Properties

Label 28.4.110...296.1
Degree $28$
Signature $[4, 12]$
Discriminant $1.101\times 10^{46}$
Root discriminant \(44.09\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $G(2,2)$ (as 28T393)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 6*x^27 + 54*x^25 - 45*x^24 - 180*x^23 + 36*x^22 + 720*x^21 - 360*x^20 - 474*x^19 + 1080*x^18 - 4032*x^17 - 1197*x^16 + 2466*x^15 + 28674*x^14 - 29340*x^13 + 6876*x^12 - 53028*x^11 + 87204*x^10 - 29664*x^9 + 62604*x^8 - 145584*x^7 + 115128*x^6 - 58032*x^5 + 32472*x^4 - 14688*x^3 - 2880*x^2 + 2560*x + 768)
 
gp: K = bnfinit(y^28 - 6*y^27 + 54*y^25 - 45*y^24 - 180*y^23 + 36*y^22 + 720*y^21 - 360*y^20 - 474*y^19 + 1080*y^18 - 4032*y^17 - 1197*y^16 + 2466*y^15 + 28674*y^14 - 29340*y^13 + 6876*y^12 - 53028*y^11 + 87204*y^10 - 29664*y^9 + 62604*y^8 - 145584*y^7 + 115128*y^6 - 58032*y^5 + 32472*y^4 - 14688*y^3 - 2880*y^2 + 2560*y + 768, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 6*x^27 + 54*x^25 - 45*x^24 - 180*x^23 + 36*x^22 + 720*x^21 - 360*x^20 - 474*x^19 + 1080*x^18 - 4032*x^17 - 1197*x^16 + 2466*x^15 + 28674*x^14 - 29340*x^13 + 6876*x^12 - 53028*x^11 + 87204*x^10 - 29664*x^9 + 62604*x^8 - 145584*x^7 + 115128*x^6 - 58032*x^5 + 32472*x^4 - 14688*x^3 - 2880*x^2 + 2560*x + 768);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 6*x^27 + 54*x^25 - 45*x^24 - 180*x^23 + 36*x^22 + 720*x^21 - 360*x^20 - 474*x^19 + 1080*x^18 - 4032*x^17 - 1197*x^16 + 2466*x^15 + 28674*x^14 - 29340*x^13 + 6876*x^12 - 53028*x^11 + 87204*x^10 - 29664*x^9 + 62604*x^8 - 145584*x^7 + 115128*x^6 - 58032*x^5 + 32472*x^4 - 14688*x^3 - 2880*x^2 + 2560*x + 768)
 

\( x^{28} - 6 x^{27} + 54 x^{25} - 45 x^{24} - 180 x^{23} + 36 x^{22} + 720 x^{21} - 360 x^{20} + \cdots + 768 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(11008994335486297475765301509911028227475767296\) \(\medspace = 2^{42}\cdot 3^{70}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(44.09\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{12}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{13}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{14}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{15}-\frac{1}{2}a^{7}$, $\frac{1}{4}a^{20}-\frac{1}{4}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}$, $\frac{1}{4}a^{21}-\frac{1}{4}a^{17}-\frac{1}{2}a^{14}-\frac{1}{4}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{22}-\frac{1}{4}a^{18}-\frac{1}{2}a^{15}-\frac{1}{4}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}$, $\frac{1}{4}a^{23}-\frac{1}{4}a^{19}-\frac{1}{2}a^{12}-\frac{1}{4}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{8}a^{24}-\frac{1}{8}a^{20}-\frac{1}{4}a^{19}-\frac{1}{4}a^{17}-\frac{1}{4}a^{15}+\frac{3}{8}a^{12}-\frac{1}{2}a^{11}+\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{2}a^{8}$, $\frac{1}{16}a^{25}-\frac{1}{8}a^{22}-\frac{1}{16}a^{21}-\frac{1}{8}a^{20}-\frac{1}{8}a^{16}+\frac{1}{4}a^{15}+\frac{3}{16}a^{13}+\frac{1}{4}a^{12}-\frac{3}{8}a^{11}-\frac{1}{2}a^{10}+\frac{1}{4}a^{9}-\frac{1}{4}a^{8}+\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{32}a^{26}-\frac{1}{16}a^{23}-\frac{1}{32}a^{22}-\frac{1}{16}a^{21}-\frac{1}{4}a^{19}-\frac{1}{16}a^{17}+\frac{1}{8}a^{16}+\frac{1}{4}a^{15}+\frac{3}{32}a^{14}-\frac{3}{8}a^{13}+\frac{5}{16}a^{12}+\frac{1}{4}a^{11}-\frac{3}{8}a^{10}+\frac{3}{8}a^{9}+\frac{1}{8}a^{8}+\frac{1}{4}a^{7}-\frac{1}{8}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{64\!