\!81}{36\!\cdots\!49}a^{16}+\frac{73\!\cdots\!23}{36\!\cdots\!49}a^{15}-\frac{17\!\cdots\!81}{36\!\cdots\!49}a^{14}+\frac{97\!\cdots\!16}{12\!\cdots\!83}a^{13}-\frac{34\!\cdots\!86}{36\!\cdots\!49}a^{12}+\frac{50\!\cdots\!76}{12\!\cdots\!83}a^{11}+\frac{43\!\cdots\!10}{12\!\cdots\!83}a^{10}-\frac{87\!\cdots\!00}{12\!\cdots\!83}a^{9}+\frac{43\!\cdots\!02}{36\!\cdots\!49}a^{8}-\frac{41\!\cdots\!42}{36\!\cdots\!49}a^{7}+\frac{44\!\cdots\!78}{36\!\cdots\!49}a^{6}+\frac{75\!\cdots\!78}{36\!\cdots\!49}a^{5}+\frac{11\!\cdots\!91}{36\!\cdots\!49}a^{4}+\frac{76\!\cdots\!82}{36\!\cdots\!49}a^{3}-\frac{36\!\cdots\!61}{36\!\cdots\!49}a^{2}+\frac{59\!\cdots\!01}{12\!\cdots\!83}a-\frac{37\!\cdots\!01}{36\!\cdots\!49}$, $\frac{12\!\cdots\!19}{73\!\cdots\!80}a^{26}+\frac{27\!\cdots\!73}{14\!\cdots\!96}a^{25}-\frac{17\!\cdots\!58}{18\!\cdots\!45}a^{24}+\frac{16\!\cdots\!97}{61\!\cdots\!15}a^{23}-\frac{17\!\cdots\!07}{36\!\cdots\!90}a^{22}+\frac{19\!\cdots\!11}{36\!\cdots\!90}a^{21}-\frac{16\!\cdots\!09}{12\!\cdots\!83}a^{20}-\frac{19\!\cdots\!34}{18\!\cdots\!45}a^{19}+\frac{12\!\cdots\!81}{36\!\cdots\!90}a^{18}-\frac{71\!\cdots\!73}{12\!\cdots\!30}a^{17}+\frac{11\!\cdots\!74}{18\!\cdots\!45}a^{16}-\frac{12\!\cdots\!11}{18\!\cdots\!45}a^{15}-\frac{20\!\cdots\!26}{18\!\cdots\!45}a^{14}+\frac{48\!\cdots\!27}{18\!\cdots\!45}a^{13}-\frac{77\!\cdots\!09}{18\!\cdots\!45}a^{12}+\frac{27\!\cdots\!04}{61\!\cdots\!15}a^{11}-\frac{85\!\cdots\!39}{36\!\cdots\!90}a^{10}-\frac{15\!\cdots\!83}{24\!\cdots\!66}a^{9}+\frac{63\!\cdots\!63}{18\!\cdots\!45}a^{8}-\frac{34\!\cdots\!17}{61\!\cdots\!15}a^{7}+\frac{61\!\cdots\!87}{12\!\cdots\!30}a^{6}-\frac{86\!\cdots\!49}{36\!\cdots\!90}a^{5}+\frac{31\!\cdots\!61}{36\!\cdots\!49}a^{4}-\frac{77\!\cdots\!24}{18\!\cdots\!45}a^{3}+\frac{27\!\cdots\!23}{24\!\cdots\!60}a^{2}-\frac{62\!\cdots\!53}{24\!\cdots\!60}a+\frac{14\!\cdots\!73}{18\!\cdots\!45}$, $\frac{60\!\cdots\!03}{18\!\cdots\!45}a^{26}-\frac{14\!\cdots\!89}{36\!\cdots\!49}a^{25}+\frac{12\!\cdots\!03}{61\!\cdots\!15}a^{24}-\frac{36\!\cdots\!41}{61\!\cdots\!15}a^{23}+\frac{69\!\cdots\!31}{61\!\cdots\!15}a^{22}-\frac{24\!\cdots\!34}{18\!\cdots\!45}a^{21}+\frac{17\!\cdots\!67}{36\!\cdots\!49}a^{20}+\frac{13\!\cdots\!24}{61\!\cdots\!15}a^{19}-\frac{13\!\cdots\!84}{18\!\cdots\!45}a^{18}+\frac{25\!\cdots\!16}{18\!\cdots\!45}a^{17}-\frac{95\!\cdots\!69}{61\!\cdots\!15}a^{16}+\frac{68\!\cdots\!53}{18\!\cdots\!45}a^{15}+\frac{43\!\cdots\!58}{18\!\cdots\!45}a^{14}-\frac{11\!\cdots\!21}{18\!\cdots\!45}a^{13}+\frac{61\!\cdots\!04}{61\!\cdots\!15}a^{12}-\frac{20\!\cdots\!91}{18\!\cdots\!45}a^{11}+\frac{39\!\cdots\!37}{61\!\cdots\!15}a^{10}+\frac{34\!\cdots\!36}{36\!\cdots\!49}a^{9}-\frac{48\!