Properties

Label 28.2.725...875.1
Degree $28$
Signature $[2, 13]$
Discriminant $-7.259\times 10^{44}$
Root discriminant \(40.01\)
Ramified primes $5,499$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{28}$ (as 28T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 5*x^27 - 3*x^26 + 57*x^25 - 13*x^24 - 420*x^23 + 259*x^22 + 2099*x^21 - 1147*x^20 - 7975*x^19 + 7844*x^18 + 15881*x^17 - 34395*x^16 - 17074*x^15 + 107194*x^14 - 103829*x^13 + 94772*x^12 - 84342*x^11 - 113950*x^10 + 177636*x^9 - 26899*x^8 + 2410*x^7 + 74025*x^6 - 120275*x^5 - 49775*x^4 + 101875*x^3 - 41875*x^2 + 31250*x - 15625)
 
gp: K = bnfinit(y^28 - 5*y^27 - 3*y^26 + 57*y^25 - 13*y^24 - 420*y^23 + 259*y^22 + 2099*y^21 - 1147*y^20 - 7975*y^19 + 7844*y^18 + 15881*y^17 - 34395*y^16 - 17074*y^15 + 107194*y^14 - 103829*y^13 + 94772*y^12 - 84342*y^11 - 113950*y^10 + 177636*y^9 - 26899*y^8 + 2410*y^7 + 74025*y^6 - 120275*y^5 - 49775*y^4 + 101875*y^3 - 41875*y^2 + 31250*y - 15625, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 5*x^27 - 3*x^26 + 57*x^25 - 13*x^24 - 420*x^23 + 259*x^22 + 2099*x^21 - 1147*x^20 - 7975*x^19 + 7844*x^18 + 15881*x^17 - 34395*x^16 - 17074*x^15 + 107194*x^14 - 103829*x^13 + 94772*x^12 - 84342*x^11 - 113950*x^10 + 177636*x^9 - 26899*x^8 + 2410*x^7 + 74025*x^6 - 120275*x^5 - 49775*x^4 + 101875*x^3 - 41875*x^2 + 31250*x - 15625);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 5*x^27 - 3*x^26 + 57*x^25 - 13*x^24 - 420*x^23 + 259*x^22 + 2099*x^21 - 1147*x^20 - 7975*x^19 + 7844*x^18 + 15881*x^17 - 34395*x^16 - 17074*x^15 + 107194*x^14 - 103829*x^13 + 94772*x^12 - 84342*x^11 - 113950*x^10 + 177636*x^9 - 26899*x^8 + 2410*x^7 + 74025*x^6 - 120275*x^5 - 49775*x^4 + 101875*x^3 - 41875*x^2 + 31250*x - 15625)
 

\( x^{28} - 5 x^{27} - 3 x^{26} + 57 x^{25} - 13 x^{24} - 420 x^{23} + 259 x^{22} + 2099 x^{21} + \cdots - 15625 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-725917312055025700242151478457681268310546875\) \(\medspace = -\,5^{14}\cdot 499^{13}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(40.01\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}499^{1/2}\approx 49.949974974968704$
Ramified primes:   \(5\), \(499\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-499}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5}a^{8}+\frac{2}{5}a^{7}-\frac{2}{5}a^{6}-\frac{1}{5}a^{5}-\frac{2}{5}a^{4}+\frac{2}{5}a^{3}+\frac{1}{5}a^{2}$, $\frac{1}{5}a^{9}-\frac{1}{5}a^{7}-\frac{2}{5}a^{6}+\frac{1}{5}a^{4}+\frac{2}{5}a^{3}-\frac{2}{5}a^{2}$, $\frac{1}{5}a^{10}-\frac{2}{5}a^{6}+\frac{1}{5}a^{2}$, $\frac{1}{5}a^{11}-\frac{2}{5}a^{7}+\frac{1}{5}a^{3}$, $\frac{1}{5}a^{12}-\frac{1}{5}a^{7}+\frac{1}{5}a^{6}-\frac{2}{5}a^{5}+\frac{2}{5}a^{4}-\frac{1}{5}a^{3}+\frac{2}{5}a^{2}$, $\frac{1}{5}a^{13}-\frac{2}{5}a^{7}+\frac{1}{5}a^{6}+\frac{1}{5}a^{5}+\frac{2}{5}a^{4}-\frac{1}{5}a^{3}+\frac{1}{5}a^{2}$, $\frac{1}{25}a^{14}+\frac{2}{25}a^{12}+\frac{2}{25}a^{11}+\frac{2}{25}a^{10}+\frac{1}{25}a^{9}-\frac{1}{25}a^{8}+\frac{1}{25}a^{7}+\frac{1}{5}a^{6}-\frac{3}{25}a^{5}-\frac{3}{25}a^{4}-\frac{1}{5}a^{3}-\frac{2}{5}a^{2}$, $\frac{1}{25}a^{15}+\frac{2}{25}a^{13}+\frac{2}{25}a^{12}+\frac{2}{25}a^{11}+\frac{1}{25}a^{10}-\frac{1}{25}a^{9}+\frac{1}{25}a^{8}+\frac{1}{5}a^{7}-\frac{3}{25}a^{6}-\frac{3}{25}a^{5}-\frac{1}{5}a^{4}-\frac{2}{5}a^{3}$, $\frac{1}{25}a^{16}+\frac{2}{25}a^{13}-\frac{2}{25}a^{12}+\frac{2}{25}a^{11}-\frac{1}{25}a^{9}+\frac{2}{25}a^{8}+\frac{12}{25}a^{6}+\frac{6}{25}a^{5}+\frac{6}{25}a^{4}+\frac{1}{5}a^{3}-\frac{1}{5}a^{2}$, $\frac{1}{25}a^{17}-\frac{2}{25}a^{13}-\frac{2}{25}a^{12}+\frac{1}{25}a^{11}+\frac{2}{25}a^{8}+\frac{11}{25}a^{6}+\frac{12}{25}a^{5}+\frac{11}{25}a^{4}+\frac{2}{5}a^{3}$, $\frac{1}{25}a^{18}-\frac{2}{25}a^{13}-\frac{1}{25}a^{11}-\frac{1}{25}a^{10}-\frac{1}{25}a^{9}-\frac{2}{25}a^{8}+\frac{8}{25}a^{7}+\frac{12}{25}