\cdots\!32}a^{27}-\frac{68\!\cdots\!35}{80\!\cdots\!04}a^{26}+\frac{71\!\cdots\!47}{16\!\cdots\!08}a^{25}-\frac{79\!\cdots\!77}{32\!\cdots\!16}a^{24}-\frac{79\!\cdots\!61}{64\!\cdots\!32}a^{23}+\frac{32\!\cdots\!79}{32\!\cdots\!16}a^{22}-\frac{45\!\cdots\!53}{16\!\cdots\!08}a^{21}+\frac{18\!\cdots\!41}{20\!\cdots\!26}a^{20}+\frac{16\!\cdots\!29}{80\!\cdots\!04}a^{19}+\frac{38\!\cdots\!05}{29\!\cdots\!56}a^{18}-\frac{39\!\cdots\!33}{16\!\cdots\!08}a^{17}-\frac{12\!\cdots\!26}{91\!\cdots\!33}a^{16}-\frac{18\!\cdots\!25}{64\!\cdots\!32}a^{15}-\frac{39\!\cdots\!21}{16\!\cdots\!08}a^{14}+\frac{32\!\cdots\!11}{32\!\cdots\!16}a^{13}+\frac{27\!\cdots\!17}{80\!\cdots\!04}a^{12}-\frac{11\!\cdots\!23}{16\!\cdots\!08}a^{11}-\frac{77\!\cdots\!35}{16\!\cdots\!08}a^{10}+\frac{79\!\cdots\!35}{16\!\cdots\!08}a^{9}+\frac{76\!\cdots\!05}{80\!\cdots\!04}a^{8}-\frac{65\!\cdots\!87}{14\!\cdots\!28}a^{7}-\frac{35\!\cdots\!49}{80\!\cdots\!04}a^{6}-\frac{34\!\cdots\!33}{80\!\cdots\!04}a^{5}-\frac{37\!\cdots\!26}{10\!\cdots\!63}a^{4}+\frac{20\!\cdots\!87}{80\!\cdots\!04}a^{3}-\frac{18\!\cdots\!09}{40\!\cdots\!52}a^{2}+\frac{15\!\cdots\!62}{91\!\cdots\!33}a-\frac{10\!\cdots\!64}{10\!\cdots\!63}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{11\!\cdots\!23}{16\!\cdots\!08}a^{27}-\frac{34\!\cdots\!91}{80\!\cdots\!04}a^{26}+\frac{13\!\cdots\!29}{80\!\cdots\!04}a^{25}+\frac{26\!\cdots\!91}{80\!\cdots\!04}a^{24}-\frac{65\!\cdots\!75}{16\!\cdots\!08}a^{23}-\frac{15\!\cdots\!65}{20\!\cdots\!26}a^{22}+\frac{28\!\cdots\!57}{80\!\cdots\!04}a^{21}+\frac{13\!\cdots\!09}{40\!\cdots\!52}a^{20}-\frac{77\!\cdots\!89}{20\!\cdots\!26}a^{19}+\frac{19\!\cdots\!05}{73\!\cdots\!64}a^{18}+\frac{14\!\cdots\!15}{20\!\cdots\!26}a^{17}-\frac{30\!\cdots\!86}{91\!\cdots\!33}a^{16}+\frac{10\!\cdots\!49}{16\!\cdots\!08}a^{15}-\frac{63\!\cdots\!79}{80\!\cdots\!04}a^{14}+\frac{67\!\cdots\!41}{40\!\cdots\!52}a^{13}-\frac{47\!\cdots\!31}{20\!\cdots\!26}a^{12}+\frac{31\!\cdots\!79}{10\!\cdots\!63}a^{11}-\frac{51\!\cdots\!33}{10\!\cdots\!63}a^{10}+\frac{27\!\cdots\!21}{40\!\cdots\!52}a^{9}-\frac{27\!\cdots\!61}{40\!\cdots\!52}a^{8}+\frac{35\!\cdots\!13}{36\!\cdots\!32}a^{7}-\frac{24\!\cdots\!47}{20\!\cdots\!26}a^{6}+\frac{29\!\cdots\!65}{20\!\cdots\!26}a^{5}-\frac{28\!\cdots\!73}{20\!\cdots\!26}a^{4}+\frac{17\!\cdots\!89}{20\!\cdots\!26}a^{3}-\frac{42\!\cdots\!41}{10\!\cdots\!63}a^{2}+\frac{18\!\cdots\!85}{91\!\cdots\!33}a-\frac{65\!\cdots\!57}{10\!\cdots\!63}$, $\frac{41\!\cdots\!31}{32\!\cdots\!16}a^{27}-\frac{41\!\cdots\!77}{32\!\cdots\!16}a^{26}+\frac{47\!\cdots\!45}{16\!\cdots\!08}a^{25}+\frac{12\!\cdots\!29}{16\!\cdots\!08}a^{24}-\frac{10\!\cdots\!61}{32\!\cdots\!16}a^{23}-\frac{31\!\cdots\!01}{32\!\cdots\!16}a^{22}+\frac{99\!\cdots\!90}{10\!\cdots\!63}a^{21}+\frac{91\!\cdots\!71}{80\!\cdots\!04}a^{20}-\frac{39\!\cdots\!80}{10\!\cdots\!63}a^{19}-\frac{84\!\cdots\!05}{14\!\cdots\!28}a^{18}+\frac{52\!\cdots\!07}{16\!\cdots\!08}a^{17}-\frac{89\!\cdots\!65}{91\!\cdots\!33}a^{16}+\frac{60\!\cdots\!85}{32\!\cdots\!16}a^{15}+\frac{50\!\cdots\!21}{32\!\cdots\!16}a^{14}+\frac{66\!\cdots\!81}{20\!\cdots\!26}a^{13}-\frac{30\!\cdots\!65}{16\!\cdots\!08}a^{12}+\frac{20\!