Properties

Label 27.9.177...912.2
Degree $27$
Signature $[9, 9]$
Discriminant $-1.772\times 10^{40}$
Root discriminant \(30.95\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_3\times C_9$ (as 27T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^26 + 36*x^25 - 54*x^24 - 180*x^23 + 1296*x^22 - 3699*x^21 + 5184*x^20 + 1737*x^19 - 28278*x^18 + 81630*x^17 - 152073*x^16 + 206037*x^15 - 206640*x^14 + 143748*x^13 - 36954*x^12 - 70929*x^11 + 125325*x^10 - 106329*x^9 + 53154*x^8 - 10548*x^7 - 9594*x^6 + 13185*x^5 - 9180*x^4 + 4068*x^3 - 1053*x^2 - 207*x + 163)
 
gp: K = bnfinit(y^27 - 9*y^26 + 36*y^25 - 54*y^24 - 180*y^23 + 1296*y^22 - 3699*y^21 + 5184*y^20 + 1737*y^19 - 28278*y^18 + 81630*y^17 - 152073*y^16 + 206037*y^15 - 206640*y^14 + 143748*y^13 - 36954*y^12 - 70929*y^11 + 125325*y^10 - 106329*y^9 + 53154*y^8 - 10548*y^7 - 9594*y^6 + 13185*y^5 - 9180*y^4 + 4068*y^3 - 1053*y^2 - 207*y + 163, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 9*x^26 + 36*x^25 - 54*x^24 - 180*x^23 + 1296*x^22 - 3699*x^21 + 5184*x^20 + 1737*x^19 - 28278*x^18 + 81630*x^17 - 152073*x^16 + 206037*x^15 - 206640*x^14 + 143748*x^13 - 36954*x^12 - 70929*x^11 + 125325*x^10 - 106329*x^9 + 53154*x^8 - 10548*x^7 - 9594*x^6 + 13185*x^5 - 9180*x^4 + 4068*x^3 - 1053*x^2 - 207*x + 163);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^26 + 36*x^25 - 54*x^24 - 180*x^23 + 1296*x^22 - 3699*x^21 + 5184*x^20 + 1737*x^19 - 28278*x^18 + 81630*x^17 - 152073*x^16 + 206037*x^15 - 206640*x^14 + 143748*x^13 - 36954*x^12 - 70929*x^11 + 125325*x^10 - 106329*x^9 + 53154*x^8 - 10548*x^7 - 9594*x^6 + 13185*x^5 - 9180*x^4 + 4068*x^3 - 1053*x^2 - 207*x + 163)
 

\( x^{27} - 9 x^{26} + 36 x^{25} - 54 x^{24} - 180 x^{23} + 1296 x^{22} - 3699 x^{21} + 5184 x^{20} + \cdots + 163 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[9, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-17717054310925604811052271173453197606912\) \(\medspace = -\,2^{18}\cdot 3^{73}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.95\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{49/18}\approx 31.5876084551639$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Aut(K/\Q) }$:  $9$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{163}a^{25}+\frac{29}{163}a^{24}+\frac{13}{163}a^{23}-\frac{74}{163}a^{22}-\frac{13}{163}a^{21}-\frac{56}{163}a^{20}-\frac{4}{163}a^{19}+\frac{61}{163}a^{18}+\frac{79}{163}a^{17}-\frac{13}{163}a^{16}-\frac{78}{163}a^{15}-\frac{69}{163}a^{14}+\frac{47}{163}a^{13}+\frac{74}{163}a^{12}-\frac{40}{163}a^{11}+\frac{37}{163}a^{10}-\frac{73}{163}a^{9}+\frac{78}{163}a^{8}-\frac{50}{163}a^{7}+\frac{16}{163}a^{6}+\frac{18}{163}a^{5}-\frac{15}{163}a^{4}+\frac{26}{163}a^{3}+\frac{44}{163}a^{2}-\frac{38}{163}a$, $\frac{1}{15\!\cdots\!37}a^{26}-\frac{12\!\cdots\!47}{15\!\cdots\!37}a^{25}-\frac{56\!\cdots\!18}{15\!\cdots\!37}a^{24}+\frac{68\!\cdots\!99}{15\!\cdots\!37}a^{23}+\frac{15\!\cdots\!40}{15\!\cdots\!37}a^{22}+\frac{44\!\cdots\!39}{15\!\cdots\!37}a^{21}+\frac{51\!\cdots\!67}{15\!\cdots\!37}a^{20}-\frac{20\!\cdots\!53}{15\!\cdots\!37}a^{19}-\frac{23\!\cdots\!78}{15\!\cdots\!37}a^{18}+\frac{72\!\cdots\!57}{15\!\cdots\!37}a^{17}-\frac{19\!\cdots\!88}{15\!\cdots\!37}a^{16}-\frac{32\!\cdots\!04}{15\!\cdots\!37}a^{15}-\frac{10\!\cdots\!95}{15\!\cdots\!37}a^{14}-\frac{57\!\cdots\!32}{15\!\cdots\!37}a^{13}+\frac{56\!\cdots\!97}{15\!\cdots\!37}a^{12}-\frac{71\!\cdots\!47}{15\!\cdots\!37}a^{11}+\frac{67\!\cdots\!40}{15\!\cdots\!37}a^{10}+\frac{28\!\cdots\!34}{15\!\cdots\!37}a^{9}+\frac{36\!\cdots\!49}{15\!\cdots\!37}a^{8}+\frac{12\!\cdots\!12}{15\!\cdots\!37}a^{7}+\frac{66\!\cdots\!82}{15\!\cdots\!37}a^{6}+\frac{19\!