a^{6}-\frac{2}{5}a^{5}-\frac{11}{25}a^{4}+\frac{1}{5}a^{3}$, $\frac{1}{125}a^{19}-\frac{2}{125}a^{18}-\frac{1}{125}a^{17}+\frac{2}{125}a^{16}+\frac{1}{125}a^{15}-\frac{1}{125}a^{14}+\frac{7}{125}a^{13}+\frac{6}{125}a^{12}+\frac{8}{125}a^{11}+\frac{9}{125}a^{10}+\frac{3}{125}a^{9}+\frac{9}{125}a^{8}-\frac{8}{125}a^{7}-\frac{29}{125}a^{6}-\frac{7}{125}a^{5}-\frac{3}{25}a^{4}-\frac{1}{5}a^{3}+\frac{2}{5}a^{2}+\frac{2}{5}a$, $\frac{1}{125}a^{20}+\frac{1}{125}a^{15}-\frac{1}{25}a^{12}+\frac{6}{125}a^{10}+\frac{2}{25}a^{9}-\frac{1}{25}a^{8}+\frac{3}{25}a^{7}+\frac{2}{25}a^{6}-\frac{44}{125}a^{5}-\frac{2}{5}a^{4}+\frac{2}{5}a^{3}+\frac{2}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{125}a^{21}+\frac{1}{125}a^{16}-\frac{1}{25}a^{13}+\frac{6}{125}a^{11}+\frac{2}{25}a^{10}-\frac{1}{25}a^{9}-\frac{2}{25}a^{8}-\frac{8}{25}a^{7}+\frac{6}{125}a^{6}-\frac{1}{5}a^{5}-\frac{1}{5}a^{4}-\frac{2}{5}a^{2}$, $\frac{1}{625}a^{22}+\frac{2}{625}a^{21}-\frac{1}{625}a^{20}+\frac{2}{625}a^{19}-\frac{9}{625}a^{18}+\frac{4}{625}a^{17}-\frac{9}{625}a^{16}-\frac{4}{625}a^{15}-\frac{2}{625}a^{14}+\frac{39}{625}a^{13}-\frac{32}{625}a^{12}-\frac{57}{625}a^{11}+\frac{62}{625}a^{10}+\frac{56}{625}a^{9}+\frac{18}{625}a^{8}+\frac{2}{125}a^{7}+\frac{99}{625}a^{6}+\frac{1}{5}a^{5}+\frac{11}{25}a^{4}+\frac{2}{5}a^{3}-\frac{9}{25}a^{2}-\frac{2}{5}a$, $\frac{1}{625}a^{23}-\frac{1}{625}a^{20}+\frac{2}{625}a^{19}-\frac{8}{625}a^{18}-\frac{7}{625}a^{17}-\frac{1}{625}a^{16}-\frac{9}{625}a^{15}+\frac{3}{625}a^{14}+\frac{4}{125}a^{13}-\frac{53}{625}a^{12}+\frac{26}{625}a^{11}+\frac{12}{625}a^{10}+\frac{51}{625}a^{9}+\frac{34}{625}a^{8}-\frac{91}{625}a^{7}+\frac{222}{625}a^{6}+\frac{8}{125}a^{5}+\frac{6}{25}a^{4}+\frac{11}{25}a^{3}+\frac{3}{25}a^{2}+\frac{1}{5}a$, $\frac{1}{6875}a^{24}-\frac{2}{6875}a^{23}+\frac{1}{6875}a^{22}+\frac{21}{6875}a^{21}-\frac{27}{6875}a^{20}-\frac{1}{1375}a^{19}-\frac{2}{125}a^{18}-\frac{63}{6875}a^{17}-\frac{1}{625}a^{16}+\frac{17}{6875}a^{15}-\frac{93}{6875}a^{14}+\frac{481}{6875}a^{13}-\frac{109}{1375}a^{12}+\frac{263}{6875}a^{11}+\frac{79}{6875}a^{10}+\frac{353}{6875}a^{9}-\frac{521}{6875}a^{8}+\frac{1224}{6875}a^{7}+\frac{569}{1375}a^{6}-\frac{394}{1375}a^{5}-\frac{11}{25}a^{4}+\frac{6}{25}a^{3}-\frac{9}{55}a^{2}+\frac{4}{55}a+\frac{2}{11}$, $\frac{1}{34375}a^{25}-\frac{1}{34375}a^{24}-\frac{1}{34375}a^{23}+\frac{2}{3125}a^{22}-\frac{61}{34375}a^{21}-\frac{87}{34375}a^{20}-\frac{23}{6875}a^{19}-\frac{448}{34375}a^{18}-\frac{349}{34375}a^{17}+\frac{501}{34375}a^{16}+\frac{144}{34375}a^{15}+\frac{388}{34375}a^{14}+\frac{1586}{34375}a^{13}+\frac{1368}{34375}a^{12}-\frac{2463}{34375}a^{11}+\frac{1477}{34375}a^{10}+\frac{3132}{34375}a^{9}+\frac{2903}{34375}a^{8}+\frac{3244}{34375}a^{7}+\frac{1814}{6875}a^{6}-\frac{411}{1375}a^{5}-\frac{18}{125}a^{4}+\frac{186}{1375}a^{3}-\frac{126}{275}a^{2}+\frac{27}{55}a-\frac{4}{11}$, $\frac{1}{26778125}a^{26}+\frac{1}{130625}a^{25}+\frac{543}{26778125}a^{24}-\frac{6084}{26778125}a^{23}+\frac{9016}{26778125}a^{22}-\frac{100688}{26778125}a^{21}+\frac{82493}{26778125}a^{20}+\frac{100977}{26778125}a^{19}+\frac{388008}{26778125}a^{18}+\frac{303262}{26778125}a^{17}-\frac{32526}{5355625}a^{16}-\frac{342528}{26778125}a^{15}-\frac{327476}{26778125}a^{14}-\frac{850011}{26778125}a^{13}-\frac{195039}{5355625}a^{12}+\frac{2129609}{26778125}a^{11}+\frac{1035609}{26778125}a^{10}-\frac{10898}{281875}a^{9}-\frac{374853}{26778125}a^{8}-\frac{13261541}{26778125}a^{7}+\frac{2183}{5225}a^{6}-\frac{452668}{1071125}a^{5}+\frac{388508}{1071125}a^{4}-\frac{35749}{97375}a^{3}+\frac{3148}{19475}a^{2}+\frac{11653}{42845}a-\frac{2570}{8569}$, $\frac{1}{68\!\cdots\!25}a^{27}+\frac{91\!\cdots\!62}{68\!\cdots\!25}a^{26}+\frac{73\!\cdots\!81}{68\!\cdots\!25}a^{25}+\frac{48\!\cdots\!69}{68\!\cdots\!25}a^{24}+\frac{92\!\cdots\!98}{13\!\cdots\!25}a^{23}-\frac{48\!