Properties

Label 28.4.135...616.1
Degree $28$
Signature $[4, 12]$
Discriminant $1.358\times 10^{45}$
Root discriminant \(40.92\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $G(2,2)$ (as 28T393)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 4*x^27 + 36*x^25 - 81*x^24 - 108*x^23 + 360*x^22 - 504*x^21 - 1971*x^20 - 312*x^19 - 2442*x^18 - 12744*x^17 - 21879*x^16 - 36504*x^15 - 61020*x^14 - 77040*x^13 - 88110*x^12 - 110808*x^11 - 134790*x^10 - 148188*x^9 - 149472*x^8 - 130860*x^7 - 93852*x^6 - 55404*x^5 - 27342*x^4 - 10656*x^3 - 2808*x^2 - 368*x - 4)
 
gp: K = bnfinit(y^28 - 4*y^27 + 36*y^25 - 81*y^24 - 108*y^23 + 360*y^22 - 504*y^21 - 1971*y^20 - 312*y^19 - 2442*y^18 - 12744*y^17 - 21879*y^16 - 36504*y^15 - 61020*y^14 - 77040*y^13 - 88110*y^12 - 110808*y^11 - 134790*y^10 - 148188*y^9 - 149472*y^8 - 130860*y^7 - 93852*y^6 - 55404*y^5 - 27342*y^4 - 10656*y^3 - 2808*y^2 - 368*y - 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 4*x^27 + 36*x^25 - 81*x^24 - 108*x^23 + 360*x^22 - 504*x^21 - 1971*x^20 - 312*x^19 - 2442*x^18 - 12744*x^17 - 21879*x^16 - 36504*x^15 - 61020*x^14 - 77040*x^13 - 88110*x^12 - 110808*x^11 - 134790*x^10 - 148188*x^9 - 149472*x^8 - 130860*x^7 - 93852*x^6 - 55404*x^5 - 27342*x^4 - 10656*x^3 - 2808*x^2 - 368*x - 4);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 4*x^27 + 36*x^25 - 81*x^24 - 108*x^23 + 360*x^22 - 504*x^21 - 1971*x^20 - 312*x^19 - 2442*x^18 - 12744*x^17 - 21879*x^16 - 36504*x^15 - 61020*x^14 - 77040*x^13 - 88110*x^12 - 110808*x^11 - 134790*x^10 - 148188*x^9 - 149472*x^8 - 130860*x^7 - 93852*x^6 - 55404*x^5 - 27342*x^4 - 10656*x^3 - 2808*x^2 - 368*x - 4)
 

\( x^{28} - 4 x^{27} + 36 x^{25} - 81 x^{24} - 108 x^{23} + 360 x^{22} - 504 x^{21} - 1971 x^{20} + \cdots - 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1357602166130257152481187563160405662935023616\) \(\medspace = 2^{58}\cdot 3^{58}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(40.92\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{9}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{9}+\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{9}+\frac{1}{3}a^{3}-\frac{1}{3}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{9}+\frac{1}{3}a^{4}-\frac{1}{3}$, $\frac{1}{9}a^{14}-\frac{1}{9}a^{12}+\frac{1}{9}a^{11}-\frac{4}{9}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{6}+\frac{1}{9}a^{5}-\frac{1}{9}a^{3}+\frac{4}{9}a^{2}+\frac{2}{9}$, $\frac{1}{9}a^{15}-\frac{1}{9}a^{13}+\frac{1}{9}a^{12}-\frac{1}{9}a^{10}+\frac{1}{3}a^{9}+\frac{1}{3}a^{7}+\frac{1}{9}a^{6}-\frac{1}{9}a^{4}+\frac{4}{9}a^{3}-\frac{4}{9}a-\frac{1}{3}$, $\frac{1}{9}a^{16}+\frac{1}{9}a^{13}-\frac{1}{9}a^{12}-\frac{1}{9}a^{9}+\frac{1}{9}a^{7}+\frac{1}{3}a^{6}+\frac{4}{9}a^{4}-\frac{1}{9}a^{3}+\frac{1}{3}a-\frac{4}{9}$, $\frac{1}{9}a^{17}-\frac{1}{9}a^{13}+\frac{1}{9}a^{12}-\frac{1}{