\cdots\!28}{61\!\cdots\!15}a^{8}+\frac{24\!\cdots\!18}{18\!\cdots\!45}a^{7}-\frac{23\!\cdots\!99}{18\!\cdots\!45}a^{6}+\frac{11\!\cdots\!56}{18\!\cdots\!45}a^{5}-\frac{78\!\cdots\!74}{36\!\cdots\!49}a^{4}+\frac{18\!\cdots\!77}{18\!\cdots\!45}a^{3}-\frac{55\!\cdots\!68}{18\!\cdots\!45}a^{2}+\frac{40\!\cdots\!01}{61\!\cdots\!15}a-\frac{28\!\cdots\!99}{18\!\cdots\!45}$, $\frac{10\!\cdots\!03}{14\!\cdots\!96}a^{26}+\frac{12\!\cdots\!27}{14\!\cdots\!96}a^{25}-\frac{54\!\cdots\!61}{12\!\cdots\!83}a^{24}+\frac{48\!\cdots\!19}{36\!\cdots\!49}a^{23}-\frac{18\!\cdots\!59}{73\!\cdots\!98}a^{22}+\frac{21\!\cdots\!33}{73\!\cdots\!98}a^{21}-\frac{11\!\cdots\!93}{12\!\cdots\!83}a^{20}-\frac{18\!\cdots\!44}{36\!\cdots\!49}a^{19}+\frac{11\!\cdots\!77}{73\!\cdots\!98}a^{18}-\frac{21\!\cdots\!77}{73\!\cdots\!98}a^{17}+\frac{12\!\cdots\!86}{36\!\cdots\!49}a^{16}-\frac{24\!\cdots\!96}{36\!\cdots\!49}a^{15}-\frac{19\!\cdots\!80}{36\!\cdots\!49}a^{14}+\frac{16\!\cdots\!21}{12\!\cdots\!83}a^{13}-\frac{26\!\cdots\!32}{12\!\cdots\!83}a^{12}+\frac{86\!\cdots\!44}{36\!\cdots\!49}a^{11}-\frac{32\!\cdots\!35}{24\!\cdots\!66}a^{10}-\frac{18\!\cdots\!45}{73\!\cdots\!98}a^{9}+\frac{64\!\cdots\!77}{36\!\cdots\!49}a^{8}-\frac{10\!\cdots\!90}{36\!\cdots\!49}a^{7}+\frac{19\!\cdots\!89}{73\!\cdots\!98}a^{6}-\frac{32\!\cdots\!33}{24\!\cdots\!66}a^{5}+\frac{15\!\cdots\!76}{36\!\cdots\!49}a^{4}-\frac{76\!\cdots\!25}{36\!\cdots\!49}a^{3}+\frac{91\!\cdots\!57}{14\!\cdots\!96}a^{2}-\frac{19\!\cdots\!33}{14\!\cdots\!96}a+\frac{12\!\cdots\!31}{36\!\cdots\!49}$, $\frac{26\!\cdots\!07}{73\!\cdots\!80}a^{26}-\frac{56\!\cdots\!91}{14\!\cdots\!96}a^{25}+\frac{31\!\cdots\!04}{18\!\cdots\!45}a^{24}-\frac{26\!\cdots\!86}{61\!\cdots\!15}a^{23}+\frac{25\!\cdots\!01}{36\!\cdots\!90}a^{22}-\frac{22\!\cdots\!63}{36\!\cdots\!90}a^{21}-\frac{68\!\cdots\!83}{36\!\cdots\!49}a^{20}+\frac{39\!\cdots\!32}{18\!\cdots\!45}a^{19}-\frac{65\!\cdots\!91}{12\!\cdots\!30}a^{18}+\frac{30\!\cdots\!07}{36\!\cdots\!90}a^{17}-\frac{12\!\cdots\!82}{18\!\cdots\!45}a^{16}-\frac{21\!\cdots\!69}{61\!\cdots\!15}a^{15}+\frac{37\!\cdots\!38}{18\!\cdots\!45}a^{14}-\frac{75\!\cdots\!96}{18\!\cdots\!45}a^{13}+\frac{10\!\cdots\!67}{18\!\cdots\!45}a^{12}-\frac{90\!\cdots\!81}{18\!\cdots\!45}a^{11}+\frac{51\!\cdots\!87}{36\!\cdots\!90}a^{10}+\frac{15\!\cdots\!11}{73\!\cdots\!98}a^{9}-\frac{34\!\cdots\!78}{61\!\cdots\!15}a^{8}+\frac{13\!\cdots\!13}{18\!\cdots\!45}a^{7}-\frac{17\!\cdots\!13}{36\!\cdots\!90}a^{6}+\frac{64\!\cdots\!97}{36\!\cdots\!90}a^{5}-\frac{30\!\cdots\!04}{36\!\cdots\!49}a^{4}+\frac{17\!\cdots\!49}{61\!\cdots\!15}a^{3}-\frac{17\!\cdots\!19}{24\!\cdots\!60}a^{2}+\frac{16\!\cdots\!77}{73\!\cdots\!80}a-\frac{34\!\cdots\!69}{18\!