\cdots\!69}{13\!\cdots\!25}a^{22}+\frac{13\!\cdots\!19}{68\!\cdots\!25}a^{21}-\frac{11\!\cdots\!03}{68\!\cdots\!25}a^{20}+\frac{21\!\cdots\!97}{68\!\cdots\!25}a^{19}-\frac{50\!\cdots\!91}{68\!\cdots\!25}a^{18}+\frac{11\!\cdots\!32}{68\!\cdots\!25}a^{17}-\frac{27\!\cdots\!71}{13\!\cdots\!25}a^{16}-\frac{21\!\cdots\!19}{13\!\cdots\!25}a^{15}+\frac{24\!\cdots\!61}{15\!\cdots\!75}a^{14}+\frac{29\!\cdots\!71}{61\!\cdots\!75}a^{13}-\frac{29\!\cdots\!47}{68\!\cdots\!25}a^{12}+\frac{44\!\cdots\!78}{68\!\cdots\!25}a^{11}-\frac{45\!\cdots\!26}{68\!\cdots\!25}a^{10}-\frac{59\!\cdots\!77}{68\!\cdots\!25}a^{9}-\frac{23\!\cdots\!28}{68\!\cdots\!25}a^{8}+\frac{83\!\cdots\!03}{13\!\cdots\!25}a^{7}+\frac{91\!\cdots\!78}{24\!\cdots\!75}a^{6}-\frac{25\!\cdots\!78}{27\!\cdots\!25}a^{5}+\frac{73\!\cdots\!33}{27\!\cdots\!25}a^{4}+\frac{89\!\cdots\!21}{54\!\cdots\!25}a^{3}-\frac{18\!\cdots\!36}{10\!\cdots\!25}a^{2}+\frac{33\!\cdots\!04}{21\!\cdots\!85}a-\frac{20\!\cdots\!71}{43\!\cdots\!97}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $5$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{53\!\cdots\!49}{27\!\cdots\!75}a^{27}-\frac{19\!\cdots\!97}{27\!\cdots\!75}a^{26}-\frac{46\!\cdots\!51}{27\!\cdots\!75}a^{25}+\frac{25\!\cdots\!96}{27\!\cdots\!75}a^{24}+\frac{58\!\cdots\!89}{54\!\cdots\!75}a^{23}-\frac{40\!\cdots\!86}{54\!\cdots\!75}a^{22}-\frac{12\!\cdots\!69}{27\!\cdots\!75}a^{21}+\frac{10\!\cdots\!38}{27\!\cdots\!75}a^{20}+\frac{68\!\cdots\!33}{27\!\cdots\!75}a^{19}-\frac{37\!\cdots\!29}{27\!\cdots\!75}a^{18}-\frac{13\!\cdots\!22}{27\!\cdots\!75}a^{17}+\frac{19\!\cdots\!82}{54\!\cdots\!75}a^{16}-\frac{18\!\cdots\!76}{54\!\cdots\!75}a^{15}-\frac{23\!\cdots\!36}{27\!\cdots\!75}a^{14}+\frac{39\!\cdots\!59}{27\!\cdots\!75}a^{13}-\frac{84\!\cdots\!13}{27\!\cdots\!75}a^{12}+\frac{36\!\cdots\!42}{27\!\cdots\!75}a^{11}+\frac{32\!\cdots\!71}{27\!\cdots\!75}a^{10}-\frac{78\!\cdots\!88}{27\!\cdots\!75}a^{9}+\frac{19\!\cdots\!23}{27\!\cdots\!75}a^{8}+\frac{54\!\cdots\!13}{54\!\cdots\!75}a^{7}-\frac{20\!\cdots\!92}{10\!\cdots\!75}a^{6}+\frac{22\!\cdots\!93}{10\!\cdots\!75}a^{5}+\frac{95\!\cdots\!72}{10\!\cdots\!75}a^{4}-\frac{43\!\cdots\!72}{21\!\cdots\!75}a^{3}+\frac{37\!\cdots\!77}{43\!\cdots\!75}a^{2}-\frac{51\!\cdots\!22}{87\!\cdots\!15}a-\frac{23\!\cdots\!74}{17\!\cdots\!83}$, $\frac{37\!\cdots\!96}{68\!\cdots\!25}a^{27}-\frac{16\!\cdots\!18}{68\!\cdots\!25}a^{26}-\frac{20\!\cdots\!09}{61\!\cdots\!75}a^{25}+\frac{20\!\cdots\!14}{68\!\cdots\!25}a^{24}+\frac{17\!\cdots\!64}{13\!\cdots\!25}a^{23}-\frac{31\!\cdots\!73}{13\!\cdots\!25}a^{22}-\frac{46\!\cdots\!91}{68\!\cdots\!25}a^{21}+\frac{82\!\cdots\!02}{68\!\cdots\!25}a^{20}+\frac{96\!\cdots\!72}{68\!\cdots\!25}a^{19}-\frac{31\!\cdots\!71}{68\!\cdots\!25}a^{18}+\frac{47\!\cdots\!78}{35\!\cdots\!75}a^{17}+\frac{14\!\cdots\!24}{13\!\cdots\!25}a^{16}-\frac{16\!\cdots\!77}{13\!\cdots\!25}a^{15}-\frac{13\!\cdots\!74}{68\!\cdots\!25}a^{14}+\frac{33\!\cdots\!46}{68\!\cdots\!25}a^{13}-\frac{14\!\cdots\!12}{68\!\cdots\!25}a^{12}+\frac{46\!\cdots\!63}{16\!\cdots\!25}a^{11}-\frac{17\!\cdots\!51}{68\!\cdots\!25}a^{10}-\frac{55\!\cdots\!92}{68\!\cdots\!25}a^{9}+\frac{24\!\cdots\!97}{68\!\cdots\!25}a^{8}+\frac{38\!\cdots\!78}{71\!\cdots\!75}a^{7}+\frac{34\!\cdots\!81}{27\!\cdots\!25}a^{6}+\frac{92\!\cdots\!82}{27\!\cdots\!25}a^{5}-\frac{89\!\cdots\!67}{27\!\cdots\!25}a^{4}-\frac{10\!\cdots\!88}{13\!\cdots\!25}a^{3}+\frac{36\!\cdots\!04}{10\!\cdots\!25}a^{2}+\frac{17\!\cdots\!71}{21\!\cdots\!85}a+\frac{14\!\cdots\!21}{43\!\cdots\!97}$, $\frac{31\!\cdots\!14}{10\!\cdots\!75}a^{27}-\frac{68\!\cdots\!33}{53\!\cdots\!25}a^{26}-\frac{20\!\cdots\!21}{10\!\cdots\!75}a^{25}+\frac{16\!\cdots\!61}{10\!\cdots\!75}a^{24}+\frac{20\!\cdots\!14}{20\!\cdots\!75}a^{23}-\frac{25\!\cdots\!17}{20\!\cdots\!75}a^{22}-\frac{28\!