9}a^{11}-\frac{1}{9}a^{10}+\frac{4}{9}a^{9}+\frac{4}{9}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{9}a^{4}+\frac{1}{9}a^{3}-\frac{1}{9}a^{2}-\frac{4}{9}a-\frac{2}{9}$, $\frac{1}{9}a^{18}+\frac{1}{9}a^{13}+\frac{1}{9}a^{12}+\frac{1}{9}a^{10}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{9}a^{4}+\frac{1}{9}a^{3}+\frac{4}{9}a+\frac{2}{9}$, $\frac{1}{27}a^{19}-\frac{1}{27}a^{18}-\frac{1}{9}a^{13}+\frac{2}{27}a^{10}+\frac{13}{27}a^{9}+\frac{1}{3}a^{6}+\frac{2}{9}a^{4}-\frac{1}{3}a^{3}-\frac{8}{27}a-\frac{13}{27}$, $\frac{1}{27}a^{20}-\frac{1}{27}a^{18}-\frac{1}{9}a^{13}-\frac{1}{9}a^{12}-\frac{4}{27}a^{11}-\frac{1}{9}a^{10}+\frac{1}{27}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{9}a^{4}-\frac{4}{9}a^{3}-\frac{5}{27}a^{2}-\frac{4}{9}a-\frac{7}{27}$, $\frac{1}{27}a^{21}-\frac{1}{27}a^{18}+\frac{1}{9}a^{13}+\frac{2}{27}a^{12}+\frac{1}{9}a^{10}+\frac{1}{27}a^{9}-\frac{1}{3}a^{7}+\frac{1}{9}a^{4}-\frac{8}{27}a^{3}+\frac{4}{9}a+\frac{2}{27}$, $\frac{1}{27}a^{22}-\frac{1}{27}a^{18}-\frac{1}{27}a^{13}+\frac{1}{9}a^{12}+\frac{1}{9}a^{10}-\frac{2}{27}a^{9}-\frac{2}{27}a^{4}-\frac{2}{9}a^{3}-\frac{2}{9}a+\frac{8}{27}$, $\frac{1}{27}a^{23}-\frac{1}{27}a^{18}-\frac{1}{27}a^{14}+\frac{1}{9}a^{11}+\frac{13}{27}a^{9}+\frac{1}{3}a^{6}-\frac{2}{27}a^{5}-\frac{1}{3}a^{3}-\frac{2}{9}a^{2}-\frac{13}{27}$, $\frac{1}{54}a^{24}-\frac{1}{54}a^{20}-\frac{1}{18}a^{16}+\frac{1}{27}a^{15}-\frac{1}{9}a^{13}+\frac{1}{18}a^{12}+\frac{2}{27}a^{11}+\frac{1}{9}a^{10}-\frac{2}{9}a^{9}-\frac{1}{3}a^{8}+\frac{1}{9}a^{7}+\frac{5}{27}a^{6}+\frac{1}{3}a^{5}+\frac{2}{9}a^{4}-\frac{4}{9}a^{3}-\frac{11}{27}a^{2}-\frac{2}{9}a-\frac{2}{9}$, $\frac{1}{54}a^{25}-\frac{1}{54}a^{21}-\frac{1}{18}a^{17}+\frac{1}{27}a^{16}+\frac{1}{18}a^{13}-\frac{1}{27}a^{12}-\frac{1}{9}a^{11}+\frac{1}{9}a^{10}+\frac{2}{9}a^{9}-\frac{2}{9}a^{8}+\frac{5}{27}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{4}{9}a^{4}+\frac{13}{27}a^{3}-\frac{1}{9}a^{2}+\frac{1}{9}a+\frac{2}{9}$, $\frac{1}{162}a^{26}-\frac{1}{162}a^{24}+\frac{1}{81}a^{23}-\frac{1}{54}a^{22}-\frac{1}{81}a^{21}+\frac{1}{162}a^{20}+\frac{5}{162}a^{18}-\frac{2}{81}a^{17}-\frac{1}{18}a^{16}+\frac{2}{81}a^{15}+\frac{1}{162}a^{14}-\frac{1}{27}a^{13}-\frac{1}{162}a^{12}+\frac{7}{81}a^{11}+\frac{1}{9}a^{10}+\frac{8}{81}a^{9}+\frac{2}{81}a^{8}-\frac{2}{9}a^{7}-\frac{2}{81}a^{6}-\frac{32}{81}a^{5}+\frac{13}{27}a^{4}+\frac{32}{81}a^{3}+\frac{38}{81}a^{2}+\frac{4}{9}a+\frac{1}{81}$, $\frac{1}{11\!\cdots\!98}a^{27}+\frac{14\!\cdots\!65}{11\!\cdots\!98}a^{26}-\frac{22\!\cdots\!75}{55\!\cdots\!99}a^{25}-\frac{20\!\cdots\!11}{12\!\cdots\!22}a^{24}-\frac{12\!\cdots\!99}{11\!\cdots\!98}a^{23}-\frac{15\!\cdots\!17}{11\!\cdots\!98}a^{22}-\frac{17\!\cdots\!03}{18\!\cdots\!33}a^{21}-\frac{12\!\cdots\!31}{11\!\cdots\!98}a^{20}+\frac{16\!\cdots\!47}{11\!\cdots\!98}a^{19}-\frac{19\!