\cdots\!61}{20\!\cdots\!26}a^{11}-\frac{40\!\cdots\!73}{40\!\cdots\!52}a^{10}+\frac{82\!\cdots\!61}{20\!\cdots\!26}a^{9}-\frac{31\!\cdots\!57}{80\!\cdots\!04}a^{8}+\frac{11\!\cdots\!63}{73\!\cdots\!64}a^{7}-\frac{47\!\cdots\!73}{80\!\cdots\!04}a^{6}+\frac{31\!\cdots\!01}{40\!\cdots\!52}a^{5}-\frac{20\!\cdots\!65}{40\!\cdots\!52}a^{4}+\frac{13\!\cdots\!43}{40\!\cdots\!52}a^{3}-\frac{80\!\cdots\!85}{40\!\cdots\!52}a^{2}+\frac{51\!\cdots\!69}{91\!\cdots\!33}a-\frac{31\!\cdots\!91}{10\!\cdots\!63}$, $\frac{17\!\cdots\!63}{64\!\cdots\!32}a^{27}-\frac{52\!\cdots\!67}{32\!\cdots\!16}a^{26}+\frac{24\!\cdots\!77}{16\!\cdots\!08}a^{25}+\frac{46\!\cdots\!37}{32\!\cdots\!16}a^{24}-\frac{85\!\cdots\!23}{64\!\cdots\!32}a^{23}-\frac{37\!\cdots\!81}{80\!\cdots\!04}a^{22}+\frac{13\!\cdots\!89}{10\!\cdots\!63}a^{21}+\frac{38\!\cdots\!71}{20\!\cdots\!26}a^{20}-\frac{91\!\cdots\!55}{80\!\cdots\!04}a^{19}-\frac{32\!\cdots\!53}{29\!\cdots\!56}a^{18}+\frac{59\!\cdots\!35}{20\!\cdots\!26}a^{17}-\frac{80\!\cdots\!29}{73\!\cdots\!64}a^{16}-\frac{13\!\cdots\!87}{64\!\cdots\!32}a^{15}+\frac{20\!\cdots\!93}{32\!\cdots\!16}a^{14}+\frac{24\!\cdots\!09}{32\!\cdots\!16}a^{13}-\frac{13\!\cdots\!85}{16\!\cdots\!08}a^{12}+\frac{46\!\cdots\!39}{16\!\cdots\!08}a^{11}-\frac{23\!\cdots\!99}{16\!\cdots\!08}a^{10}+\frac{39\!\cdots\!95}{16\!\cdots\!08}a^{9}-\frac{21\!\cdots\!07}{20\!\cdots\!26}a^{8}+\frac{26\!\cdots\!03}{14\!\cdots\!28}a^{7}-\frac{82\!\cdots\!39}{20\!\cdots\!26}a^{6}+\frac{28\!\cdots\!07}{80\!\cdots\!04}a^{5}-\frac{79\!\cdots\!23}{40\!\cdots\!52}a^{4}+\frac{91\!\cdots\!61}{80\!\cdots\!04}a^{3}-\frac{60\!\cdots\!73}{10\!\cdots\!63}a^{2}+\frac{77\!\cdots\!23}{18\!\cdots\!66}a+\frac{58\!\cdots\!93}{10\!\cdots\!63}$, $\frac{13\!\cdots\!71}{29\!\cdots\!56}a^{27}+\frac{89\!\cdots\!63}{36\!\cdots\!32}a^{26}+\frac{18\!\cdots\!45}{14\!\cdots\!28}a^{25}-\frac{33\!\cdots\!71}{14\!\cdots\!28}a^{24}+\frac{21\!\cdots\!23}{29\!\cdots\!56}a^{23}+\frac{11\!\cdots\!65}{14\!\cdots\!28}a^{22}+\frac{49\!\cdots\!91}{14\!\cdots\!28}a^{21}-\frac{26\!\cdots\!38}{91\!\cdots\!33}a^{20}-\frac{22\!\cdots\!65}{36\!\cdots\!32}a^{19}+\frac{18\!\cdots\!87}{14\!\cdots\!28}a^{18}-\frac{27\!\cdots\!53}{73\!\cdots\!64}a^{17}+\frac{12\!\cdots\!19}{73\!\cdots\!64}a^{16}+\frac{40\!\cdots\!83}{29\!\cdots\!56}a^{15}+\frac{23\!\cdots\!31}{73\!\cdots\!64}a^{14}-\frac{46\!\cdots\!49}{36\!\cdots\!32}a^{13}+\frac{40\!\cdots\!25}{73\!\cdots\!64}a^{12}-\frac{10\!\cdots\!57}{36\!\cdots\!32}a^{11}+\frac{18\!\cdots\!11}{73\!\cdots\!64}a^{10}-\frac{17\!\cdots\!35}{73\!\cdots\!64}a^{9}+\frac{13\!\cdots\!39}{36\!\cdots\!32}a^{8}-\frac{25\!\cdots\!95}{73\!\cdots\!64}a^{7}+\frac{16\!\cdots\!29}{36\!\cdots\!32}a^{6}-\frac{25\!\cdots\!72}{91\!\cdots\!33}a^{5}+\frac{45\!\cdots\!97}{18\!\cdots\!66}a^{4}-\frac{35\!\cdots\!55}{36\!\cdots\!32}a^{3}+\frac{11\!\cdots\!91}{18\!\cdots\!66}a^{2}+\frac{49\!\cdots\!91}{18\!\cdots\!66}a+\frac{56\!\cdots\!03}{91\!\cdots\!33}$, $\frac{73\!\cdots\!53}{16\!\cdots\!08}a^{27}+\frac{24\!\cdots\!52}{10\!\cdots\!63}a^{26}+\frac{30\!\cdots\!73}{16\!\cdots\!08}a^{25}-\frac{20\!\cdots\!29}{80\!\cdots\!04}a^{24}+\frac{66\!\cdots\!25}{16\!\cdots\!08}a^{23}+\frac{41\!\cdots\!47}{40\!\cdots\!52}a^{22}+\frac{53\!\cdots\!63}{16\!\cdots\!08}a^{21}-\frac{29\!\cdots\!31}{80\!