\cdots\!19}{10\!\cdots\!75}a^{21}+\frac{64\!\cdots\!58}{10\!\cdots\!75}a^{20}+\frac{21\!\cdots\!93}{10\!\cdots\!75}a^{19}-\frac{23\!\cdots\!44}{10\!\cdots\!75}a^{18}+\frac{30\!\cdots\!28}{10\!\cdots\!75}a^{17}+\frac{21\!\cdots\!32}{40\!\cdots\!75}a^{16}-\frac{11\!\cdots\!53}{20\!\cdots\!75}a^{15}-\frac{10\!\cdots\!41}{10\!\cdots\!75}a^{14}+\frac{24\!\cdots\!49}{10\!\cdots\!75}a^{13}-\frac{10\!\cdots\!98}{10\!\cdots\!75}a^{12}+\frac{52\!\cdots\!47}{24\!\cdots\!75}a^{11}-\frac{93\!\cdots\!79}{10\!\cdots\!75}a^{10}-\frac{47\!\cdots\!88}{10\!\cdots\!75}a^{9}+\frac{10\!\cdots\!48}{92\!\cdots\!25}a^{8}+\frac{10\!\cdots\!62}{20\!\cdots\!75}a^{7}+\frac{71\!\cdots\!14}{81\!\cdots\!75}a^{6}+\frac{13\!\cdots\!28}{40\!\cdots\!75}a^{5}-\frac{28\!\cdots\!08}{40\!\cdots\!75}a^{4}-\frac{45\!\cdots\!21}{19\!\cdots\!75}a^{3}+\frac{14\!\cdots\!33}{16\!\cdots\!75}a^{2}-\frac{37\!\cdots\!85}{65\!\cdots\!91}a+\frac{33\!\cdots\!41}{65\!\cdots\!91}$, $\frac{70\!\cdots\!84}{68\!\cdots\!25}a^{27}-\frac{29\!\cdots\!12}{68\!\cdots\!25}a^{26}-\frac{47\!\cdots\!31}{68\!\cdots\!25}a^{25}+\frac{36\!\cdots\!46}{68\!\cdots\!25}a^{24}+\frac{89\!\cdots\!06}{27\!\cdots\!25}a^{23}-\frac{13\!\cdots\!49}{33\!\cdots\!25}a^{22}-\frac{56\!\cdots\!84}{68\!\cdots\!25}a^{21}+\frac{15\!\cdots\!83}{68\!\cdots\!25}a^{20}+\frac{41\!\cdots\!83}{68\!\cdots\!25}a^{19}-\frac{56\!\cdots\!74}{68\!\cdots\!25}a^{18}+\frac{94\!\cdots\!13}{68\!\cdots\!25}a^{17}+\frac{26\!\cdots\!19}{13\!\cdots\!25}a^{16}-\frac{28\!\cdots\!02}{13\!\cdots\!25}a^{15}-\frac{24\!\cdots\!26}{61\!\cdots\!75}a^{14}+\frac{58\!\cdots\!64}{68\!\cdots\!25}a^{13}-\frac{18\!\cdots\!03}{68\!\cdots\!25}a^{12}+\frac{30\!\cdots\!02}{68\!\cdots\!25}a^{11}-\frac{21\!\cdots\!09}{68\!\cdots\!25}a^{10}-\frac{98\!\cdots\!38}{68\!\cdots\!25}a^{9}+\frac{41\!\cdots\!03}{68\!\cdots\!25}a^{8}+\frac{55\!\cdots\!28}{13\!\cdots\!25}a^{7}+\frac{94\!\cdots\!68}{27\!\cdots\!25}a^{6}+\frac{22\!\cdots\!43}{27\!\cdots\!25}a^{5}-\frac{13\!\cdots\!83}{27\!\cdots\!25}a^{4}-\frac{51\!\cdots\!52}{54\!\cdots\!25}a^{3}+\frac{35\!\cdots\!67}{10\!\cdots\!25}a^{2}-\frac{31\!\cdots\!02}{21\!\cdots\!85}a+\frac{85\!\cdots\!53}{43\!\cdots\!97}$, $\frac{25\!\cdots\!16}{13\!\cdots\!25}a^{27}-\frac{89\!\cdots\!26}{54\!\cdots\!25}a^{26}+\frac{10\!\cdots\!74}{27\!\cdots\!25}a^{25}+\frac{13\!\cdots\!34}{13\!\cdots\!25}a^{24}-\frac{64\!\cdots\!61}{13\!\cdots\!25}a^{23}-\frac{48\!\cdots\!19}{13\!\cdots\!25}a^{22}+\frac{12\!\cdots\!91}{33\!\cdots\!25}a^{21}-\frac{58\!\cdots\!27}{13\!\cdots\!25}a^{20}-\frac{24\!\cdots\!92}{13\!\cdots\!25}a^{19}+\frac{80\!\cdots\!46}{13\!\cdots\!25}a^{18}+\frac{94\!\cdots\!17}{12\!\cdots\!75}a^{17}-\frac{96\!\cdots\!71}{13\!\cdots\!25}a^{16}-\frac{23\!\cdots\!33}{13\!\cdots\!25}a^{15}+\frac{16\!\cdots\!99}{54\!\cdots\!25}a^{14}+\frac{27\!\cdots\!22}{13\!\cdots\!25}a^{13}-\frac{31\!\cdots\!79}{27\!\cdots\!25}a^{12}+\frac{18\!\cdots\!23}{13\!\cdots\!25}a^{11}-\frac{15\!\cdots\!21}{13\!\cdots\!25}a^{10}+\frac{14\!\cdots\!11}{13\!\cdots\!25}a^{9}+\frac{42\!\cdots\!41}{60\!\cdots\!75}a^{8}-\frac{27\!\cdots\!57}{13\!\cdots\!25}a^{7}+\frac{16\!\cdots\!23}{27\!\cdots\!25}a^{6}-\frac{53\!\cdots\!47}{10\!\cdots\!25}a^{5}+\frac{16\!\cdots\!81}{10\!\cdots\!25}a^{4}+\frac{44\!\cdots\!82}{54\!\cdots\!25}a^{3}+\frac{54\!\cdots\!93}{10\!\cdots\!25}a^{2}-\frac{33\!\cdots\!81}{39\!\cdots\!27}a-\frac{30\!\cdots\!84}{43\!\cdots\!97}$, $\frac{99\!\cdots\!52}{68\!\cdots\!25}a^{27}+\frac{22\!\cdots\!04}{16\!\cdots\!25}a^{26}-\frac{27\!\cdots\!23}{68\!\cdots\!25}a^{25}-\frac{95\!\cdots\!82}{68\!\cdots\!25}a^{24}+\frac{72\!\cdots\!81}{13\!\cdots\!25}a^{23}+\frac{15\!\cdots\!01}{13\!\cdots\!25}a^{22}-\frac{27\!\cdots\!72}{68\!\cdots\!25}a^{21}-\frac{43\!\cdots\!91}{68\!\cdots\!25}a^{20}+\frac{72\!\cdots\!96}{35\!\cdots\!75}a^{19}+\frac{23\!\cdots\!43}{68\!\cdots\!25}a^{18}-\frac{36\!