\cdots\!19}{15\!\cdots\!37}a^{5}-\frac{50\!\cdots\!66}{15\!\cdots\!37}a^{4}-\frac{15\!\cdots\!16}{15\!\cdots\!37}a^{3}-\frac{73\!\cdots\!51}{15\!\cdots\!37}a^{2}+\frac{50\!\cdots\!70}{15\!\cdots\!37}a+\frac{12\!\cdots\!04}{93\!\cdots\!99}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{58\!\cdots\!37}{97\!\cdots\!71}a^{26}-\frac{48\!\cdots\!39}{97\!\cdots\!71}a^{25}+\frac{17\!\cdots\!14}{97\!\cdots\!71}a^{24}-\frac{17\!\cdots\!42}{97\!\cdots\!71}a^{23}-\frac{12\!\cdots\!13}{97\!\cdots\!71}a^{22}+\frac{66\!\cdots\!90}{97\!\cdots\!71}a^{21}-\frac{16\!\cdots\!10}{97\!\cdots\!71}a^{20}+\frac{17\!\cdots\!04}{97\!\cdots\!71}a^{19}+\frac{24\!\cdots\!54}{97\!\cdots\!71}a^{18}-\frac{14\!\cdots\!53}{97\!\cdots\!71}a^{17}+\frac{36\!\cdots\!10}{97\!\cdots\!71}a^{16}-\frac{60\!\cdots\!70}{97\!\cdots\!71}a^{15}+\frac{72\!\cdots\!21}{97\!\cdots\!71}a^{14}-\frac{63\!\cdots\!73}{97\!\cdots\!71}a^{13}+\frac{35\!\cdots\!02}{97\!\cdots\!71}a^{12}+\frac{29\!\cdots\!67}{97\!\cdots\!71}a^{11}-\frac{35\!\cdots\!21}{97\!\cdots\!71}a^{10}+\frac{41\!\cdots\!59}{97\!\cdots\!71}a^{9}-\frac{27\!\cdots\!36}{97\!\cdots\!71}a^{8}+\frac{10\!\cdots\!58}{97\!\cdots\!71}a^{7}-\frac{28\!\cdots\!66}{97\!\cdots\!71}a^{6}-\frac{40\!\cdots\!95}{97\!\cdots\!71}a^{5}+\frac{36\!\cdots\!17}{97\!\cdots\!71}a^{4}-\frac{21\!\cdots\!24}{97\!\cdots\!71}a^{3}+\frac{87\!\cdots\!63}{97\!\cdots\!71}a^{2}-\frac{80\!\cdots\!46}{97\!\cdots\!71}a-\frac{11\!\cdots\!71}{59\!\cdots\!17}$, $\frac{83\!\cdots\!56}{97\!\cdots\!71}a^{26}-\frac{58\!\cdots\!47}{97\!\cdots\!71}a^{25}+\frac{15\!\cdots\!08}{97\!\cdots\!71}a^{24}+\frac{10\!\cdots\!92}{97\!\cdots\!71}a^{23}-\frac{22\!\cdots\!36}{97\!\cdots\!71}a^{22}+\frac{75\!\cdots\!25}{97\!\cdots\!71}a^{21}-\frac{10\!\cdots\!58}{97\!\cdots\!71}a^{20}-\frac{12\!\cdots\!97}{97\!\cdots\!71}a^{19}+\frac{82\!\cdots\!66}{97\!\cdots\!71}a^{18}-\frac{18\!\cdots\!58}{97\!\cdots\!71}a^{17}+\frac{22\!\cdots\!56}{97\!\cdots\!71}a^{16}-\frac{52\!\cdots\!15}{97\!\cdots\!71}a^{15}-\frac{42\!\cdots\!21}{97\!\cdots\!71}a^{14}+\frac{10\!\cdots\!71}{97\!\cdots\!71}a^{13}-\frac{13\!\cdots\!96}{97\!\cdots\!71}a^{12}+\frac{13\!\cdots\!29}{97\!\cdots\!71}a^{11}-\frac{79\!\cdots\!29}{97\!\cdots\!71}a^{10}-\frac{54\!\cdots\!82}{97\!\cdots\!71}a^{9}+\frac{68\!\cdots\!16}{97\!\cdots\!71}a^{8}-\frac{69\!\cdots\!06}{97\!\cdots\!71}a^{7}+\frac{40\!\cdots\!97}{97\!\cdots\!71}a^{6}-\frac{15\!\cdots\!00}{97\!\cdots\!71}a^{5}-\frac{17\!\cdots\!64}{97\!\cdots\!71}a^{4}+\frac{66\!\cdots\!13}{97\!\cdots\!71}a^{3}-\frac{54\!\cdots\!49}{97\!\cdots\!71}a^{2}+\frac{32\!\cdots\!42}{97\!\cdots\!71}a-\frac{29\!\cdots\!75}{59\!\cdots\!17}$, $\frac{11\!\cdots\!53}{15\!\cdots\!37}a^{26}-\frac{11\!\cdots\!59}{15\!\cdots\!37}a^{25}+\frac{50\!\cdots\!21}{15\!\cdots\!37}a^{24}-\frac{89\!\cdots\!50}{15\!\cdots\!37}a^{23}-\frac{20\!\cdots\!03}{15\!\cdots\!37}a^{22}+\frac{17\!\cdots\!82}{15\!\cdots\!37}a^{21}-\frac{54\!\cdots\!64}{15\!\cdots\!37}a^{20}+\frac{82\!\cdots\!62}{15\!\cdots\!37}a^{19}+\frac{56\!\cdots\!70}{15\!\cdots\!37}a^{18}-\frac{38\!\cdots\!63}{15\!\cdots\!37}a^{17}+\frac{11\!\cdots\!40}{15\!\cdots\!37}a^{16}-\frac{22\!\cdots\!68}{15\!\cdots\!37}a^{15}+\frac{31\!\cdots\!93}{15\!\cdots\!37}a^{14}-\frac{33\!\cdots\!85}{15\!\cdots\!37}a^{13}+\frac{26\!\cdots\!84}{15\!\cdots\!37}a^{12}-\frac{11\!\cdots\!93}{15\!\cdots\!37}a^{11}-\frac{56\!\cdots\!49}{15\!\cdots\!37}a^{10}+\frac{15\!\cdots\!91}{15\!\cdots\!37}a^{9}-\frac{15\!\cdots\!56}{15\!\cdots\!37}a^{8}+\frac{94\!\cdots\!82}{15\!\cdots\!37}a^{7}-\frac{41\!\cdots\!86}{15\!\cdots\!37}a^{6}+\frac{46\!\cdots\!13}{15\!\cdots\!37}a^{5}+\frac{84\!\cdots\!62}{15\!