\cdots\!23}{36\!\cdots\!66}a^{18}-\frac{95\!\cdots\!26}{55\!\cdots\!99}a^{17}+\frac{33\!\cdots\!55}{11\!\cdots\!98}a^{16}+\frac{28\!\cdots\!87}{12\!\cdots\!22}a^{15}+\frac{19\!\cdots\!13}{11\!\cdots\!98}a^{14}+\frac{54\!\cdots\!86}{55\!\cdots\!99}a^{13}-\frac{35\!\cdots\!27}{36\!\cdots\!66}a^{12}-\frac{86\!\cdots\!83}{55\!\cdots\!99}a^{11}-\frac{75\!\cdots\!84}{55\!\cdots\!99}a^{10}-\frac{72\!\cdots\!18}{18\!\cdots\!33}a^{9}-\frac{21\!\cdots\!64}{55\!\cdots\!99}a^{8}-\frac{30\!\cdots\!63}{55\!\cdots\!99}a^{7}-\frac{76\!\cdots\!45}{20\!\cdots\!37}a^{6}-\frac{27\!\cdots\!13}{55\!\cdots\!99}a^{5}+\frac{17\!\cdots\!20}{55\!\cdots\!99}a^{4}+\frac{76\!\cdots\!37}{18\!\cdots\!33}a^{3}-\frac{47\!\cdots\!61}{55\!\cdots\!99}a^{2}+\frac{18\!\cdots\!18}{55\!\cdots\!99}a+\frac{18\!\cdots\!49}{55\!\cdots\!99}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{69\!\cdots\!30}{55\!\cdots\!99}a^{27}-\frac{23\!\cdots\!35}{41\!\cdots\!74}a^{26}+\frac{35\!\cdots\!13}{11\!\cdots\!98}a^{25}+\frac{23\!\cdots\!67}{55\!\cdots\!99}a^{24}-\frac{23\!\cdots\!43}{18\!\cdots\!33}a^{23}-\frac{69\!\cdots\!39}{11\!\cdots\!98}a^{22}+\frac{53\!\cdots\!35}{11\!\cdots\!98}a^{21}-\frac{16\!\cdots\!94}{18\!\cdots\!33}a^{20}-\frac{10\!\cdots\!44}{55\!\cdots\!99}a^{19}+\frac{80\!\cdots\!47}{11\!\cdots\!98}a^{18}-\frac{48\!\cdots\!99}{13\!\cdots\!58}a^{17}-\frac{77\!\cdots\!38}{55\!\cdots\!99}a^{16}-\frac{10\!\cdots\!93}{55\!\cdots\!99}a^{15}-\frac{12\!\cdots\!71}{36\!\cdots\!66}a^{14}-\frac{62\!\cdots\!79}{11\!\cdots\!98}a^{13}-\frac{35\!\cdots\!04}{55\!\cdots\!99}a^{12}-\frac{13\!\cdots\!39}{18\!\cdots\!33}a^{11}-\frac{53\!\cdots\!77}{55\!\cdots\!99}a^{10}-\frac{63\!\cdots\!54}{55\!\cdots\!99}a^{9}-\frac{24\!\cdots\!55}{20\!\cdots\!37}a^{8}-\frac{66\!\cdots\!13}{55\!\cdots\!99}a^{7}-\frac{54\!\cdots\!63}{55\!\cdots\!99}a^{6}-\frac{11\!\cdots\!50}{18\!\cdots\!33}a^{5}-\frac{19\!\cdots\!64}{55\!\cdots\!99}a^{4}-\frac{86\!\cdots\!16}{55\!\cdots\!99}a^{3}-\frac{92\!\cdots\!14}{18\!\cdots\!33}a^{2}-\frac{47\!\cdots\!26}{55\!\cdots\!99}a-\frac{49\!\cdots\!39}{18\!\cdots\!33}$, $\frac{19\!\cdots\!11}{55\!\cdots\!99}a^{27}+\frac{20\!\cdots\!85}{12\!\cdots\!22}a^{26}-\frac{74\!\cdots\!06}{55\!\cdots\!99}a^{25}-\frac{62\!\cdots\!68}{55\!\cdots\!99}a^{24}+\frac{68\!\cdots\!21}{18\!\cdots\!33}a^{23}+\frac{75\!\cdots\!37}{11\!\cdots\!98}a^{22}-\frac{71\!\cdots\!69}{55\!\cdots\!99}a^{21}+\frac{51\!\cdots\!75}{18\!\cdots\!33}a^{20}+\frac{24\!\cdots\!67}{55\!\cdots\!99}a^{19}-\frac{29\!\cdots\!21}{11\!\cdots\!98}a^{18}+\frac{21\!\cdots\!35}{20\!\cdots\!37}a^{17}+\frac{19\!\cdots\!12}{55\!\cdots\!99}a^{16}+\frac{25\!\cdots\!87}{55\!\cdots\!99}a^{15}+\frac{32\!\cdots\!17}{36\!\cdots\!66}a^{14}+\frac{76\!\cdots\!61}{55\!\cdots\!99}a^{13}+\frac{83\!\cdots\!19}{55\!\cdots\!99}a^{12}+\frac{32\!\cdots\!21}{18\!\cdots\!33}a^{11}+\frac{12\!