\cdots\!56}{61\!\cdots\!75}a^{17}-\frac{78\!\cdots\!84}{13\!\cdots\!25}a^{16}+\frac{45\!\cdots\!37}{27\!\cdots\!25}a^{15}-\frac{39\!\cdots\!48}{68\!\cdots\!25}a^{14}-\frac{38\!\cdots\!88}{68\!\cdots\!25}a^{13}+\frac{12\!\cdots\!29}{35\!\cdots\!75}a^{12}+\frac{93\!\cdots\!71}{68\!\cdots\!25}a^{11}+\frac{48\!\cdots\!88}{68\!\cdots\!25}a^{10}+\frac{49\!\cdots\!01}{68\!\cdots\!25}a^{9}-\frac{73\!\cdots\!81}{68\!\cdots\!25}a^{8}-\frac{39\!\cdots\!28}{66\!\cdots\!25}a^{7}-\frac{13\!\cdots\!56}{49\!\cdots\!75}a^{6}-\frac{11\!\cdots\!61}{27\!\cdots\!25}a^{5}+\frac{21\!\cdots\!41}{27\!\cdots\!25}a^{4}+\frac{31\!\cdots\!63}{54\!\cdots\!25}a^{3}-\frac{47\!\cdots\!83}{10\!\cdots\!25}a^{2}+\frac{40\!\cdots\!96}{21\!\cdots\!85}a-\frac{55\!\cdots\!56}{10\!\cdots\!17}$, $\frac{42\!\cdots\!29}{13\!\cdots\!25}a^{27}-\frac{18\!\cdots\!81}{13\!\cdots\!25}a^{26}-\frac{24\!\cdots\!32}{13\!\cdots\!25}a^{25}+\frac{45\!\cdots\!71}{27\!\cdots\!25}a^{24}+\frac{91\!\cdots\!12}{13\!\cdots\!25}a^{23}-\frac{17\!\cdots\!26}{13\!\cdots\!25}a^{22}-\frac{23\!\cdots\!21}{13\!\cdots\!25}a^{21}+\frac{81\!\cdots\!08}{12\!\cdots\!75}a^{20}+\frac{18\!\cdots\!81}{27\!\cdots\!25}a^{19}-\frac{33\!\cdots\!53}{13\!\cdots\!25}a^{18}+\frac{11\!\cdots\!59}{13\!\cdots\!25}a^{17}+\frac{75\!\cdots\!84}{13\!\cdots\!25}a^{16}-\frac{96\!\cdots\!92}{13\!\cdots\!25}a^{15}-\frac{99\!\cdots\!13}{99\!\cdots\!75}a^{14}+\frac{36\!\cdots\!17}{13\!\cdots\!25}a^{13}-\frac{19\!\cdots\!01}{13\!\cdots\!25}a^{12}+\frac{26\!\cdots\!34}{13\!\cdots\!25}a^{11}-\frac{16\!\cdots\!47}{12\!\cdots\!75}a^{10}-\frac{29\!\cdots\!44}{66\!\cdots\!25}a^{9}+\frac{35\!\cdots\!02}{13\!\cdots\!25}a^{8}+\frac{27\!\cdots\!13}{27\!\cdots\!25}a^{7}+\frac{20\!\cdots\!31}{27\!\cdots\!25}a^{6}+\frac{15\!\cdots\!19}{54\!\cdots\!25}a^{5}-\frac{10\!\cdots\!32}{54\!\cdots\!25}a^{4}-\frac{32\!\cdots\!54}{10\!\cdots\!25}a^{3}+\frac{13\!\cdots\!59}{10\!\cdots\!25}a^{2}-\frac{89\!\cdots\!97}{21\!\cdots\!85}a+\frac{31\!\cdots\!61}{43\!\cdots\!97}$, $\frac{71\!\cdots\!38}{68\!\cdots\!25}a^{27}-\frac{30\!\cdots\!39}{68\!\cdots\!25}a^{26}-\frac{45\!\cdots\!32}{68\!\cdots\!25}a^{25}+\frac{37\!\cdots\!97}{68\!\cdots\!25}a^{24}+\frac{40\!\cdots\!32}{13\!\cdots\!25}a^{23}-\frac{11\!\cdots\!47}{27\!\cdots\!25}a^{22}-\frac{40\!\cdots\!33}{68\!\cdots\!25}a^{21}+\frac{14\!\cdots\!96}{68\!\cdots\!25}a^{20}+\frac{34\!\cdots\!46}{68\!\cdots\!25}a^{19}-\frac{49\!\cdots\!58}{61\!\cdots\!75}a^{18}+\frac{11\!\cdots\!81}{61\!\cdots\!75}a^{17}+\frac{49\!\cdots\!38}{27\!\cdots\!25}a^{16}-\frac{26\!\cdots\!08}{12\!\cdots\!75}a^{15}-\frac{24\!\cdots\!42}{68\!\cdots\!25}a^{14}+\frac{57\!\cdots\!88}{68\!\cdots\!25}a^{13}-\frac{28\!\cdots\!16}{68\!\cdots\!25}a^{12}+\frac{45\!\cdots\!14}{68\!\cdots\!25}a^{11}-\frac{25\!\cdots\!88}{68\!\cdots\!25}a^{10}-\frac{91\!\cdots\!86}{61\!\cdots\!75}a^{9}+\frac{47\!\cdots\!16}{68\!\cdots\!25}a^{8}+\frac{80\!\cdots\!48}{27\!\cdots\!25}a^{7}+\frac{72\!\cdots\!69}{27\!\cdots\!25}a^{6}+\frac{25\!\cdots\!56}{27\!\cdots\!25}a^{5}-\frac{13\!\cdots\!66}{24\!\cdots\!75}a^{4}-\frac{51\!\cdots\!43}{54\!\cdots\!25}a^{3}+\frac{36\!\cdots\!49}{10\!\cdots\!25}a^{2}-\frac{31\!\cdots\!38}{21\!\cdots\!85}a+\frac{98\!\cdots\!89}{43\!\cdots\!97}$, $\frac{66\!\cdots\!56}{13\!\cdots\!25}a^{27}-\frac{12\!\cdots\!88}{71\!\cdots\!75}a^{26}-\frac{58\!\cdots\!97}{13\!\cdots\!25}a^{25}+\frac{66\!\cdots\!41}{27\!\cdots\!25}a^{24}+\frac{35\!\cdots\!54}{13\!\cdots\!25}a^{23}-\frac{52\!\cdots\!01}{27\!\cdots\!25}a^{22}-\frac{15\!\cdots\!56}{13\!\cdots\!25}a^{21}+\frac{13\!\cdots\!51}{13\!\cdots\!25}a^{20}+\frac{88\!\cdots\!49}{13\!\cdots\!25}a^{19}-\frac{49\!\cdots\!99}{13\!\cdots\!25}a^{18}-\frac{70\!\cdots\!59}{13\!\cdots\!25}a^{17}+\frac{12\!\cdots\!72}{13\!\cdots\!25}a^{16}-\frac{21\!\cdots\!88}{27\!\cdots\!25}a^{15}-\frac{24\!\cdots\!39}{12\!