\cdots\!37}a^{4}-\frac{10\!\cdots\!82}{15\!\cdots\!37}a^{3}+\frac{55\!\cdots\!31}{15\!\cdots\!37}a^{2}-\frac{21\!\cdots\!68}{15\!\cdots\!37}a+\frac{10\!\cdots\!53}{93\!\cdots\!99}$, $\frac{62\!\cdots\!70}{15\!\cdots\!37}a^{26}-\frac{55\!\cdots\!32}{15\!\cdots\!37}a^{25}+\frac{21\!\cdots\!94}{15\!\cdots\!37}a^{24}-\frac{29\!\cdots\!58}{15\!\cdots\!37}a^{23}-\frac{12\!\cdots\!26}{15\!\cdots\!37}a^{22}+\frac{80\!\cdots\!36}{15\!\cdots\!37}a^{21}-\frac{21\!\cdots\!77}{15\!\cdots\!37}a^{20}+\frac{27\!\cdots\!50}{15\!\cdots\!37}a^{19}+\frac{19\!\cdots\!64}{15\!\cdots\!37}a^{18}-\frac{17\!\cdots\!84}{15\!\cdots\!37}a^{17}+\frac{47\!\cdots\!60}{15\!\cdots\!37}a^{16}-\frac{84\!\cdots\!02}{15\!\cdots\!37}a^{15}+\frac{10\!\cdots\!80}{15\!\cdots\!37}a^{14}-\frac{99\!\cdots\!52}{15\!\cdots\!37}a^{13}+\frac{60\!\cdots\!55}{15\!\cdots\!37}a^{12}-\frac{47\!\cdots\!92}{15\!\cdots\!37}a^{11}-\frac{46\!\cdots\!70}{15\!\cdots\!37}a^{10}+\frac{64\!\cdots\!82}{15\!\cdots\!37}a^{9}-\frac{45\!\cdots\!32}{15\!\cdots\!37}a^{8}+\frac{18\!\cdots\!54}{15\!\cdots\!37}a^{7}-\frac{26\!\cdots\!42}{15\!\cdots\!37}a^{6}-\frac{42\!\cdots\!32}{15\!\cdots\!37}a^{5}+\frac{56\!\cdots\!88}{15\!\cdots\!37}a^{4}-\frac{39\!\cdots\!54}{15\!\cdots\!37}a^{3}+\frac{14\!\cdots\!38}{15\!\cdots\!37}a^{2}-\frac{36\!\cdots\!66}{15\!\cdots\!37}a-\frac{59\!\cdots\!12}{93\!\cdots\!99}$, $\frac{11\!\cdots\!18}{15\!\cdots\!37}a^{26}-\frac{91\!\cdots\!47}{15\!\cdots\!37}a^{25}+\frac{33\!\cdots\!51}{15\!\cdots\!37}a^{24}-\frac{33\!\cdots\!50}{15\!\cdots\!37}a^{23}-\frac{23\!\cdots\!60}{15\!\cdots\!37}a^{22}+\frac{12\!\cdots\!45}{15\!\cdots\!37}a^{21}-\frac{31\!\cdots\!57}{15\!\cdots\!37}a^{20}+\frac{31\!\cdots\!47}{15\!\cdots\!37}a^{19}+\frac{50\!\cdots\!22}{15\!\cdots\!37}a^{18}-\frac{28\!\cdots\!16}{15\!\cdots\!37}a^{17}+\frac{68\!\cdots\!04}{15\!\cdots\!37}a^{16}-\frac{11\!\cdots\!59}{15\!\cdots\!37}a^{15}+\frac{12\!\cdots\!19}{15\!\cdots\!37}a^{14}-\frac{10\!\cdots\!49}{15\!\cdots\!37}a^{13}+\frac{46\!\cdots\!51}{15\!\cdots\!37}a^{12}+\frac{24\!\cdots\!97}{15\!\cdots\!37}a^{11}-\frac{77\!\cdots\!43}{15\!\cdots\!37}a^{10}+\frac{79\!\cdots\!60}{15\!\cdots\!37}a^{9}-\frac{40\!\cdots\!63}{15\!\cdots\!37}a^{8}+\frac{63\!\cdots\!12}{15\!\cdots\!37}a^{7}+\frac{67\!\cdots\!55}{15\!\cdots\!37}a^{6}-\frac{92\!\cdots\!24}{15\!\cdots\!37}a^{5}+\frac{68\!\cdots\!07}{15\!\cdots\!37}a^{4}-\frac{33\!\cdots\!27}{15\!\cdots\!37}a^{3}+\frac{52\!\cdots\!77}{15\!\cdots\!37}a^{2}+\frac{33\!\cdots\!38}{15\!\cdots\!37}a-\frac{22\!\cdots\!84}{93\!\cdots\!99}$, $\frac{74\!\cdots\!60}{15\!\cdots\!37}a^{26}-\frac{62\!\cdots\!74}{15\!\cdots\!37}a^{25}+\frac{22\!\cdots\!01}{15\!\cdots\!37}a^{24}-\frac{25\!\cdots\!42}{15\!\cdots\!37}a^{23}-\frac{15\!\cdots\!68}{15\!\cdots\!37}a^{22}+\frac{87\!\cdots\!72}{15\!\cdots\!37}a^{21}-\frac{22\!\cdots\!97}{15\!\cdots\!37}a^{20}+\frac{23\!\cdots\!22}{15\!\cdots\!37}a^{19}+\frac{31\!\cdots\!32}{15\!\cdots\!37}a^{18}-\frac{19\!\cdots\!38}{15\!\cdots\!37}a^{17}+\frac{48\!\cdots\!11}{15\!\cdots\!37}a^{16}-\frac{80\!\cdots\!76}{15\!\cdots\!37}a^{15}+\frac{95\!\cdots\!94}{15\!\cdots\!37}a^{14}-\frac{80\!\cdots\!32}{15\!\cdots\!37}a^{13}+\frac{40\!\cdots\!04}{15\!\cdots\!37}a^{12}+\frac{11\!\cdots\!10}{15\!\cdots\!37}a^{11}-\frac{53\!\cdots\!28}{15\!\cdots\!37}a^{10}+\frac{59\!\cdots\!54}{15\!\cdots\!37}a^{9}-\frac{34\!\cdots\!16}{15\!\cdots\!37}a^{8}+\frac{91\!\cdots\!68}{15\!\cdots\!37}a^{7}+\frac{28\!\cdots\!74}{15\!\cdots\!37}a^{6}-\frac{67\!\cdots\!00}{15\!\cdots\!37}a^{5}+\frac{55\!\cdots\!88}{15\!\cdots\!37}a^{4}-\frac{32\!\cdots\!86}{15\!\cdots\!37}a^{3}+\frac{94\!\cdots\!58}{15\!\cdots\!37}a^{2}-\frac{17\!