\cdots\!04}a^{20}-\frac{19\!\cdots\!33}{40\!\cdots\!52}a^{19}+\frac{31\!\cdots\!01}{73\!\cdots\!64}a^{18}-\frac{15\!\cdots\!05}{40\!\cdots\!52}a^{17}+\frac{10\!\cdots\!69}{73\!\cdots\!64}a^{16}+\frac{30\!\cdots\!17}{16\!\cdots\!08}a^{15}-\frac{46\!\cdots\!77}{40\!\cdots\!52}a^{14}-\frac{22\!\cdots\!67}{16\!\cdots\!08}a^{13}+\frac{10\!\cdots\!47}{20\!\cdots\!26}a^{12}+\frac{75\!\cdots\!17}{80\!\cdots\!04}a^{11}+\frac{19\!\cdots\!61}{10\!\cdots\!63}a^{10}-\frac{26\!\cdots\!53}{10\!\cdots\!63}a^{9}-\frac{66\!\cdots\!59}{40\!\cdots\!52}a^{8}-\frac{18\!\cdots\!07}{18\!\cdots\!66}a^{7}+\frac{50\!\cdots\!60}{10\!\cdots\!63}a^{6}-\frac{37\!\cdots\!47}{40\!\cdots\!52}a^{5}-\frac{23\!\cdots\!43}{10\!\cdots\!63}a^{4}+\frac{97\!\cdots\!61}{10\!\cdots\!63}a^{3}+\frac{41\!\cdots\!49}{10\!\cdots\!63}a^{2}-\frac{18\!\cdots\!17}{18\!\cdots\!66}a-\frac{92\!\cdots\!49}{10\!\cdots\!63}$, $\frac{95\!\cdots\!87}{32\!\cdots\!16}a^{27}-\frac{50\!\cdots\!73}{32\!\cdots\!16}a^{26}-\frac{83\!\cdots\!19}{80\!\cdots\!04}a^{25}+\frac{24\!\cdots\!15}{16\!\cdots\!08}a^{24}-\frac{10\!\cdots\!01}{32\!\cdots\!16}a^{23}-\frac{18\!\cdots\!49}{32\!\cdots\!16}a^{22}-\frac{41\!\cdots\!37}{16\!\cdots\!08}a^{21}+\frac{16\!\cdots\!73}{80\!\cdots\!04}a^{20}+\frac{95\!\cdots\!75}{40\!\cdots\!52}a^{19}-\frac{19\!\cdots\!25}{14\!\cdots\!28}a^{18}+\frac{37\!\cdots\!59}{16\!\cdots\!08}a^{17}-\frac{75\!\cdots\!95}{73\!\cdots\!64}a^{16}-\frac{33\!\cdots\!03}{32\!\cdots\!16}a^{15}+\frac{35\!\cdots\!45}{32\!\cdots\!16}a^{14}+\frac{13\!\cdots\!95}{16\!\cdots\!08}a^{13}-\frac{50\!\cdots\!99}{16\!\cdots\!08}a^{12}-\frac{35\!\cdots\!91}{80\!\cdots\!04}a^{11}-\frac{31\!\cdots\!43}{20\!\cdots\!26}a^{10}+\frac{62\!\cdots\!69}{40\!\cdots\!52}a^{9}+\frac{17\!\cdots\!33}{80\!\cdots\!04}a^{8}+\frac{13\!\cdots\!69}{73\!\cdots\!64}a^{7}-\frac{24\!\cdots\!97}{80\!\cdots\!04}a^{6}+\frac{26\!\cdots\!89}{20\!\cdots\!26}a^{5}-\frac{27\!\cdots\!85}{40\!\cdots\!52}a^{4}+\frac{17\!\cdots\!85}{40\!\cdots\!52}a^{3}-\frac{42\!\cdots\!05}{40\!\cdots\!52}a^{2}-\frac{34\!\cdots\!51}{18\!\cdots\!66}a-\frac{42\!\cdots\!09}{10\!\cdots\!63}$, $\frac{43\!\cdots\!35}{64\!\cdots\!32}a^{27}-\frac{61\!\cdots\!91}{16\!\cdots\!08}a^{26}-\frac{51\!\cdots\!69}{40\!\cdots\!52}a^{25}+\frac{11\!\cdots\!41}{32\!\cdots\!16}a^{24}-\frac{11\!\cdots\!07}{64\!\cdots\!32}a^{23}-\frac{41\!\cdots\!57}{32\!\cdots\!16}a^{22}-\frac{64\!\cdots\!05}{40\!\cdots\!52}a^{21}+\frac{39\!\cdots\!63}{80\!\cdots\!04}a^{20}-\frac{65\!\cdots\!79}{80\!\cdots\!04}a^{19}-\frac{11\!\cdots\!25}{29\!\cdots\!56}a^{18}+\frac{95\!\cdots\!27}{16\!\cdots\!08}a^{17}-\frac{18\!\cdots\!15}{73\!\cdots\!64}a^{16}-\frac{10\!\cdots\!03}{64\!\cdots\!32}a^{15}+\frac{10\!\cdots\!73}{80\!\cdots\!04}a^{14}+\frac{63\!\cdots\!79}{32\!\cdots\!16}a^{13}-\frac{54\!\cdots\!75}{40\!\cdots\!52}a^{12}-\frac{26\!\cdots\!23}{16\!\cdots\!08}a^{11}-\frac{56\!\cdots\!77}{16\!\cdots\!08}a^{10}+\frac{77\!\cdots\!61}{16\!\cdots\!08}a^{9}-\frac{33\!\cdots\!85}{80\!\cdots\!04}a^{8}+\frac{54\!\cdots\!51}{14\!\cdots\!28}a^{7}-\frac{70\!\cdots\!13}{80\!\cdots\!04}a^{6}+\frac{36\!\cdots\!59}{80\!\cdots\!04}a^{5}-\frac{14\!\cdots\!34}{10\!\cdots\!63}a^{4}+\frac{12\!\cdots\!21}{80\!\cdots\!04}a^{3}-\frac{15\!\cdots\!17}{40\!\cdots\!52}a^{2}-\frac{92\!\cdots\!75}{18\!\cdots\!66}a-\frac{10\!\cdots\!71}{10\!