\cdots\!75}a^{14}+\frac{48\!\cdots\!12}{13\!\cdots\!25}a^{13}-\frac{98\!\cdots\!16}{13\!\cdots\!25}a^{12}+\frac{16\!\cdots\!16}{12\!\cdots\!75}a^{11}+\frac{52\!\cdots\!37}{13\!\cdots\!25}a^{10}-\frac{18\!\cdots\!73}{13\!\cdots\!25}a^{9}+\frac{21\!\cdots\!98}{27\!\cdots\!25}a^{8}-\frac{62\!\cdots\!43}{13\!\cdots\!25}a^{7}+\frac{49\!\cdots\!59}{27\!\cdots\!25}a^{6}+\frac{21\!\cdots\!91}{21\!\cdots\!85}a^{5}-\frac{74\!\cdots\!02}{10\!\cdots\!25}a^{4}+\frac{19\!\cdots\!68}{54\!\cdots\!25}a^{3}-\frac{92\!\cdots\!88}{21\!\cdots\!85}a^{2}+\frac{48\!\cdots\!36}{21\!\cdots\!85}a-\frac{28\!\cdots\!72}{43\!\cdots\!97}$, $\frac{60\!\cdots\!02}{16\!\cdots\!25}a^{27}-\frac{10\!\cdots\!86}{68\!\cdots\!25}a^{26}-\frac{41\!\cdots\!68}{16\!\cdots\!25}a^{25}+\frac{12\!\cdots\!53}{68\!\cdots\!25}a^{24}+\frac{17\!\cdots\!98}{13\!\cdots\!25}a^{23}-\frac{19\!\cdots\!79}{13\!\cdots\!25}a^{22}-\frac{27\!\cdots\!02}{68\!\cdots\!25}a^{21}+\frac{49\!\cdots\!29}{68\!\cdots\!25}a^{20}+\frac{98\!\cdots\!56}{35\!\cdots\!75}a^{19}-\frac{16\!\cdots\!12}{61\!\cdots\!75}a^{18}+\frac{21\!\cdots\!29}{68\!\cdots\!25}a^{17}+\frac{76\!\cdots\!52}{12\!\cdots\!75}a^{16}-\frac{18\!\cdots\!97}{27\!\cdots\!25}a^{15}-\frac{87\!\cdots\!68}{68\!\cdots\!25}a^{14}+\frac{18\!\cdots\!82}{68\!\cdots\!25}a^{13}-\frac{41\!\cdots\!01}{35\!\cdots\!75}a^{12}+\frac{15\!\cdots\!31}{68\!\cdots\!25}a^{11}-\frac{58\!\cdots\!72}{68\!\cdots\!25}a^{10}-\frac{34\!\cdots\!49}{68\!\cdots\!25}a^{9}+\frac{11\!\cdots\!49}{68\!\cdots\!25}a^{8}+\frac{11\!\cdots\!16}{13\!\cdots\!25}a^{7}+\frac{44\!\cdots\!48}{60\!\cdots\!75}a^{6}+\frac{95\!\cdots\!44}{27\!\cdots\!25}a^{5}-\frac{31\!\cdots\!14}{27\!\cdots\!25}a^{4}-\frac{16\!\cdots\!83}{54\!\cdots\!25}a^{3}+\frac{94\!\cdots\!51}{10\!\cdots\!25}a^{2}-\frac{13\!\cdots\!79}{21\!\cdots\!85}a+\frac{24\!\cdots\!06}{43\!\cdots\!97}$, $\frac{59\!\cdots\!36}{68\!\cdots\!25}a^{27}-\frac{13\!\cdots\!68}{68\!\cdots\!25}a^{26}-\frac{86\!\cdots\!89}{68\!\cdots\!25}a^{25}+\frac{22\!\cdots\!89}{68\!\cdots\!25}a^{24}+\frac{15\!\cdots\!24}{13\!\cdots\!25}a^{23}-\frac{34\!\cdots\!26}{12\!\cdots\!75}a^{22}-\frac{51\!\cdots\!61}{68\!\cdots\!25}a^{21}+\frac{10\!\cdots\!02}{68\!\cdots\!25}a^{20}+\frac{28\!\cdots\!42}{68\!\cdots\!25}a^{19}-\frac{35\!\cdots\!11}{68\!\cdots\!25}a^{18}-\frac{82\!\cdots\!53}{68\!\cdots\!25}a^{17}+\frac{22\!\cdots\!43}{13\!\cdots\!25}a^{16}+\frac{21\!\cdots\!92}{13\!\cdots\!25}a^{15}-\frac{43\!\cdots\!94}{68\!\cdots\!25}a^{14}-\frac{20\!\cdots\!14}{68\!\cdots\!25}a^{13}+\frac{67\!\cdots\!38}{61\!\cdots\!75}a^{12}+\frac{15\!\cdots\!23}{68\!\cdots\!25}a^{11}+\frac{16\!\cdots\!29}{68\!\cdots\!25}a^{10}-\frac{10\!\cdots\!32}{68\!\cdots\!25}a^{9}-\frac{10\!\cdots\!73}{68\!\cdots\!25}a^{8}+\frac{14\!\cdots\!84}{13\!\cdots\!25}a^{7}+\frac{19\!\cdots\!41}{27\!\cdots\!25}a^{6}+\frac{54\!\cdots\!72}{27\!\cdots\!25}a^{5}+\frac{26\!\cdots\!78}{27\!\cdots\!25}a^{4}-\frac{29\!\cdots\!68}{21\!\cdots\!85}a^{3}-\frac{82\!\cdots\!12}{10\!\cdots\!25}a^{2}-\frac{31\!\cdots\!99}{21\!\cdots\!85}a-\frac{10\!\cdots\!54}{43\!\cdots\!97}$, $\frac{15\!\cdots\!89}{68\!\cdots\!25}a^{27}-\frac{74\!\cdots\!72}{61\!\cdots\!75}a^{26}-\frac{37\!\cdots\!11}{68\!\cdots\!25}a^{25}+\frac{93\!\cdots\!56}{68\!\cdots\!25}a^{24}-\frac{74\!\cdots\!66}{13\!\cdots\!25}a^{23}-\frac{13\!\cdots\!96}{13\!\cdots\!25}a^{22}+\frac{55\!\cdots\!16}{68\!\cdots\!25}a^{21}+\frac{31\!\cdots\!13}{61\!\cdots\!75}a^{20}-\frac{26\!\cdots\!87}{68\!\cdots\!25}a^{19}-\frac{13\!\cdots\!69}{68\!\cdots\!25}a^{18}+\frac{14\!\cdots\!03}{61\!\cdots\!75}a^{17}+\frac{53\!\cdots\!02}{13\!\cdots\!25}a^{16}-\frac{12\!\cdots\!76}{13\!\cdots\!25}a^{15}-\frac{22\!\cdots\!96}{68\!\cdots\!25}a^{14}+\frac{19\!\cdots\!49}{68\!\cdots\!25}a^{13}-\frac{19\!\cdots\!18}{68\!\cdots\!25}a^{12}+\frac{12\!\cdots\!37}{68\!\cdots\!25}a^{11}-\frac{82\!