\cdots\!88}{15\!\cdots\!37}a-\frac{17\!\cdots\!81}{93\!\cdots\!99}$, $\frac{16\!\cdots\!32}{15\!\cdots\!37}a^{26}-\frac{14\!\cdots\!30}{15\!\cdots\!37}a^{25}+\frac{59\!\cdots\!30}{15\!\cdots\!37}a^{24}-\frac{90\!\cdots\!00}{15\!\cdots\!37}a^{23}-\frac{30\!\cdots\!80}{15\!\cdots\!37}a^{22}+\frac{21\!\cdots\!94}{15\!\cdots\!37}a^{21}-\frac{61\!\cdots\!44}{15\!\cdots\!37}a^{20}+\frac{84\!\cdots\!66}{15\!\cdots\!37}a^{19}+\frac{37\!\cdots\!00}{15\!\cdots\!37}a^{18}-\frac{49\!\cdots\!24}{15\!\cdots\!37}a^{17}+\frac{13\!\cdots\!69}{15\!\cdots\!37}a^{16}-\frac{24\!\cdots\!32}{15\!\cdots\!37}a^{15}+\frac{32\!\cdots\!06}{15\!\cdots\!37}a^{14}-\frac{30\!\cdots\!52}{15\!\cdots\!37}a^{13}+\frac{18\!\cdots\!95}{15\!\cdots\!37}a^{12}-\frac{27\!\cdots\!78}{15\!\cdots\!37}a^{11}-\frac{11\!\cdots\!34}{15\!\cdots\!37}a^{10}+\frac{18\!\cdots\!54}{15\!\cdots\!37}a^{9}-\frac{12\!\cdots\!83}{15\!\cdots\!37}a^{8}+\frac{36\!\cdots\!70}{15\!\cdots\!37}a^{7}-\frac{21\!\cdots\!66}{15\!\cdots\!37}a^{6}-\frac{42\!\cdots\!46}{15\!\cdots\!37}a^{5}+\frac{14\!\cdots\!62}{15\!\cdots\!37}a^{4}-\frac{93\!\cdots\!58}{15\!\cdots\!37}a^{3}+\frac{11\!\cdots\!96}{15\!\cdots\!37}a^{2}-\frac{33\!\cdots\!58}{15\!\cdots\!37}a-\frac{36\!\cdots\!91}{93\!\cdots\!99}$, $\frac{97\!\cdots\!88}{15\!\cdots\!37}a^{26}-\frac{81\!\cdots\!62}{15\!\cdots\!37}a^{25}+\frac{29\!\cdots\!41}{15\!\cdots\!37}a^{24}-\frac{33\!\cdots\!28}{15\!\cdots\!37}a^{23}-\frac{19\!\cdots\!66}{15\!\cdots\!37}a^{22}+\frac{11\!\cdots\!90}{15\!\cdots\!37}a^{21}-\frac{28\!\cdots\!64}{15\!\cdots\!37}a^{20}+\frac{32\!\cdots\!88}{15\!\cdots\!37}a^{19}+\frac{35\!\cdots\!20}{15\!\cdots\!37}a^{18}-\frac{24\!\cdots\!70}{15\!\cdots\!37}a^{17}+\frac{63\!\cdots\!48}{15\!\cdots\!37}a^{16}-\frac{10\!\cdots\!10}{15\!\cdots\!37}a^{15}+\frac{13\!\cdots\!50}{15\!\cdots\!37}a^{14}-\frac{12\!\cdots\!08}{15\!\cdots\!37}a^{13}+\frac{71\!\cdots\!69}{15\!\cdots\!37}a^{12}-\frac{11\!\cdots\!54}{15\!\cdots\!37}a^{11}-\frac{62\!\cdots\!10}{15\!\cdots\!37}a^{10}+\frac{81\!\cdots\!42}{15\!\cdots\!37}a^{9}-\frac{56\!\cdots\!59}{15\!\cdots\!37}a^{8}+\frac{24\!\cdots\!74}{15\!\cdots\!37}a^{7}-\frac{24\!\cdots\!70}{15\!\cdots\!37}a^{6}-\frac{72\!\cdots\!86}{15\!\cdots\!37}a^{5}+\frac{78\!\cdots\!51}{15\!\cdots\!37}a^{4}-\frac{51\!\cdots\!20}{15\!\cdots\!37}a^{3}+\frac{22\!\cdots\!68}{15\!\cdots\!37}a^{2}-\frac{50\!\cdots\!52}{15\!\cdots\!37}a-\frac{10\!\cdots\!10}{93\!\cdots\!99}$, $\frac{24\!\cdots\!39}{15\!\cdots\!37}a^{26}-\frac{17\!\cdots\!87}{15\!\cdots\!37}a^{25}+\frac{53\!\cdots\!69}{15\!\cdots\!37}a^{24}-\frac{10\!\cdots\!03}{15\!\cdots\!37}a^{23}-\frac{56\!\cdots\!16}{15\!\cdots\!37}a^{22}+\frac{23\!\cdots\!03}{15\!\cdots\!37}a^{21}-\frac{43\!\cdots\!15}{15\!\cdots\!37}a^{20}+\frac{99\!\cdots\!52}{15\!\cdots\!37}a^{19}+\frac{16\!\cdots\!48}{15\!\cdots\!37}a^{18}-\frac{52\!\cdots\!58}{15\!\cdots\!37}a^{17}+\frac{95\!\cdots\!03}{15\!\cdots\!37}a^{16}-\frac{11\!\cdots\!98}{15\!\cdots\!37}a^{15}+\frac{65\!\cdots\!15}{15\!\cdots\!37}a^{14}+\frac{31\!\cdots\!40}{15\!\cdots\!37}a^{13}-\frac{12\!\cdots\!12}{15\!\cdots\!37}a^{12}+\frac{17\!\cdots\!00}{15\!\cdots\!37}a^{11}-\frac{15\!\cdots\!15}{15\!\cdots\!37}a^{10}+\frac{49\!\cdots\!98}{15\!\cdots\!37}a^{9}+\frac{54\!\cdots\!58}{15\!\cdots\!37}a^{8}-\frac{75\!\cdots\!79}{15\!\cdots\!37}a^{7}+\frac{42\!\cdots\!03}{15\!\cdots\!37}a^{6}-\frac{12\!\cdots\!46}{15\!\cdots\!37}a^{5}+\frac{27\!\cdots\!97}{15\!\cdots\!37}a^{4}+\frac{10\!\cdots\!77}{15\!\cdots\!37}a^{3}-\frac{37\!\cdots\!79}{15\!\cdots\!37}a^{2}+\frac{13\!\cdots\!18}{15\!\cdots\!37}a-\frac{18\!\cdots\!81}{93\!\cdots\!99}$, $\frac{33\!\cdots\!89}{15\!\cdots\!37}a^{26}-\frac{28\!