\cdots\!18}{55\!\cdots\!99}a^{10}+\frac{14\!\cdots\!38}{55\!\cdots\!99}a^{9}+\frac{17\!\cdots\!08}{61\!\cdots\!11}a^{8}+\frac{15\!\cdots\!70}{55\!\cdots\!99}a^{7}+\frac{12\!\cdots\!29}{55\!\cdots\!99}a^{6}+\frac{25\!\cdots\!72}{18\!\cdots\!33}a^{5}+\frac{41\!\cdots\!73}{55\!\cdots\!99}a^{4}+\frac{17\!\cdots\!24}{55\!\cdots\!99}a^{3}+\frac{18\!\cdots\!64}{18\!\cdots\!33}a^{2}+\frac{83\!\cdots\!19}{55\!\cdots\!99}a+\frac{30\!\cdots\!11}{18\!\cdots\!33}$, $\frac{93\!\cdots\!71}{11\!\cdots\!98}a^{27}-\frac{14\!\cdots\!61}{36\!\cdots\!66}a^{26}+\frac{11\!\cdots\!37}{55\!\cdots\!99}a^{25}+\frac{16\!\cdots\!44}{55\!\cdots\!99}a^{24}-\frac{31\!\cdots\!19}{36\!\cdots\!66}a^{23}-\frac{49\!\cdots\!33}{11\!\cdots\!98}a^{22}+\frac{18\!\cdots\!84}{55\!\cdots\!99}a^{21}-\frac{11\!\cdots\!93}{18\!\cdots\!33}a^{20}-\frac{14\!\cdots\!13}{11\!\cdots\!98}a^{19}+\frac{53\!\cdots\!49}{11\!\cdots\!98}a^{18}-\frac{43\!\cdots\!19}{18\!\cdots\!33}a^{17}-\frac{52\!\cdots\!20}{55\!\cdots\!99}a^{16}-\frac{14\!\cdots\!93}{11\!\cdots\!98}a^{15}-\frac{87\!\cdots\!49}{36\!\cdots\!66}a^{14}-\frac{21\!\cdots\!03}{55\!\cdots\!99}a^{13}-\frac{24\!\cdots\!02}{55\!\cdots\!99}a^{12}-\frac{92\!\cdots\!61}{18\!\cdots\!33}a^{11}-\frac{36\!\cdots\!71}{55\!\cdots\!99}a^{10}-\frac{42\!\cdots\!61}{55\!\cdots\!99}a^{9}-\frac{15\!\cdots\!88}{18\!\cdots\!33}a^{8}-\frac{44\!\cdots\!79}{55\!\cdots\!99}a^{7}-\frac{36\!\cdots\!65}{55\!\cdots\!99}a^{6}-\frac{79\!\cdots\!92}{18\!\cdots\!33}a^{5}-\frac{12\!\cdots\!32}{55\!\cdots\!99}a^{4}-\frac{57\!\cdots\!01}{55\!\cdots\!99}a^{3}-\frac{60\!\cdots\!11}{18\!\cdots\!33}a^{2}-\frac{30\!\cdots\!64}{55\!\cdots\!99}a-\frac{18\!\cdots\!65}{18\!\cdots\!33}$, $\frac{47\!\cdots\!49}{36\!\cdots\!66}a^{27}+\frac{61\!\cdots\!39}{11\!\cdots\!98}a^{26}-\frac{34\!\cdots\!65}{18\!\cdots\!33}a^{25}-\frac{25\!\cdots\!01}{55\!\cdots\!99}a^{24}+\frac{13\!\cdots\!71}{11\!\cdots\!98}a^{23}+\frac{36\!\cdots\!61}{36\!\cdots\!66}a^{22}-\frac{28\!\cdots\!28}{55\!\cdots\!99}a^{21}+\frac{46\!\cdots\!98}{55\!\cdots\!99}a^{20}+\frac{93\!\cdots\!19}{41\!\cdots\!74}a^{19}-\frac{66\!\cdots\!33}{11\!\cdots\!98}a^{18}+\frac{17\!\cdots\!89}{55\!\cdots\!99}a^{17}+\frac{28\!\cdots\!59}{18\!\cdots\!33}a^{16}+\frac{24\!\cdots\!17}{11\!\cdots\!98}a^{15}+\frac{41\!\cdots\!49}{11\!\cdots\!98}a^{14}+\frac{11\!\cdots\!97}{18\!\cdots\!33}a^{13}+\frac{40\!\cdots\!50}{55\!\cdots\!99}a^{12}+\frac{45\!\cdots\!61}{55\!\cdots\!99}a^{11}+\frac{66\!\cdots\!09}{61\!\cdots\!11}a^{10}+\frac{70\!\cdots\!21}{55\!\cdots\!99}a^{9}+\frac{75\!\cdots\!32}{55\!\cdots\!99}a^{8}+\frac{24\!\cdots\!03}{18\!\cdots\!33}a^{7}+\frac{60\!\cdots\!95}{55\!\cdots\!99}a^{6}+\frac{39\!\cdots\!55}{55\!\cdots\!99}a^{5}+\frac{71\!\cdots\!92}{18\!\cdots\!33}a^{4}+\frac{96\!\cdots\!50}{55\!\cdots\!99}a^{3}+\frac{31\!\cdots\!27}{55\!\cdots\!99}a^{2}+\frac{58\!\cdots\!92}{61\!