\cdots\!45}$, $\frac{25\!\cdots\!69}{14\!\cdots\!96}a^{26}+\frac{99\!\cdots\!01}{49\!\cdots\!32}a^{25}-\frac{37\!\cdots\!55}{36\!\cdots\!49}a^{24}+\frac{10\!\cdots\!02}{36\!\cdots\!49}a^{23}-\frac{40\!\cdots\!25}{73\!\cdots\!98}a^{22}+\frac{46\!\cdots\!25}{73\!\cdots\!98}a^{21}-\frac{23\!\cdots\!51}{12\!\cdots\!83}a^{20}-\frac{14\!\cdots\!20}{12\!\cdots\!83}a^{19}+\frac{89\!\cdots\!25}{24\!\cdots\!66}a^{18}-\frac{48\!\cdots\!91}{73\!\cdots\!98}a^{17}+\frac{26\!\cdots\!23}{36\!\cdots\!49}a^{16}-\frac{47\!\cdots\!69}{36\!\cdots\!49}a^{15}-\frac{43\!\cdots\!43}{36\!\cdots\!49}a^{14}+\frac{36\!\cdots\!02}{12\!\cdots\!83}a^{13}-\frac{17\!\cdots\!46}{36\!\cdots\!49}a^{12}+\frac{63\!\cdots\!10}{12\!\cdots\!83}a^{11}-\frac{21\!\cdots\!97}{73\!\cdots\!98}a^{10}-\frac{43\!\cdots\!71}{73\!\cdots\!98}a^{9}+\frac{14\!\cdots\!56}{36\!\cdots\!49}a^{8}-\frac{23\!\cdots\!96}{36\!\cdots\!49}a^{7}+\frac{14\!\cdots\!79}{24\!\cdots\!66}a^{6}-\frac{21\!\cdots\!43}{73\!\cdots\!98}a^{5}+\frac{35\!\cdots\!89}{36\!\cdots\!49}a^{4}-\frac{55\!\cdots\!76}{12\!\cdots\!83}a^{3}+\frac{67\!\cdots\!81}{49\!\cdots\!32}a^{2}-\frac{43\!\cdots\!97}{14\!\cdots\!96}a+\frac{26\!\cdots\!53}{36\!\cdots\!49}$, $\frac{12\!\cdots\!03}{18\!\cdots\!45}a^{26}+\frac{26\!\cdots\!48}{36\!\cdots\!49}a^{25}-\frac{59\!\cdots\!49}{18\!\cdots\!45}a^{24}+\frac{15\!\cdots\!78}{18\!\cdots\!45}a^{23}-\frac{24\!\cdots\!08}{18\!\cdots\!45}a^{22}+\frac{22\!\cdots\!79}{18\!\cdots\!45}a^{21}+\frac{11\!\cdots\!19}{36\!\cdots\!49}a^{20}-\frac{73\!\cdots\!32}{18\!\cdots\!45}a^{19}+\frac{18\!\cdots\!84}{18\!\cdots\!45}a^{18}-\frac{98\!\cdots\!17}{61\!\cdots\!15}a^{17}+\frac{80\!\cdots\!29}{61\!\cdots\!15}a^{16}+\frac{11\!\cdots\!92}{18\!\cdots\!45}a^{15}-\frac{70\!\cdots\!38}{18\!\cdots\!45}a^{14}+\frac{14\!\cdots\!36}{18\!\cdots\!45}a^{13}-\frac{20\!\cdots\!22}{18\!\cdots\!45}a^{12}+\frac{17\!\cdots\!21}{18\!\cdots\!45}a^{11}-\frac{17\!\cdots\!22}{61\!\cdots\!15}a^{10}-\frac{14\!\cdots\!70}{36\!\cdots\!49}a^{9}+\frac{19\!\cdots\!09}{18\!\cdots\!45}a^{8}-\frac{26\!\cdots\!48}{18\!\cdots\!45}a^{7}+\frac{17\!\cdots\!19}{18\!\cdots\!45}a^{6}-\frac{21\!\cdots\!32}{61\!\cdots\!15}a^{5}+\frac{18\!\cdots\!70}{12\!\cdots\!83}a^{4}-\frac{10\!\cdots\!37}{18\!\cdots\!45}a^{3}+\frac{97\!\cdots\!51}{61\!\cdots\!15}a^{2}-\frac{90\!\cdots\!83}{18\!\cdots\!45}a+\frac{86\!\cdots\!59}{18\!