\cdots\!55}{15\!\cdots\!37}a^{25}+\frac{10\!\cdots\!79}{15\!\cdots\!37}a^{24}-\frac{12\!\cdots\!53}{15\!\cdots\!37}a^{23}-\frac{67\!\cdots\!71}{15\!\cdots\!37}a^{22}+\frac{39\!\cdots\!67}{15\!\cdots\!37}a^{21}-\frac{10\!\cdots\!46}{15\!\cdots\!37}a^{20}+\frac{11\!\cdots\!02}{15\!\cdots\!37}a^{19}+\frac{12\!\cdots\!80}{15\!\cdots\!37}a^{18}-\frac{88\!\cdots\!12}{15\!\cdots\!37}a^{17}+\frac{22\!\cdots\!47}{15\!\cdots\!37}a^{16}-\frac{38\!\cdots\!17}{15\!\cdots\!37}a^{15}+\frac{47\!\cdots\!14}{15\!\cdots\!37}a^{14}-\frac{42\!\cdots\!12}{15\!\cdots\!37}a^{13}+\frac{24\!\cdots\!53}{15\!\cdots\!37}a^{12}+\frac{12\!\cdots\!77}{15\!\cdots\!37}a^{11}-\frac{23\!\cdots\!53}{15\!\cdots\!37}a^{10}+\frac{29\!\cdots\!33}{15\!\cdots\!37}a^{9}-\frac{19\!\cdots\!03}{15\!\cdots\!37}a^{8}+\frac{71\!\cdots\!17}{15\!\cdots\!37}a^{7}+\frac{38\!\cdots\!62}{15\!\cdots\!37}a^{6}-\frac{30\!\cdots\!38}{15\!\cdots\!37}a^{5}+\frac{27\!\cdots\!06}{15\!\cdots\!37}a^{4}-\frac{15\!\cdots\!39}{15\!\cdots\!37}a^{3}+\frac{52\!\cdots\!60}{15\!\cdots\!37}a^{2}-\frac{79\!\cdots\!81}{15\!\cdots\!37}a-\frac{61\!\cdots\!43}{93\!\cdots\!99}$, $\frac{63\!\cdots\!65}{15\!\cdots\!37}a^{26}-\frac{54\!\cdots\!97}{15\!\cdots\!37}a^{25}+\frac{20\!\cdots\!09}{15\!\cdots\!37}a^{24}-\frac{23\!\cdots\!65}{15\!\cdots\!37}a^{23}-\frac{13\!\cdots\!98}{15\!\cdots\!37}a^{22}+\frac{77\!\cdots\!46}{15\!\cdots\!37}a^{21}-\frac{19\!\cdots\!89}{15\!\cdots\!37}a^{20}+\frac{21\!\cdots\!39}{15\!\cdots\!37}a^{19}+\frac{26\!\cdots\!10}{15\!\cdots\!37}a^{18}-\frac{17\!\cdots\!65}{15\!\cdots\!37}a^{17}+\frac{42\!\cdots\!54}{15\!\cdots\!37}a^{16}-\frac{71\!\cdots\!17}{15\!\cdots\!37}a^{15}+\frac{85\!\cdots\!31}{15\!\cdots\!37}a^{14}-\frac{73\!\cdots\!37}{15\!\cdots\!37}a^{13}+\frac{39\!\cdots\!46}{15\!\cdots\!37}a^{12}+\frac{58\!\cdots\!59}{15\!\cdots\!37}a^{11}-\frac{42\!\cdots\!12}{15\!\cdots\!37}a^{10}+\frac{48\!\cdots\!22}{15\!\cdots\!37}a^{9}-\frac{27\!\cdots\!62}{15\!\cdots\!37}a^{8}+\frac{77\!\cdots\!88}{15\!\cdots\!37}a^{7}+\frac{93\!\cdots\!52}{15\!\cdots\!37}a^{6}-\frac{47\!\cdots\!79}{15\!\cdots\!37}a^{5}+\frac{33\!\cdots\!78}{15\!\cdots\!37}a^{4}-\frac{14\!\cdots\!45}{15\!\cdots\!37}a^{3}+\frac{53\!\cdots\!91}{15\!\cdots\!37}a^{2}+\frac{26\!\cdots\!55}{15\!\cdots\!37}a-\frac{65\!\cdots\!51}{93\!\cdots\!99}$, $\frac{19\!\cdots\!80}{15\!\cdots\!37}a^{26}-\frac{15\!\cdots\!54}{15\!\cdots\!37}a^{25}+\frac{47\!\cdots\!69}{15\!\cdots\!37}a^{24}-\frac{10\!\cdots\!32}{15\!\cdots\!37}a^{23}-\frac{50\!\cdots\!34}{15\!\cdots\!37}a^{22}+\frac{20\!\cdots\!99}{15\!\cdots\!37}a^{21}-\frac{37\!\cdots\!31}{15\!\cdots\!37}a^{20}-\frac{30\!\cdots\!49}{15\!\cdots\!37}a^{19}+\frac{17\!\cdots\!79}{15\!\cdots\!37}a^{18}-\frac{48\!\cdots\!21}{15\!\cdots\!37}a^{17}+\frac{77\!\cdots\!89}{15\!\cdots\!37}a^{16}-\frac{73\!\cdots\!95}{15\!\cdots\!37}a^{15}+\frac{56\!\cdots\!77}{15\!\cdots\!37}a^{14}+\frac{93\!\cdots\!66}{15\!\cdots\!37}a^{13}-\frac{14\!\cdots\!25}{15\!\cdots\!37}a^{12}+\frac{14\!\cdots\!60}{15\!\cdots\!37}a^{11}-\frac{76\!\cdots\!87}{15\!\cdots\!37}a^{10}-\frac{47\!\cdots\!68}{15\!\cdots\!37}a^{9}+\frac{13\!\cdots\!38}{15\!\cdots\!37}a^{8}-\frac{87\!\cdots\!76}{15\!\cdots\!37}a^{7}+\frac{11\!\cdots\!59}{15\!\cdots\!37}a^{6}+\frac{13\!\cdots\!18}{15\!\cdots\!37}a^{5}-\frac{97\!\cdots\!33}{15\!\cdots\!37}a^{4}+\frac{15\!\cdots\!32}{15\!\cdots\!37}a^{3}-\frac{70\!\cdots\!74}{15\!\cdots\!37}a^{2}-\frac{79\!\cdots\!98}{15\!\cdots\!37}a+\frac{11\!\cdots\!74}{93\!\cdots\!99}$, $\frac{98\!\cdots\!35}{15\!\cdots\!37}a^{26}-\frac{87\!\cdots\!37}{15\!\cdots\!37}a^{25}+\frac{34\!\cdots\!33}{15\!\cdots\!37}a^{24}-\frac{45\!\cdots\!46}{15\!