\cdots\!11}a+\frac{57\!\cdots\!77}{55\!\cdots\!99}$, $\frac{22\!\cdots\!61}{55\!\cdots\!99}a^{27}-\frac{21\!\cdots\!35}{11\!\cdots\!98}a^{26}+\frac{12\!\cdots\!75}{11\!\cdots\!98}a^{25}+\frac{79\!\cdots\!82}{55\!\cdots\!99}a^{24}-\frac{23\!\cdots\!12}{55\!\cdots\!99}a^{23}-\frac{22\!\cdots\!51}{11\!\cdots\!98}a^{22}+\frac{17\!\cdots\!65}{11\!\cdots\!98}a^{21}-\frac{16\!\cdots\!79}{55\!\cdots\!99}a^{20}-\frac{35\!\cdots\!91}{55\!\cdots\!99}a^{19}+\frac{27\!\cdots\!17}{11\!\cdots\!98}a^{18}-\frac{12\!\cdots\!51}{11\!\cdots\!98}a^{17}-\frac{25\!\cdots\!19}{55\!\cdots\!99}a^{16}-\frac{35\!\cdots\!59}{55\!\cdots\!99}a^{15}-\frac{12\!\cdots\!61}{11\!\cdots\!98}a^{14}-\frac{20\!\cdots\!73}{11\!\cdots\!98}a^{13}-\frac{11\!\cdots\!93}{55\!\cdots\!99}a^{12}-\frac{13\!\cdots\!82}{55\!\cdots\!99}a^{11}-\frac{17\!\cdots\!17}{55\!\cdots\!99}a^{10}-\frac{20\!\cdots\!50}{55\!\cdots\!99}a^{9}-\frac{21\!\cdots\!72}{55\!\cdots\!99}a^{8}-\frac{21\!\cdots\!12}{55\!\cdots\!99}a^{7}-\frac{17\!\cdots\!84}{55\!\cdots\!99}a^{6}-\frac{11\!\cdots\!29}{55\!\cdots\!99}a^{5}-\frac{61\!\cdots\!07}{55\!\cdots\!99}a^{4}-\frac{27\!\cdots\!44}{55\!\cdots\!99}a^{3}-\frac{87\!\cdots\!57}{55\!\cdots\!99}a^{2}-\frac{14\!\cdots\!39}{55\!\cdots\!99}a-\frac{35\!\cdots\!57}{55\!\cdots\!99}$, $\frac{88\!\cdots\!33}{11\!\cdots\!98}a^{27}-\frac{27\!\cdots\!74}{68\!\cdots\!79}a^{26}+\frac{46\!\cdots\!67}{11\!\cdots\!98}a^{25}+\frac{13\!\cdots\!82}{55\!\cdots\!99}a^{24}-\frac{34\!\cdots\!29}{36\!\cdots\!66}a^{23}+\frac{48\!\cdots\!86}{55\!\cdots\!99}a^{22}+\frac{32\!\cdots\!81}{11\!\cdots\!98}a^{21}-\frac{13\!\cdots\!14}{18\!\cdots\!33}a^{20}-\frac{93\!\cdots\!37}{11\!\cdots\!98}a^{19}+\frac{44\!\cdots\!13}{55\!\cdots\!99}a^{18}-\frac{11\!\cdots\!11}{41\!\cdots\!74}a^{17}-\frac{41\!\cdots\!58}{55\!\cdots\!99}a^{16}-\frac{99\!\cdots\!75}{11\!\cdots\!98}a^{15}-\frac{33\!\cdots\!88}{18\!\cdots\!33}a^{14}-\frac{30\!\cdots\!69}{11\!\cdots\!98}a^{13}-\frac{15\!\cdots\!84}{55\!\cdots\!99}a^{12}-\frac{65\!\cdots\!82}{18\!\cdots\!33}a^{11}-\frac{25\!\cdots\!25}{55\!\cdots\!99}a^{10}-\frac{29\!\cdots\!03}{55\!\cdots\!99}a^{9}-\frac{11\!\cdots\!03}{20\!\cdots\!37}a^{8}-\frac{29\!\cdots\!89}{55\!\cdots\!99}a^{7}-\frac{22\!\cdots\!16}{55\!\cdots\!99}a^{6}-\frac{45\!\cdots\!57}{18\!\cdots\!33}a^{5}-\frac{70\!\cdots\!01}{55\!\cdots\!99}a^{4}-\frac{29\!\cdots\!12}{55\!\cdots\!99}a^{3}-\frac{26\!\cdots\!31}{18\!\cdots\!33}a^{2}-\frac{92\!\cdots\!20}{55\!\cdots\!99}a+\frac{41\!\cdots\!69}{18\!\cdots\!33}$, $\frac{46\!\cdots\!27}{36\!\cdots\!66}a^{27}+\frac{71\!\cdots\!01}{11\!\cdots\!98}a^{26}-\frac{95\!\cdots\!77}{13\!\cdots\!58}a^{25}-\frac{21\!\cdots\!17}{55\!\cdots\!99}a^{24}+\frac{16\!\cdots\!27}{11\!\cdots\!98}a^{23}-\frac{88\!\cdots\!11}{41\!\cdots\!74}a^{22}-\frac{50\!\cdots\!51}{11\!\cdots\!98}a^{21}+\frac{64\!\cdots\!62}{55\!