\cdots\!94}{68\!\cdots\!25}a^{10}-\frac{24\!\cdots\!93}{68\!\cdots\!25}a^{9}+\frac{37\!\cdots\!28}{68\!\cdots\!25}a^{8}-\frac{13\!\cdots\!82}{13\!\cdots\!25}a^{7}-\frac{31\!\cdots\!86}{27\!\cdots\!25}a^{6}+\frac{73\!\cdots\!43}{27\!\cdots\!25}a^{5}-\frac{83\!\cdots\!08}{27\!\cdots\!25}a^{4}-\frac{69\!\cdots\!67}{54\!\cdots\!25}a^{3}+\frac{37\!\cdots\!56}{10\!\cdots\!25}a^{2}-\frac{33\!\cdots\!04}{21\!\cdots\!85}a+\frac{81\!\cdots\!37}{43\!\cdots\!97}$, $\frac{80\!\cdots\!06}{68\!\cdots\!25}a^{27}-\frac{36\!\cdots\!73}{68\!\cdots\!25}a^{26}-\frac{34\!\cdots\!29}{68\!\cdots\!25}a^{25}+\frac{40\!\cdots\!44}{68\!\cdots\!25}a^{24}+\frac{13\!\cdots\!77}{13\!\cdots\!25}a^{23}-\frac{58\!\cdots\!49}{13\!\cdots\!25}a^{22}+\frac{58\!\cdots\!89}{68\!\cdots\!25}a^{21}+\frac{12\!\cdots\!57}{61\!\cdots\!75}a^{20}-\frac{58\!\cdots\!33}{68\!\cdots\!25}a^{19}-\frac{48\!\cdots\!86}{68\!\cdots\!25}a^{18}+\frac{30\!\cdots\!62}{68\!\cdots\!25}a^{17}+\frac{88\!\cdots\!19}{71\!\cdots\!75}a^{16}-\frac{35\!\cdots\!14}{13\!\cdots\!25}a^{15}-\frac{10\!\cdots\!34}{68\!\cdots\!25}a^{14}+\frac{54\!\cdots\!16}{68\!\cdots\!25}a^{13}-\frac{69\!\cdots\!02}{68\!\cdots\!25}a^{12}+\frac{12\!\cdots\!83}{68\!\cdots\!25}a^{11}-\frac{84\!\cdots\!66}{68\!\cdots\!25}a^{10}-\frac{82\!\cdots\!42}{68\!\cdots\!25}a^{9}+\frac{48\!\cdots\!63}{35\!\cdots\!75}a^{8}-\frac{20\!\cdots\!33}{10\!\cdots\!25}a^{7}+\frac{31\!\cdots\!26}{14\!\cdots\!75}a^{6}+\frac{17\!\cdots\!07}{27\!\cdots\!25}a^{5}-\frac{25\!\cdots\!42}{27\!\cdots\!25}a^{4}+\frac{20\!\cdots\!99}{54\!\cdots\!25}a^{3}-\frac{88\!\cdots\!38}{10\!\cdots\!25}a^{2}-\frac{54\!\cdots\!98}{21\!\cdots\!85}a+\frac{22\!\cdots\!77}{43\!\cdots\!97}$, $\frac{11\!\cdots\!24}{68\!\cdots\!25}a^{27}-\frac{50\!\cdots\!52}{68\!\cdots\!25}a^{26}-\frac{70\!\cdots\!81}{68\!\cdots\!25}a^{25}+\frac{61\!\cdots\!61}{68\!\cdots\!25}a^{24}+\frac{55\!\cdots\!74}{13\!\cdots\!25}a^{23}-\frac{94\!\cdots\!99}{13\!\cdots\!25}a^{22}-\frac{14\!\cdots\!21}{35\!\cdots\!75}a^{21}+\frac{59\!\cdots\!38}{16\!\cdots\!25}a^{20}+\frac{35\!\cdots\!48}{68\!\cdots\!25}a^{19}-\frac{91\!\cdots\!54}{68\!\cdots\!25}a^{18}+\frac{28\!\cdots\!88}{68\!\cdots\!25}a^{17}+\frac{41\!\cdots\!96}{13\!\cdots\!25}a^{16}-\frac{51\!\cdots\!92}{13\!\cdots\!25}a^{15}-\frac{38\!\cdots\!71}{68\!\cdots\!25}a^{14}+\frac{99\!\cdots\!09}{68\!\cdots\!25}a^{13}-\frac{50\!\cdots\!28}{68\!\cdots\!25}a^{12}+\frac{69\!\cdots\!62}{68\!\cdots\!25}a^{11}-\frac{45\!\cdots\!84}{68\!\cdots\!25}a^{10}-\frac{16\!\cdots\!98}{68\!\cdots\!25}a^{9}+\frac{92\!\cdots\!98}{68\!\cdots\!25}a^{8}+\frac{18\!\cdots\!33}{27\!\cdots\!25}a^{7}+\frac{11\!\cdots\!01}{54\!\cdots\!25}a^{6}+\frac{43\!\cdots\!33}{27\!\cdots\!25}a^{5}-\frac{28\!\cdots\!53}{27\!\cdots\!25}a^{4}-\frac{87\!\cdots\!74}{54\!\cdots\!25}a^{3}+\frac{81\!\cdots\!64}{10\!\cdots\!25}a^{2}-\frac{63\!\cdots\!79}{21\!\cdots\!85}a+\frac{14\!\cdots\!34}{39\!\cdots\!27}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2346058429844.763 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{13}\cdot 2346058429844.763 \cdot 1}{2\cdot\sqrt{725917312055025700242151478457681268310546875}}\cr\approx \mathstrut & 4.14250967749672 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 5*x^27 - 3*x^26 + 57*x^25 - 13*x^24 - 420*x^23 + 259*x^22 + 2099*x^21 - 1147*x^20 - 7975*x^19 + 7844*x^18 + 15881*x^17 - 34395*x^16 - 17074*x^15 + 107194*x^14 - 103829*x^13 + 94772*x^12 - 84342*x^11 - 113950*x^10 + 177636*x^9 - 26899*x^8 + 2410*x^7 + 74025*x^6 - 120275*x^5 - 49775*x^4 + 101875*x^3 - 41875*x^2 + 31250*x - 15625)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 5*x^27 - 3*x^26 + 57*x^25 - 13*x^24 - 420*x^23 + 259*x^22 + 2099*x^21 - 1147*x^20 - 7975*x^19 + 7844*x^18 + 15881*x^17 - 34395*x^16 - 17074*x^15 + 107194*x^14 - 103829*x^13 + 94772*x^12 - 84342*x^11 - 113950*x^10 + 177636*x^9 - 26899*x^8 + 2410*x^7 + 74025*x^6 - 120275*x^5 - 49775*x^4 + 101875*x^3 - 41875*x^2 + 31250*x - 15625, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 5*x^27 - 3*x^26 + 57*x^25 - 13*x^24 - 420*x^23 + 259*x^22 + 2099*x^21 - 1147*x^20 - 7975*x^19 + 7844*x^18 + 15881*x^17 - 34395*x^16 - 17074*x^15 + 107194*x^14 - 103829*x^13 + 94772*x^12 - 84342*x^11 - 113950*x^10 + 177636*x^9 - 26899*x^8 + 2410*x^7 + 74025*x^6 - 120275*x^5 - 49775*x^4 + 101875*x^3 - 41875*x^2 + 31250*x - 15625);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 5*x^27 - 3*x^26 + 57*x^25 - 13*x^24 - 420*x^23 + 259*x^22 + 2099*x^21 - 1147*x^20 - 7975*x^19 + 7844*x^18 + 15881*x^17 - 34395*x^16 - 17074*x^15 + 107194*x^14 - 103829*x^13 + 94772*x^12 - 84342*x^11 - 113950*x^10 + 177636*x^9 - 26899*x^8 + 2410*x^7 + 74025*x^6 - 120275*x^5 - 49775*x^4 + 101875*x^3 - 41875*x^2 + 31250*x - 15625);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{28}$ (as 28T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 56
The 17 conjugacy class representatives for $D_{28}$
Character table for $D_{28}$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.12475.1, 7.1.15531437375.1, 14.2.1206127734667734453125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 28 sibling: deg 28
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $28$ $28$ R ${\href{/padicField/7.4.0.1}{4} }^{7}$ ${\href{/padicField/11.2.0.1}{2} }^{13}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ $28$ $28$ ${\href{/padicField/19.2.0.1}{2} }^{13}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ $28$ ${\href{/padicField/29.7.0.1}{7} }^{4}$ ${\href{/padicField/31.7.0.1}{7} }^{4}$ $28$ ${\href{/padicField/41.2.0.1}{2} }^{13}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{14}$ ${\href{/padicField/47.2.0.1}{2} }^{14}$ $28$ ${\href{/padicField/59.2.0.1}{2} }^{13}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
\(499\) Copy content Toggle raw display $\Q_{499}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{499}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.499.2t1.a.a$1$ $ 499 $ \(\Q(\sqrt{-499}) \) $C_2$ (as 2T1) $1$ $-1$
1.2495.2t1.a.a$1$ $ 5 \cdot 499 $ \(\Q(\sqrt{-2495}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
* 2.2495.4t3.c.a$2$ $ 5 \cdot 499 $ 4.0.1245005.1 $D_{4}$ (as 4T3) $1$ $0$
* 2.2495.7t2.a.a$2$ $ 5 \cdot 499 $ 7.1.15531437375.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.2495.14t3.a.a$2$ $ 5 \cdot 499 $ 14.0.120371547919839898421875.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.2495.14t3.a.b$2$ $ 5 \cdot 499 $ 14.0.120371547919839898421875.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.2495.7t2.a.c$2$ $ 5 \cdot 499 $ 7.1.15531437375.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.2495.7t2.a.b$2$ $ 5 \cdot 499 $ 7.1.15531437375.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.2495.14t3.a.c$2$ $ 5 \cdot 499 $ 14.0.120371547919839898421875.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.2495.28t10.a.e$2$ $ 5 \cdot 499 $ 28.2.725917312055025700242151478457681268310546875.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.2495.28t10.a.d$2$ $ 5 \cdot 499 $ 28.2.725917312055025700242151478457681268310546875.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.2495.28t10.a.b$2$ $ 5 \cdot 499 $ 28.2.725917312055025700242151478457681268310546875.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.2495.28t10.a.c$2$ $ 5 \cdot 499 $ 28.2.725917312055025700242151478457681268310546875.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.2495.28t10.a.f$2$ $ 5 \cdot 499 $ 28.2.725917312055025700242151478457681268310546875.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.2495.28t10.a.a$2$ $ 5 \cdot 499 $ 28.2.725917312055025700242151478457681268310546875.1 $D_{28}$ (as 28T10) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.