\cdots\!63}$, $\frac{10\!\cdots\!65}{36\!\cdots\!32}a^{27}-\frac{27\!\cdots\!59}{18\!\cdots\!66}a^{26}-\frac{17\!\cdots\!95}{14\!\cdots\!28}a^{25}+\frac{10\!\cdots\!07}{73\!\cdots\!64}a^{24}-\frac{13\!\cdots\!91}{91\!\cdots\!33}a^{23}-\frac{39\!\cdots\!07}{73\!\cdots\!64}a^{22}-\frac{45\!\cdots\!29}{14\!\cdots\!28}a^{21}+\frac{69\!\cdots\!05}{36\!\cdots\!32}a^{20}+\frac{80\!\cdots\!09}{18\!\cdots\!66}a^{19}-\frac{45\!\cdots\!73}{36\!\cdots\!32}a^{18}+\frac{78\!\cdots\!27}{36\!\cdots\!32}a^{17}-\frac{71\!\cdots\!71}{73\!\cdots\!64}a^{16}-\frac{41\!\cdots\!57}{36\!\cdots\!32}a^{15}-\frac{28\!\cdots\!78}{91\!\cdots\!33}a^{14}+\frac{12\!\cdots\!19}{14\!\cdots\!28}a^{13}-\frac{14\!\cdots\!25}{73\!\cdots\!64}a^{12}-\frac{42\!\cdots\!21}{73\!\cdots\!64}a^{11}-\frac{13\!\cdots\!25}{91\!\cdots\!33}a^{10}+\frac{12\!\cdots\!56}{91\!\cdots\!33}a^{9}+\frac{32\!\cdots\!70}{91\!\cdots\!33}a^{8}+\frac{68\!\cdots\!57}{36\!\cdots\!32}a^{7}-\frac{49\!\cdots\!89}{18\!\cdots\!66}a^{6}+\frac{35\!\cdots\!49}{36\!\cdots\!32}a^{5}-\frac{50\!\cdots\!28}{91\!\cdots\!33}a^{4}+\frac{53\!\cdots\!77}{18\!\cdots\!66}a^{3}-\frac{36\!\cdots\!62}{91\!\cdots\!33}a^{2}-\frac{34\!\cdots\!63}{18\!\cdots\!66}a-\frac{37\!\cdots\!29}{91\!\cdots\!33}$, $\frac{13\!\cdots\!09}{64\!\cdots\!32}a^{27}-\frac{35\!\cdots\!11}{32\!\cdots\!16}a^{26}-\frac{24\!\cdots\!95}{40\!\cdots\!52}a^{25}+\frac{34\!\cdots\!15}{32\!\cdots\!16}a^{24}-\frac{21\!\cdots\!25}{64\!\cdots\!32}a^{23}-\frac{62\!\cdots\!85}{16\!\cdots\!08}a^{22}-\frac{22\!\cdots\!27}{16\!\cdots\!08}a^{21}+\frac{28\!\cdots\!47}{20\!\cdots\!26}a^{20}+\frac{49\!\cdots\!09}{80\!\cdots\!04}a^{19}-\frac{29\!\cdots\!27}{29\!\cdots\!56}a^{18}+\frac{12\!\cdots\!45}{80\!\cdots\!04}a^{17}-\frac{26\!\cdots\!65}{36\!\cdots\!32}a^{16}-\frac{41\!\cdots\!21}{64\!\cdots\!32}a^{15}+\frac{67\!\cdots\!37}{32\!\cdots\!16}a^{14}+\frac{19\!\cdots\!13}{32\!\cdots\!16}a^{13}-\frac{42\!\cdots\!91}{16\!\cdots\!08}a^{12}-\frac{75\!\cdots\!09}{16\!\cdots\!08}a^{11}-\frac{17\!\cdots\!13}{16\!\cdots\!08}a^{10}+\frac{18\!\cdots\!97}{16\!\cdots\!08}a^{9}+\frac{49\!\cdots\!85}{40\!\cdots\!52}a^{8}+\frac{19\!\cdots\!05}{14\!\cdots\!28}a^{7}-\frac{89\!\cdots\!43}{40\!\cdots\!52}a^{6}+\frac{75\!\cdots\!79}{80\!\cdots\!04}a^{5}-\frac{23\!\cdots\!51}{40\!\cdots\!52}a^{4}+\frac{25\!\cdots\!23}{80\!\cdots\!04}a^{3}+\frac{53\!\cdots\!43}{20\!\cdots\!26}a^{2}-\frac{54\!\cdots\!11}{91\!\cdots\!33}a-\frac{17\!\cdots\!33}{10\!\cdots\!63}$, $\frac{27\!\cdots\!73}{64\!\cdots\!32}a^{27}-\frac{80\!\cdots\!71}{32\!\cdots\!16}a^{26}-\frac{30\!\cdots\!19}{80\!\cdots\!04}a^{25}+\frac{73\!\cdots\!35}{32\!\cdots\!16}a^{24}-\frac{99\!\cdots\!21}{64\!\cdots\!32}a^{23}-\frac{12\!\cdots\!03}{16\!\cdots\!08}a^{22}+\frac{84\!\cdots\!63}{16\!\cdots\!08}a^{21}+\frac{30\!\cdots\!51}{10\!\cdots\!63}a^{20}-\frac{84\!\cdots\!27}{80\!\cdots\!04}a^{19}-\frac{52\!\cdots\!31}{29\!\cdots\!56}a^{18}+\frac{34\!\cdots\!75}{80\!\cdots\!04}a^{17}-\frac{62\!\cdots\!07}{36\!\cdots\!32}a^{16}-\frac{49\!\cdots\!93}{64\!\cdots\!32}a^{15}+\frac{23\!\cdots\!65}{32\!\cdots\!16}a^{14}+\frac{39\!\cdots\!93}{32\!\cdots\!16}a^{13}-\frac{16\!\cdots\!67}{16\!\cdots\!08}a^{12}+\frac{48\!\cdots\!35}{16\!\cdots\!08}a^{11}-\frac{37\!\cdots\!73}{16\!\cdots\!08}a^{10}+\frac{53\!\cdots\!41}{16\!\cdots\!08}a^{9}-\frac{20\!