\cdots\!99}a^{20}+\frac{46\!\cdots\!21}{36\!\cdots\!66}a^{19}-\frac{13\!\cdots\!65}{11\!\cdots\!98}a^{18}+\frac{47\!\cdots\!55}{11\!\cdots\!98}a^{17}+\frac{71\!\cdots\!10}{61\!\cdots\!11}a^{16}+\frac{15\!\cdots\!81}{11\!\cdots\!98}a^{15}+\frac{32\!\cdots\!35}{11\!\cdots\!98}a^{14}+\frac{53\!\cdots\!37}{12\!\cdots\!22}a^{13}+\frac{25\!\cdots\!72}{55\!\cdots\!99}a^{12}+\frac{30\!\cdots\!41}{55\!\cdots\!99}a^{11}+\frac{13\!\cdots\!08}{18\!\cdots\!33}a^{10}+\frac{45\!\cdots\!61}{55\!\cdots\!99}a^{9}+\frac{48\!\cdots\!96}{55\!\cdots\!99}a^{8}+\frac{50\!\cdots\!68}{61\!\cdots\!11}a^{7}+\frac{35\!\cdots\!21}{55\!\cdots\!99}a^{6}+\frac{21\!\cdots\!70}{55\!\cdots\!99}a^{5}+\frac{12\!\cdots\!47}{61\!\cdots\!11}a^{4}+\frac{44\!\cdots\!08}{55\!\cdots\!99}a^{3}+\frac{11\!\cdots\!07}{55\!\cdots\!99}a^{2}+\frac{45\!\cdots\!45}{18\!\cdots\!33}a-\frac{10\!\cdots\!39}{55\!\cdots\!99}$, $\frac{25\!\cdots\!99}{55\!\cdots\!99}a^{27}+\frac{23\!\cdots\!29}{11\!\cdots\!98}a^{26}-\frac{79\!\cdots\!19}{55\!\cdots\!99}a^{25}-\frac{28\!\cdots\!13}{18\!\cdots\!33}a^{24}+\frac{26\!\cdots\!62}{55\!\cdots\!99}a^{23}+\frac{19\!\cdots\!57}{11\!\cdots\!98}a^{22}-\frac{36\!\cdots\!73}{20\!\cdots\!37}a^{21}+\frac{19\!\cdots\!86}{55\!\cdots\!99}a^{20}+\frac{37\!\cdots\!59}{55\!\cdots\!99}a^{19}-\frac{11\!\cdots\!37}{36\!\cdots\!66}a^{18}+\frac{73\!\cdots\!49}{55\!\cdots\!99}a^{17}+\frac{27\!\cdots\!38}{55\!\cdots\!99}a^{16}+\frac{12\!\cdots\!93}{18\!\cdots\!33}a^{15}+\frac{13\!\cdots\!85}{11\!\cdots\!98}a^{14}+\frac{10\!\cdots\!22}{55\!\cdots\!99}a^{13}+\frac{13\!\cdots\!90}{61\!\cdots\!11}a^{12}+\frac{14\!\cdots\!29}{55\!\cdots\!99}a^{11}+\frac{18\!\cdots\!02}{55\!\cdots\!99}a^{10}+\frac{72\!\cdots\!57}{18\!\cdots\!33}a^{9}+\frac{23\!\cdots\!42}{55\!\cdots\!99}a^{8}+\frac{22\!\cdots\!41}{55\!\cdots\!99}a^{7}+\frac{60\!\cdots\!17}{18\!\cdots\!33}a^{6}+\frac{11\!\cdots\!84}{55\!\cdots\!99}a^{5}+\frac{62\!\cdots\!89}{55\!\cdots\!99}a^{4}+\frac{30\!\cdots\!48}{61\!\cdots\!11}a^{3}+\frac{85\!\cdots\!54}{55\!\cdots\!99}a^{2}+\frac{13\!\cdots\!55}{55\!\cdots\!99}a+\frac{14\!\cdots\!07}{55\!\cdots\!99}$, $\frac{11\!\cdots\!92}{55\!\cdots\!99}a^{27}+\frac{11\!\cdots\!81}{11\!\cdots\!98}a^{26}-\frac{42\!\cdots\!58}{55\!\cdots\!99}a^{25}-\frac{38\!\cdots\!35}{55\!\cdots\!99}a^{24}+\frac{12\!\cdots\!47}{55\!\cdots\!99}a^{23}+\frac{39\!\cdots\!55}{11\!\cdots\!98}a^{22}-\frac{41\!\cdots\!09}{55\!\cdots\!99}a^{21}+\frac{10\!\cdots\!26}{55\!\cdots\!99}a^{20}+\frac{14\!\cdots\!79}{55\!\cdots\!99}a^{19}-\frac{10\!\cdots\!07}{11\!\cdots\!98}a^{18}+\frac{49\!\cdots\!57}{55\!\cdots\!99}a^{17}+\frac{12\!\cdots\!44}{55\!\cdots\!99}a^{16}+\frac{18\!\cdots\!12}{55\!\cdots\!99}a^{15}+\frac{81\!\cdots\!59}{11\!\cdots\!98}a^{14}+\frac{61\!\cdots\!97}{55\!\cdots\!99}a^{13}+\frac{73\!\cdots\!35}{55\!\cdots\!99}a^{12}+\frac{98\!\cdots\!61}{55\!