\cdots\!37}a^{23}-\frac{19\!\cdots\!52}{15\!\cdots\!37}a^{22}+\frac{12\!\cdots\!34}{15\!\cdots\!37}a^{21}-\frac{33\!\cdots\!18}{15\!\cdots\!37}a^{20}+\frac{41\!\cdots\!40}{15\!\cdots\!37}a^{19}+\frac{36\!\cdots\!63}{15\!\cdots\!37}a^{18}-\frac{28\!\cdots\!71}{15\!\cdots\!37}a^{17}+\frac{74\!\cdots\!50}{15\!\cdots\!37}a^{16}-\frac{12\!\cdots\!88}{15\!\cdots\!37}a^{15}+\frac{15\!\cdots\!56}{15\!\cdots\!37}a^{14}-\frac{13\!\cdots\!31}{15\!\cdots\!37}a^{13}+\frac{69\!\cdots\!59}{15\!\cdots\!37}a^{12}+\frac{16\!\cdots\!17}{15\!\cdots\!37}a^{11}-\frac{88\!\cdots\!73}{15\!\cdots\!37}a^{10}+\frac{10\!\cdots\!74}{15\!\cdots\!37}a^{9}-\frac{59\!\cdots\!68}{15\!\cdots\!37}a^{8}+\frac{13\!\cdots\!78}{15\!\cdots\!37}a^{7}+\frac{71\!\cdots\!43}{15\!\cdots\!37}a^{6}-\frac{13\!\cdots\!14}{15\!\cdots\!37}a^{5}+\frac{10\!\cdots\!83}{15\!\cdots\!37}a^{4}-\frac{36\!\cdots\!34}{15\!\cdots\!37}a^{3}+\frac{56\!\cdots\!12}{93\!\cdots\!99}a^{2}+\frac{56\!\cdots\!87}{15\!\cdots\!37}a-\frac{27\!\cdots\!72}{93\!\cdots\!99}$, $\frac{19\!\cdots\!22}{15\!\cdots\!37}a^{26}-\frac{19\!\cdots\!01}{15\!\cdots\!37}a^{25}+\frac{95\!\cdots\!61}{15\!\cdots\!37}a^{24}-\frac{21\!\cdots\!30}{15\!\cdots\!37}a^{23}-\frac{13\!\cdots\!31}{15\!\cdots\!37}a^{22}+\frac{29\!\cdots\!86}{15\!\cdots\!37}a^{21}-\frac{11\!\cdots\!11}{15\!\cdots\!37}a^{20}+\frac{22\!\cdots\!97}{15\!\cdots\!37}a^{19}-\frac{15\!\cdots\!70}{15\!\cdots\!37}a^{18}-\frac{57\!\cdots\!82}{15\!\cdots\!37}a^{17}+\frac{25\!\cdots\!72}{15\!\cdots\!37}a^{16}-\frac{56\!\cdots\!38}{15\!\cdots\!37}a^{15}+\frac{91\!\cdots\!84}{15\!\cdots\!37}a^{14}-\frac{10\!\cdots\!01}{15\!\cdots\!37}a^{13}+\frac{92\!\cdots\!33}{15\!\cdots\!37}a^{12}-\frac{46\!\cdots\!38}{15\!\cdots\!37}a^{11}-\frac{10\!\cdots\!25}{15\!\cdots\!37}a^{10}+\frac{56\!\cdots\!93}{15\!\cdots\!37}a^{9}-\frac{66\!\cdots\!36}{15\!\cdots\!37}a^{8}+\frac{42\!\cdots\!67}{15\!\cdots\!37}a^{7}-\frac{11\!\cdots\!33}{15\!\cdots\!37}a^{6}-\frac{40\!\cdots\!88}{15\!\cdots\!37}a^{5}+\frac{72\!\cdots\!92}{15\!\cdots\!37}a^{4}-\frac{64\!\cdots\!82}{15\!\cdots\!37}a^{3}+\frac{30\!\cdots\!51}{15\!\cdots\!37}a^{2}-\frac{11\!\cdots\!42}{15\!\cdots\!37}a-\frac{16\!\cdots\!93}{93\!\cdots\!99}$, $\frac{42\!\cdots\!85}{15\!\cdots\!37}a^{26}-\frac{33\!\cdots\!97}{15\!\cdots\!37}a^{25}+\frac{11\!\cdots\!84}{15\!\cdots\!37}a^{24}-\frac{10\!\cdots\!85}{15\!\cdots\!37}a^{23}-\frac{89\!\cdots\!61}{15\!\cdots\!37}a^{22}+\frac{46\!\cdots\!29}{15\!\cdots\!37}a^{21}-\frac{10\!\cdots\!18}{15\!\cdots\!37}a^{20}+\frac{99\!\cdots\!72}{15\!\cdots\!37}a^{19}+\frac{21\!\cdots\!86}{15\!\cdots\!37}a^{18}-\frac{10\!\cdots\!38}{15\!\cdots\!37}a^{17}+\frac{24\!\cdots\!89}{15\!\cdots\!37}a^{16}-\frac{37\!\cdots\!05}{15\!\cdots\!37}a^{15}+\frac{40\!\cdots\!10}{15\!\cdots\!37}a^{14}-\frac{29\!\cdots\!62}{15\!\cdots\!37}a^{13}+\frac{74\!\cdots\!02}{15\!\cdots\!37}a^{12}+\frac{15\!\cdots\!25}{15\!\cdots\!37}a^{11}-\frac{30\!\cdots\!33}{15\!\cdots\!37}a^{10}+\frac{25\!\cdots\!62}{15\!\cdots\!37}a^{9}-\frac{87\!\cdots\!54}{15\!\cdots\!37}a^{8}-\frac{30\!\cdots\!04}{15\!\cdots\!37}a^{7}+\frac{52\!\cdots\!21}{15\!\cdots\!37}a^{6}-\frac{36\!\cdots\!20}{15\!\cdots\!37}a^{5}+\frac{16\!\cdots\!33}{15\!\cdots\!37}a^{4}-\frac{30\!\cdots\!10}{15\!\cdots\!37}a^{3}+\frac{20\!\cdots\!93}{15\!\cdots\!37}a^{2}+\frac{29\!\cdots\!20}{15\!\cdots\!37}a-\frac{67\!\cdots\!84}{93\!\cdots\!99}$, $\frac{19\!\cdots\!76}{15\!\cdots\!37}a^{26}-\frac{21\!\cdots\!48}{15\!\cdots\!37}a^{25}+\frac{96\!\cdots\!91}{15\!\cdots\!37}a^{24}-\frac{17\!\cdots\!93}{15\!\cdots\!37}a^{23}-\frac{38\!\cdots\!98}{15\!\cdots\!37}a^{22}+\frac{34\!\cdots\!86}{15\!\cdots\!37}a^{21}-\frac{10\!