\cdots\!97}{20\!\cdots\!26}a^{8}+\frac{43\!\cdots\!37}{14\!\cdots\!28}a^{7}-\frac{23\!\cdots\!39}{40\!\cdots\!52}a^{6}+\frac{35\!\cdots\!95}{80\!\cdots\!04}a^{5}-\frac{10\!\cdots\!45}{40\!\cdots\!52}a^{4}+\frac{11\!\cdots\!11}{80\!\cdots\!04}a^{3}-\frac{11\!\cdots\!45}{20\!\cdots\!26}a^{2}-\frac{95\!\cdots\!31}{91\!\cdots\!33}a+\frac{53\!\cdots\!25}{10\!\cdots\!63}$, $\frac{41\!\cdots\!95}{32\!\cdots\!16}a^{27}-\frac{24\!\cdots\!65}{32\!\cdots\!16}a^{26}+\frac{11\!\cdots\!53}{80\!\cdots\!04}a^{25}+\frac{11\!\cdots\!99}{16\!\cdots\!08}a^{24}-\frac{19\!\cdots\!37}{32\!\cdots\!16}a^{23}-\frac{75\!\cdots\!13}{32\!\cdots\!16}a^{22}+\frac{10\!\cdots\!07}{16\!\cdots\!08}a^{21}+\frac{75\!\cdots\!35}{80\!\cdots\!04}a^{20}-\frac{20\!\cdots\!85}{40\!\cdots\!52}a^{19}-\frac{97\!\cdots\!41}{14\!\cdots\!28}a^{18}+\frac{24\!\cdots\!39}{16\!\cdots\!08}a^{17}-\frac{38\!\cdots\!29}{73\!\cdots\!64}a^{16}-\frac{49\!\cdots\!47}{32\!\cdots\!16}a^{15}+\frac{12\!\cdots\!21}{32\!\cdots\!16}a^{14}+\frac{58\!\cdots\!27}{16\!\cdots\!08}a^{13}-\frac{63\!\cdots\!23}{16\!\cdots\!08}a^{12}+\frac{58\!\cdots\!89}{80\!\cdots\!04}a^{11}-\frac{25\!\cdots\!07}{40\!\cdots\!52}a^{10}+\frac{44\!\cdots\!01}{40\!\cdots\!52}a^{9}-\frac{28\!\cdots\!29}{80\!\cdots\!04}a^{8}+\frac{51\!\cdots\!33}{73\!\cdots\!64}a^{7}-\frac{14\!\cdots\!81}{80\!\cdots\!04}a^{6}+\frac{14\!\cdots\!96}{10\!\cdots\!63}a^{5}-\frac{24\!\cdots\!51}{40\!\cdots\!52}a^{4}+\frac{99\!\cdots\!65}{40\!\cdots\!52}a^{3}-\frac{33\!\cdots\!29}{40\!\cdots\!52}a^{2}-\frac{15\!\cdots\!41}{18\!\cdots\!66}a+\frac{61\!\cdots\!11}{10\!\cdots\!63}$, $\frac{73\!\cdots\!93}{16\!\cdots\!08}a^{27}+\frac{41\!\cdots\!59}{16\!\cdots\!08}a^{26}+\frac{18\!\cdots\!39}{16\!\cdots\!08}a^{25}-\frac{19\!\cdots\!77}{80\!\cdots\!04}a^{24}+\frac{15\!\cdots\!59}{16\!\cdots\!08}a^{23}+\frac{13\!\cdots\!33}{16\!\cdots\!08}a^{22}+\frac{34\!\cdots\!03}{16\!\cdots\!08}a^{21}-\frac{25\!\cdots\!33}{80\!\cdots\!04}a^{20}+\frac{12\!\cdots\!99}{40\!\cdots\!52}a^{19}+\frac{15\!\cdots\!93}{73\!\cdots\!64}a^{18}-\frac{34\!\cdots\!51}{80\!\cdots\!04}a^{17}+\frac{12\!\cdots\!81}{73\!\cdots\!64}a^{16}+\frac{21\!\cdots\!57}{16\!\cdots\!08}a^{15}-\frac{76\!\cdots\!75}{16\!\cdots\!08}a^{14}-\frac{21\!\cdots\!65}{16\!\cdots\!08}a^{13}+\frac{60\!\cdots\!95}{80\!\cdots\!04}a^{12}-\frac{45\!\cdots\!61}{80\!\cdots\!04}a^{11}+\frac{94\!\cdots\!45}{40\!\cdots\!52}a^{10}-\frac{57\!\cdots\!99}{20\!\cdots\!26}a^{9}+\frac{45\!\cdots\!85}{20\!\cdots\!26}a^{8}-\frac{25\!\cdots\!06}{91\!\cdots\!33}a^{7}+\frac{20\!\cdots\!39}{40\!\cdots\!52}a^{6}-\frac{12\!\cdots\!11}{40\!\cdots\!52}a^{5}+\frac{29\!\cdots\!57}{20\!\cdots\!26}a^{4}-\frac{63\!\cdots\!12}{10\!\cdots\!63}a^{3}+\frac{57\!\cdots\!69}{20\!\cdots\!26}a^{2}+\frac{29\!\cdots\!25}{18\!\cdots\!66}a+\frac{40\!\cdots\!19}{10\!\cdots\!63}$, $\frac{94\!\cdots\!11}{32\!\cdots\!16}a^{27}-\frac{71\!\cdots\!27}{40\!\cdots\!52}a^{26}+\frac{47\!\cdots\!59}{16\!\cdots\!08}a^{25}+\frac{23\!\cdots\!71}{16\!\cdots\!08}a^{24}-\frac{44\!\cdots\!23}{32\!\cdots\!16}a^{23}-\frac{66\!\cdots\!69}{16\!\cdots\!08}a^{22}+\frac{14\!\cdots\!21}{16\!\cdots\!08}a^{21}+\frac{35\!\cdots\!59}{20\!\cdots\!26}a^{20}-\frac{38\!\cdots\!07}{40\!\cdots\!52}a^{19}+\frac{96\!\cdots\!23}{14\!\cdots\!28}a^{18}+\frac{15\!\cdots\!63}{80\!