\cdots\!99}a^{11}+\frac{12\!\cdots\!46}{55\!\cdots\!99}a^{10}+\frac{13\!\cdots\!89}{55\!\cdots\!99}a^{9}+\frac{15\!\cdots\!46}{55\!\cdots\!99}a^{8}+\frac{16\!\cdots\!17}{55\!\cdots\!99}a^{7}+\frac{14\!\cdots\!28}{55\!\cdots\!99}a^{6}+\frac{11\!\cdots\!66}{55\!\cdots\!99}a^{5}+\frac{76\!\cdots\!85}{55\!\cdots\!99}a^{4}+\frac{39\!\cdots\!41}{55\!\cdots\!99}a^{3}+\frac{17\!\cdots\!62}{55\!\cdots\!99}a^{2}+\frac{63\!\cdots\!41}{55\!\cdots\!99}a+\frac{11\!\cdots\!99}{55\!\cdots\!99}$, $\frac{64\!\cdots\!07}{55\!\cdots\!99}a^{27}+\frac{41\!\cdots\!45}{55\!\cdots\!99}a^{26}-\frac{38\!\cdots\!15}{55\!\cdots\!99}a^{25}+\frac{10\!\cdots\!65}{68\!\cdots\!79}a^{24}+\frac{12\!\cdots\!07}{55\!\cdots\!99}a^{23}-\frac{97\!\cdots\!72}{55\!\cdots\!99}a^{22}+\frac{10\!\cdots\!64}{68\!\cdots\!79}a^{21}+\frac{19\!\cdots\!98}{55\!\cdots\!99}a^{20}-\frac{89\!\cdots\!38}{55\!\cdots\!99}a^{19}-\frac{90\!\cdots\!52}{18\!\cdots\!33}a^{18}+\frac{81\!\cdots\!41}{55\!\cdots\!99}a^{17}-\frac{37\!\cdots\!06}{55\!\cdots\!99}a^{16}-\frac{67\!\cdots\!71}{61\!\cdots\!11}a^{15}-\frac{64\!\cdots\!21}{55\!\cdots\!99}a^{14}-\frac{16\!\cdots\!74}{55\!\cdots\!99}a^{13}-\frac{25\!\cdots\!97}{68\!\cdots\!79}a^{12}-\frac{19\!\cdots\!31}{55\!\cdots\!99}a^{11}-\frac{27\!\cdots\!21}{55\!\cdots\!99}a^{10}-\frac{11\!\cdots\!95}{18\!\cdots\!33}a^{9}-\frac{36\!\cdots\!39}{55\!\cdots\!99}a^{8}-\frac{38\!\cdots\!07}{55\!\cdots\!99}a^{7}-\frac{39\!\cdots\!13}{61\!\cdots\!11}a^{6}-\frac{24\!\cdots\!53}{55\!\cdots\!99}a^{5}-\frac{14\!\cdots\!42}{55\!\cdots\!99}a^{4}-\frac{30\!\cdots\!67}{20\!\cdots\!37}a^{3}-\frac{32\!\cdots\!86}{55\!\cdots\!99}a^{2}-\frac{81\!\cdots\!23}{55\!\cdots\!99}a-\frac{10\!\cdots\!35}{55\!\cdots\!99}$, $\frac{18\!\cdots\!14}{18\!\cdots\!33}a^{27}+\frac{17\!\cdots\!97}{36\!\cdots\!66}a^{26}-\frac{67\!\cdots\!09}{18\!\cdots\!33}a^{25}-\frac{20\!\cdots\!14}{61\!\cdots\!11}a^{24}+\frac{19\!\cdots\!16}{18\!\cdots\!33}a^{23}+\frac{94\!\cdots\!87}{36\!\cdots\!66}a^{22}-\frac{70\!\cdots\!90}{18\!\cdots\!33}a^{21}+\frac{14\!\cdots\!94}{18\!\cdots\!33}a^{20}+\frac{24\!\cdots\!53}{18\!\cdots\!33}a^{19}-\frac{95\!\cdots\!75}{12\!\cdots\!22}a^{18}+\frac{55\!\cdots\!20}{18\!\cdots\!33}a^{17}+\frac{19\!\cdots\!34}{18\!\cdots\!33}a^{16}+\frac{27\!\cdots\!20}{20\!\cdots\!37}a^{15}+\frac{93\!\cdots\!71}{36\!\cdots\!66}a^{14}+\frac{74\!\cdots\!59}{18\!\cdots\!33}a^{13}+\frac{81\!\cdots\!09}{18\!\cdots\!33}a^{12}+\frac{95\!\cdots\!28}{18\!\cdots\!33}a^{11}+\frac{12\!\cdots\!12}{18\!\cdots\!33}a^{10}+\frac{16\!\cdots\!09}{20\!\cdots\!37}a^{9}+\frac{15\!\cdots\!19}{18\!\cdots\!33}a^{8}+\frac{15\!\cdots\!07}{18\!\cdots\!33}a^{7}+\frac{39\!\cdots\!10}{61\!\cdots\!11}a^{6}+\frac{75\!\cdots\!00}{18\!\cdots\!33}a^{5}+\frac{40\!\cdots\!62}{18\!\cdots\!33}a^{4}+\frac{17\!\cdots\!40}{18\!\cdots\!33}a^{3}+\frac{53\!\cdots\!79}{18\!\cdots\!33}a^{2}+\frac{83\!