\cdots\!80}{15\!\cdots\!37}a^{20}+\frac{14\!\cdots\!03}{15\!\cdots\!37}a^{19}+\frac{54\!\cdots\!67}{15\!\cdots\!37}a^{18}-\frac{81\!\cdots\!84}{15\!\cdots\!37}a^{17}+\frac{22\!\cdots\!03}{15\!\cdots\!37}a^{16}-\frac{40\!\cdots\!86}{15\!\cdots\!37}a^{15}+\frac{50\!\cdots\!90}{15\!\cdots\!37}a^{14}-\frac{43\!\cdots\!94}{15\!\cdots\!37}a^{13}+\frac{20\!\cdots\!98}{15\!\cdots\!37}a^{12}+\frac{71\!\cdots\!96}{15\!\cdots\!37}a^{11}-\frac{30\!\cdots\!10}{15\!\cdots\!37}a^{10}+\frac{34\!\cdots\!47}{15\!\cdots\!37}a^{9}-\frac{17\!\cdots\!71}{15\!\cdots\!37}a^{8}-\frac{10\!\cdots\!14}{15\!\cdots\!37}a^{7}+\frac{49\!\cdots\!23}{15\!\cdots\!37}a^{6}-\frac{49\!\cdots\!09}{15\!\cdots\!37}a^{5}+\frac{25\!\cdots\!19}{15\!\cdots\!37}a^{4}-\frac{92\!\cdots\!90}{15\!\cdots\!37}a^{3}-\frac{11\!\cdots\!32}{15\!\cdots\!37}a^{2}+\frac{27\!\cdots\!82}{15\!\cdots\!37}a-\frac{21\!\cdots\!88}{93\!\cdots\!99}$, $\frac{71\!\cdots\!91}{15\!\cdots\!37}a^{26}-\frac{57\!\cdots\!09}{15\!\cdots\!37}a^{25}+\frac{19\!\cdots\!30}{15\!\cdots\!37}a^{24}-\frac{16\!\cdots\!08}{15\!\cdots\!37}a^{23}-\frac{15\!\cdots\!83}{15\!\cdots\!37}a^{22}+\frac{79\!\cdots\!02}{15\!\cdots\!37}a^{21}-\frac{18\!\cdots\!58}{15\!\cdots\!37}a^{20}+\frac{15\!\cdots\!75}{15\!\cdots\!37}a^{19}+\frac{39\!\cdots\!10}{15\!\cdots\!37}a^{18}-\frac{18\!\cdots\!69}{15\!\cdots\!37}a^{17}+\frac{40\!\cdots\!78}{15\!\cdots\!37}a^{16}-\frac{60\!\cdots\!37}{15\!\cdots\!37}a^{15}+\frac{63\!\cdots\!52}{15\!\cdots\!37}a^{14}-\frac{41\!\cdots\!97}{15\!\cdots\!37}a^{13}+\frac{52\!\cdots\!04}{15\!\cdots\!37}a^{12}+\frac{30\!\cdots\!77}{15\!\cdots\!37}a^{11}-\frac{50\!\cdots\!19}{15\!\cdots\!37}a^{10}+\frac{38\!\cdots\!62}{15\!\cdots\!37}a^{9}-\frac{88\!\cdots\!74}{15\!\cdots\!37}a^{8}-\frac{82\!\cdots\!69}{15\!\cdots\!37}a^{7}+\frac{85\!\cdots\!12}{15\!\cdots\!37}a^{6}-\frac{43\!\cdots\!56}{15\!\cdots\!37}a^{5}+\frac{16\!\cdots\!40}{15\!\cdots\!37}a^{4}-\frac{64\!\cdots\!86}{15\!\cdots\!37}a^{3}-\frac{67\!\cdots\!29}{15\!\cdots\!37}a^{2}+\frac{30\!\cdots\!82}{15\!\cdots\!37}a-\frac{19\!\cdots\!58}{93\!\cdots\!99}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 8061331492.668233 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{9}\cdot(2\pi)^{9}\cdot 8061331492.668233 \cdot 1}{2\cdot\sqrt{17717054310925604811052271173453197606912}}\cr\approx \mathstrut & 0.236629999374393 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^26 + 36*x^25 - 54*x^24 - 180*x^23 + 1296*x^22 - 3699*x^21 + 5184*x^20 + 1737*x^19 - 28278*x^18 + 81630*x^17 - 152073*x^16 + 206037*x^15 - 206640*x^14 + 143748*x^13 - 36954*x^12 - 70929*x^11 + 125325*x^10 - 106329*x^9 + 53154*x^8 - 10548*x^7 - 9594*x^6 + 13185*x^5 - 9180*x^4 + 4068*x^3 - 1053*x^2 - 207*x + 163)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 9*x^26 + 36*x^25 - 54*x^24 - 180*x^23 + 1296*x^22 - 3699*x^21 + 5184*x^20 + 1737*x^19 - 28278*x^18 + 81630*x^17 - 152073*x^16 + 206037*x^15 - 206640*x^14 + 143748*x^13 - 36954*x^12 - 70929*x^11 + 125325*x^10 - 106329*x^9 + 53154*x^8 - 10548*x^7 - 9594*x^6 + 13185*x^5 - 9180*x^4 + 4068*x^3 - 1053*x^2 - 207*x + 163, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 9*x^26 + 36*x^25 - 54*x^24 - 180*x^23 + 1296*x^22 - 3699*x^21 + 5184*x^20 + 1737*x^19 - 28278*x^18 + 81630*x^17 - 152073*x^16 + 206037*x^15 - 206640*x^14 + 143748*x^13 - 36954*x^12 - 70929*x^11 + 125325*x^10 - 106329*x^9 + 53154*x^8 - 10548*x^7 - 9594*x^6 + 13185*x^5 - 9180*x^4 + 4068*x^3 - 1053*x^2 - 207*x + 163);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^26 + 36*x^25 - 54*x^24 - 180*x^23 + 1296*x^22 - 3699*x^21 + 5184*x^20 + 1737*x^19 - 28278*x^18 + 81630*x^17 - 152073*x^16 + 206037*x^15 - 206640*x^14 + 143748*x^13 - 36954*x^12 - 70929*x^11 + 125325*x^10 - 106329*x^9 + 53154*x^8 - 10548*x^7 - 9594*x^6 + 13185*x^5 - 9180*x^4 + 4068*x^3 - 1053*x^2 - 207*x + 163);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times C_9$ (as 27T12):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 54