\cdots\!04}a^{17}-\frac{93\!\cdots\!07}{73\!\cdots\!64}a^{16}+\frac{58\!\cdots\!97}{32\!\cdots\!16}a^{15}-\frac{11\!\cdots\!43}{80\!\cdots\!04}a^{14}+\frac{83\!\cdots\!73}{10\!\cdots\!63}a^{13}-\frac{68\!\cdots\!71}{80\!\cdots\!04}a^{12}+\frac{31\!\cdots\!83}{40\!\cdots\!52}a^{11}-\frac{18\!\cdots\!57}{80\!\cdots\!04}a^{10}+\frac{24\!\cdots\!13}{80\!\cdots\!04}a^{9}-\frac{19\!\cdots\!34}{10\!\cdots\!63}a^{8}+\frac{27\!\cdots\!69}{73\!\cdots\!64}a^{7}-\frac{22\!\cdots\!37}{40\!\cdots\!52}a^{6}+\frac{47\!\cdots\!69}{10\!\cdots\!63}a^{5}-\frac{94\!\cdots\!77}{20\!\cdots\!26}a^{4}+\frac{17\!\cdots\!35}{40\!\cdots\!52}a^{3}-\frac{40\!\cdots\!71}{20\!\cdots\!26}a^{2}+\frac{19\!\cdots\!87}{18\!\cdots\!66}a+\frac{13\!\cdots\!71}{10\!\cdots\!63}$, $\frac{13\!\cdots\!45}{80\!\cdots\!04}a^{27}-\frac{23\!\cdots\!53}{32\!\cdots\!16}a^{26}-\frac{26\!\cdots\!73}{16\!\cdots\!08}a^{25}+\frac{69\!\cdots\!79}{80\!\cdots\!04}a^{24}+\frac{12\!\cdots\!47}{16\!\cdots\!08}a^{23}-\frac{12\!\cdots\!51}{32\!\cdots\!16}a^{22}-\frac{40\!\cdots\!11}{80\!\cdots\!04}a^{21}+\frac{48\!\cdots\!95}{40\!\cdots\!52}a^{20}+\frac{16\!\cdots\!99}{10\!\cdots\!63}a^{19}-\frac{47\!\cdots\!47}{36\!\cdots\!32}a^{18}-\frac{19\!\cdots\!87}{16\!\cdots\!08}a^{17}-\frac{16\!\cdots\!21}{36\!\cdots\!32}a^{16}-\frac{10\!\cdots\!71}{80\!\cdots\!04}a^{15}-\frac{49\!\cdots\!35}{32\!\cdots\!16}a^{14}+\frac{90\!\cdots\!03}{16\!\cdots\!08}a^{13}+\frac{62\!\cdots\!89}{16\!\cdots\!08}a^{12}-\frac{45\!\cdots\!35}{80\!\cdots\!04}a^{11}-\frac{83\!\cdots\!75}{80\!\cdots\!04}a^{10}-\frac{10\!\cdots\!53}{80\!\cdots\!04}a^{9}+\frac{14\!\cdots\!15}{80\!\cdots\!04}a^{8}+\frac{79\!\cdots\!74}{91\!\cdots\!33}a^{7}-\frac{59\!\cdots\!11}{80\!\cdots\!04}a^{6}-\frac{21\!\cdots\!12}{10\!\cdots\!63}a^{5}+\frac{43\!\cdots\!49}{40\!\cdots\!52}a^{4}-\frac{14\!\cdots\!03}{20\!\cdots\!26}a^{3}+\frac{30\!\cdots\!85}{40\!\cdots\!52}a^{2}-\frac{17\!\cdots\!63}{91\!\cdots\!33}a+\frac{23\!\cdots\!45}{10\!\cdots\!63}$, $\frac{45\!\cdots\!33}{64\!\cdots\!32}a^{27}+\frac{12\!\cdots\!39}{32\!\cdots\!16}a^{26}+\frac{20\!\cdots\!03}{80\!\cdots\!04}a^{25}-\frac{11\!\cdots\!23}{32\!\cdots\!16}a^{24}+\frac{47\!\cdots\!05}{64\!\cdots\!32}a^{23}+\frac{21\!\cdots\!23}{16\!\cdots\!08}a^{22}+\frac{10\!\cdots\!77}{16\!\cdots\!08}a^{21}-\frac{19\!\cdots\!89}{40\!\cdots\!52}a^{20}-\frac{50\!\cdots\!31}{80\!\cdots\!04}a^{19}+\frac{92\!\cdots\!91}{29\!\cdots\!56}a^{18}-\frac{45\!\cdots\!23}{80\!\cdots\!04}a^{17}+\frac{90\!\cdots\!69}{36\!\cdots\!32}a^{16}+\frac{16\!\cdots\!65}{64\!\cdots\!32}a^{15}-\frac{50\!\cdots\!57}{32\!\cdots\!16}a^{14}-\frac{66\!\cdots\!01}{32\!\cdots\!16}a^{13}+\frac{11\!\cdots\!63}{16\!\cdots\!08}a^{12}+\frac{11\!\cdots\!65}{16\!\cdots\!08}a^{11}+\frac{60\!\cdots\!25}{16\!\cdots\!08}a^{10}-\frac{59\!\cdots\!53}{16\!\cdots\!08}a^{9}-\frac{10\!\cdots\!97}{20\!\cdots\!26}a^{8}-\frac{67\!\cdots\!01}{14\!\cdots\!28}a^{7}+\frac{29\!\cdots\!69}{40\!\cdots\!52}a^{6}-\frac{25\!\cdots\!27}{80\!\cdots\!04}a^{5}+\frac{67\!\cdots\!43}{40\!\cdots\!52}a^{4}-\frac{79\!\cdots\!31}{80\!\cdots\!04}a^{3}+\frac{56\!\cdots\!67}{20\!\cdots\!26}a^{2}+\frac{42\!\cdots\!22}{91\!\cdots\!33}a+\frac{10\!\cdots\!97}{10\!