\cdots\!45}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4994589101.470175 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{12}\cdot 4994589101.470175 \cdot 1}{2\cdot\sqrt{995628422475629697764741523151987408896}}\cr\approx \mathstrut & 2.39700827756404 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 12*x^26 + 63*x^25 - 192*x^24 + 378*x^23 - 480*x^22 + 246*x^21 + 624*x^20 - 2346*x^19 + 4608*x^18 - 5598*x^17 + 2304*x^16 + 6564*x^15 - 19824*x^14 + 34248*x^13 - 40080*x^12 + 27606*x^11 - 2784*x^10 - 23718*x^9 + 45552*x^8 - 47970*x^7 + 29328*x^6 - 11814*x^5 + 4704*x^4 - 1779*x^3 + 468*x^2 - 105*x + 16)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 12*x^26 + 63*x^25 - 192*x^24 + 378*x^23 - 480*x^22 + 246*x^21 + 624*x^20 - 2346*x^19 + 4608*x^18 - 5598*x^17 + 2304*x^16 + 6564*x^15 - 19824*x^14 + 34248*x^13 - 40080*x^12 + 27606*x^11 - 2784*x^10 - 23718*x^9 + 45552*x^8 - 47970*x^7 + 29328*x^6 - 11814*x^5 + 4704*x^4 - 1779*x^3 + 468*x^2 - 105*x + 16, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 12*x^26 + 63*x^25 - 192*x^24 + 378*x^23 - 480*x^22 + 246*x^21 + 624*x^20 - 2346*x^19 + 4608*x^18 - 5598*x^17 + 2304*x^16 + 6564*x^15 - 19824*x^14 + 34248*x^13 - 40080*x^12 + 27606*x^11 - 2784*x^10 - 23718*x^9 + 45552*x^8 - 47970*x^7 + 29328*x^6 - 11814*x^5 + 4704*x^4 - 1779*x^3 + 468*x^2 - 105*x + 16);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 12*x^26 + 63*x^25 - 192*x^24 + 378*x^23 - 480*x^22 + 246*x^21 + 624*x^20 - 2346*x^19 + 4608*x^18 - 5598*x^17 + 2304*x^16 + 6564*x^15 - 19824*x^14 + 34248*x^13 - 40080*x^12 + 27606*x^11 - 2784*x^10 - 23718*x^9 + 45552*x^8 - 47970*x^7 + 29328*x^6 - 11814*x^5 + 4704*x^4 - 1779*x^3 + 468*x^2 - 105*x + 16);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\SO(5,3)$ (as 27T1161):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 51840
The 25 conjugacy class representatives for $\SO(5,3)$
Character table for $\SO(5,3)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.5.0.1}{5} }^{5}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ ${\href{/padicField/7.9.0.1}{9} }^{3}$ ${\href{/padicField/11.9.0.1}{9} }^{3}$ ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.5.0.1}{5} }^{3}{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.6.0.1}{6} }^{4}{,}\,{\href{/padicField/17.3.0.1}{3} }$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{5}$ ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.5.0.1}{5} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.9.0.1}{9} }^{3}$ ${\href{/padicField/31.5.0.1}{5} }^{5}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.5.0.1}{5} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.6.0.1}{6} }^{4}{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.5.0.1}{5} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.0.1$x^{2} + x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.8.26.122$x^{8} + 8 x^{6} + 2 x^{4} + 8 x^{3} + 16 x^{2} + 2$$8$$1$$26$$C_2 \wr C_2\wr C_2$$[2, 2, 3, 7/2, 4, 17/4]^{2}$
Deg $16$$8$$2$$56$
\(3\) Copy content Toggle raw display Deg $27$$27$$1$$30$