The 27 conjugacy class representatives for $S_3\times C_9$
Character table for $S_3\times C_9$

Intermediate fields

\(\Q(\zeta_{9})^+\), 3.1.972.2, \(\Q(\zeta_{27})^+\), 9.3.74384733888.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Minimal sibling: 18.0.12100864846032214829641728.5

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R $18{,}\,{\href{/padicField/5.9.0.1}{9} }$ ${\href{/padicField/7.9.0.1}{9} }^{3}$ $18{,}\,{\href{/padicField/11.9.0.1}{9} }$ ${\href{/padicField/13.9.0.1}{9} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{3}{,}\,{\href{/padicField/17.3.0.1}{3} }^{3}$ ${\href{/padicField/19.3.0.1}{3} }^{9}$ $18{,}\,{\href{/padicField/23.9.0.1}{9} }$ $18{,}\,{\href{/padicField/29.9.0.1}{9} }$ ${\href{/padicField/31.9.0.1}{9} }^{3}$ ${\href{/padicField/37.3.0.1}{3} }^{9}$ $18{,}\,{\href{/padicField/41.9.0.1}{9} }$ ${\href{/padicField/43.9.0.1}{9} }^{3}$ $18{,}\,{\href{/padicField/47.9.0.1}{9} }$ ${\href{/padicField/53.2.0.1}{2} }^{9}{,}\,{\href{/padicField/53.1.0.1}{1} }^{9}$ $18{,}\,{\href{/padicField/59.9.0.1}{9} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $27$$3$$9$$18$
\(3\) Copy content Toggle raw display Deg $27$$27$$1$$73$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
1.9.6t1.a.a$1$ $ 3^{2}$ \(\Q(\zeta_{9})\) $C_6$ (as 6T1) $0$ $-1$
* 1.9.3t1.a.a$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
1.9.6t1.a.b$1$ $ 3^{2}$ \(\Q(\zeta_{9})\) $C_6$ (as 6T1) $0$ $-1$
* 1.9.3t1.a.b$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
1.27.18t1.a.a$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
1.27.18t1.a.b$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
1.27.18t1.a.c$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
* 1.27.9t1.a.a$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
1.27.18t1.a.d$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
* 1.27.9t1.a.b$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.27.9t1.a.c$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.27.9t1.a.d$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.27.9t1.a.e$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.27.9t1.a.f$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
1.27.18t1.a.e$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
1.27.18t1.a.f$1$ $ 3^{3}$ \(\Q(\zeta_{27})\) $C_{18}$ (as 18T1) $0$ $-1$
* 2.972.3t2.d.a$2$ $ 2^{2} \cdot 3^{5}$ 3.1.972.2 $S_3$ (as 3T2) $1$ $0$
* 2.972.6t5.d.a$2$ $ 2^{2} \cdot 3^{5}$ 6.0.2834352.4 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.972.6t5.d.b$2$ $ 2^{2} \cdot 3^{5}$ 6.0.2834352.4 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.2916.18t16.d.a$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.2 $S_3\times C_9$ (as 27T12) $0$ $0$
* 2.2916.18t16.d.b$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.2 $S_3\times C_9$ (as 27T12) $0$ $0$
* 2.2916.18t16.d.c$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.2 $S_3\times C_9$ (as 27T12) $0$ $0$
* 2.2916.18t16.d.d$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.2 $S_3\times C_9$ (as 27T12) $0$ $0$
* 2.2916.18t16.d.e$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.2 $S_3\times C_9$ (as 27T12) $0$ $0$
* 2.2916.18t16.d.f$2$ $ 2^{2} \cdot 3^{6}$ 27.9.17717054310925604811052271173453197606912.2 $S_3\times C_9$ (as 27T12) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.