\cdots\!63}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 6499859640645.487 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{12}\cdot 6499859640645.487 \cdot 1}{2\cdot\sqrt{11008994335486297475765301509911028227475767296}}\cr\approx \mathstrut & 1.87619753765745 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 6*x^27 + 54*x^25 - 45*x^24 - 180*x^23 + 36*x^22 + 720*x^21 - 360*x^20 - 474*x^19 + 1080*x^18 - 4032*x^17 - 1197*x^16 + 2466*x^15 + 28674*x^14 - 29340*x^13 + 6876*x^12 - 53028*x^11 + 87204*x^10 - 29664*x^9 + 62604*x^8 - 145584*x^7 + 115128*x^6 - 58032*x^5 + 32472*x^4 - 14688*x^3 - 2880*x^2 + 2560*x + 768)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 6*x^27 + 54*x^25 - 45*x^24 - 180*x^23 + 36*x^22 + 720*x^21 - 360*x^20 - 474*x^19 + 1080*x^18 - 4032*x^17 - 1197*x^16 + 2466*x^15 + 28674*x^14 - 29340*x^13 + 6876*x^12 - 53028*x^11 + 87204*x^10 - 29664*x^9 + 62604*x^8 - 145584*x^7 + 115128*x^6 - 58032*x^5 + 32472*x^4 - 14688*x^3 - 2880*x^2 + 2560*x + 768, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 6*x^27 + 54*x^25 - 45*x^24 - 180*x^23 + 36*x^22 + 720*x^21 - 360*x^20 - 474*x^19 + 1080*x^18 - 4032*x^17 - 1197*x^16 + 2466*x^15 + 28674*x^14 - 29340*x^13 + 6876*x^12 - 53028*x^11 + 87204*x^10 - 29664*x^9 + 62604*x^8 - 145584*x^7 + 115128*x^6 - 58032*x^5 + 32472*x^4 - 14688*x^3 - 2880*x^2 + 2560*x + 768);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 6*x^27 + 54*x^25 - 45*x^24 - 180*x^23 + 36*x^22 + 720*x^21 - 360*x^20 - 474*x^19 + 1080*x^18 - 4032*x^17 - 1197*x^16 + 2466*x^15 + 28674*x^14 - 29340*x^13 + 6876*x^12 - 53028*x^11 + 87204*x^10 - 29664*x^9 + 62604*x^8 - 145584*x^7 + 115128*x^6 - 58032*x^5 + 32472*x^4 - 14688*x^3 - 2880*x^2 + 2560*x + 768);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$G(2,2)$ (as 28T393):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 12096
The 16 conjugacy class representatives for $G(2,2)$
Character table for $G(2,2)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.7.0.1}{7} }^{4}$ ${\href{/padicField/7.12.0.1}{12} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.4.0.1}{4} }^{6}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ ${\href{/padicField/13.7.0.1}{7} }^{4}$ ${\href{/padicField/17.12.0.1}{12} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.12.0.1}{12} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.6.0.1}{6} }^{4}{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.8.0.1}{8} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.12.0.1}{12} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.8.0.1}{8} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.12.0.1}{12} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.8.0.1}{8} }^{3}{,}\,{\href{/padicField/43.4.0.1}{4} }$ ${\href{/padicField/47.12.0.1}{12} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.6.0.1}{6} }^{4}{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.12.0.1}{12} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.6.7$x^{4} + 2 x^{3} + 2 x^{2} + 2$$4$$1$$6$$A_4$$[2, 2]^{3}$
2.12.18.31$x^{12} - 4 x^{11} + 22 x^{10} + 16 x^{9} + 50 x^{8} + 32 x^{7} + 144 x^{6} + 96 x^{5} + 236 x^{4} + 248 x^{2} + 248$$4$$3$$18$$A_4\times C_2$$[2, 2, 2]^{3}$
2.12.18.51$x^{12} + 2 x^{11} + 16 x^{10} + 44 x^{9} + 18 x^{8} - 8 x^{7} + 24 x^{6} + 40 x^{5} + 20 x^{4} + 8 x^{3} + 8$$4$$3$$18$$A_4 \times C_2$$[2, 2, 2]^{3}$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $27$$27$$1$$70$