\cdots\!70}{18\!\cdots\!33}a+\frac{10\!\cdots\!63}{18\!\cdots\!33}$, $\frac{13\!\cdots\!61}{11\!\cdots\!98}a^{27}+\frac{67\!\cdots\!95}{11\!\cdots\!98}a^{26}-\frac{59\!\cdots\!19}{11\!\cdots\!98}a^{25}-\frac{22\!\cdots\!18}{55\!\cdots\!99}a^{24}+\frac{15\!\cdots\!77}{11\!\cdots\!98}a^{23}+\frac{16\!\cdots\!45}{11\!\cdots\!98}a^{22}-\frac{51\!\cdots\!05}{11\!\cdots\!98}a^{21}+\frac{57\!\cdots\!47}{55\!\cdots\!99}a^{20}+\frac{17\!\cdots\!73}{11\!\cdots\!98}a^{19}-\frac{11\!\cdots\!87}{11\!\cdots\!98}a^{18}+\frac{43\!\cdots\!39}{11\!\cdots\!98}a^{17}+\frac{68\!\cdots\!41}{55\!\cdots\!99}a^{16}+\frac{17\!\cdots\!51}{11\!\cdots\!98}a^{15}+\frac{34\!\cdots\!61}{11\!\cdots\!98}a^{14}+\frac{53\!\cdots\!15}{11\!\cdots\!98}a^{13}+\frac{28\!\cdots\!31}{55\!\cdots\!99}a^{12}+\frac{34\!\cdots\!95}{55\!\cdots\!99}a^{11}+\frac{45\!\cdots\!65}{55\!\cdots\!99}a^{10}+\frac{51\!\cdots\!67}{55\!\cdots\!99}a^{9}+\frac{54\!\cdots\!94}{55\!\cdots\!99}a^{8}+\frac{52\!\cdots\!60}{55\!\cdots\!99}a^{7}+\frac{41\!\cdots\!06}{55\!\cdots\!99}a^{6}+\frac{26\!\cdots\!60}{55\!\cdots\!99}a^{5}+\frac{13\!\cdots\!10}{55\!\cdots\!99}a^{4}+\frac{59\!\cdots\!01}{55\!\cdots\!99}a^{3}+\frac{17\!\cdots\!59}{55\!\cdots\!99}a^{2}+\frac{25\!\cdots\!05}{55\!\cdots\!99}a-\frac{13\!\cdots\!45}{55\!\cdots\!99}$, $\frac{41\!\cdots\!40}{18\!\cdots\!33}a^{27}-\frac{37\!\cdots\!93}{36\!\cdots\!66}a^{26}+\frac{37\!\cdots\!91}{68\!\cdots\!79}a^{25}+\frac{47\!\cdots\!22}{61\!\cdots\!11}a^{24}-\frac{13\!\cdots\!50}{61\!\cdots\!11}a^{23}-\frac{14\!\cdots\!19}{12\!\cdots\!22}a^{22}+\frac{54\!\cdots\!42}{61\!\cdots\!11}a^{21}-\frac{99\!\cdots\!38}{61\!\cdots\!11}a^{20}-\frac{65\!\cdots\!31}{18\!\cdots\!33}a^{19}+\frac{16\!\cdots\!65}{12\!\cdots\!22}a^{18}-\frac{11\!\cdots\!42}{18\!\cdots\!33}a^{17}-\frac{17\!\cdots\!45}{68\!\cdots\!79}a^{16}-\frac{70\!\cdots\!38}{20\!\cdots\!37}a^{15}-\frac{25\!\cdots\!63}{41\!\cdots\!74}a^{14}-\frac{62\!\cdots\!41}{61\!\cdots\!11}a^{13}-\frac{69\!\cdots\!97}{61\!\cdots\!11}a^{12}-\frac{89\!\cdots\!28}{68\!\cdots\!79}a^{11}-\frac{31\!\cdots\!28}{18\!\cdots\!33}a^{10}-\frac{41\!\cdots\!76}{20\!\cdots\!37}a^{9}-\frac{39\!\cdots\!21}{18\!\cdots\!33}a^{8}-\frac{14\!\cdots\!33}{68\!\cdots\!79}a^{7}-\frac{10\!\cdots\!47}{61\!\cdots\!11}a^{6}-\frac{67\!\cdots\!13}{61\!\cdots\!11}a^{5}-\frac{40\!\cdots\!57}{68\!\cdots\!79}a^{4}-\frac{53\!\cdots\!00}{20\!\cdots\!37}a^{3}-\frac{50\!\cdots\!32}{61\!\cdots\!11}a^{2}-\frac{24\!\cdots\!12}{18\!\cdots\!33}a-\frac{33\!\cdots\!85}{18\!\cdots\!33}$, $\frac{65\!\cdots\!87}{55\!\cdots\!99}a^{27}+\frac{12\!\cdots\!73}{18\!\cdots\!33}a^{26}-\frac{11\!\cdots\!65}{11\!\cdots\!98}a^{25}-\frac{16\!\cdots\!82}{55\!\cdots\!99}a^{24}+\frac{28\!\cdots\!88}{18\!\cdots\!33}a^{23}-\frac{62\!\cdots\!77}{55\!\cdots\!99}a^{22}-\frac{40\!\cdots\!31}{11\!\cdots\!98}a^{21}+\frac{23\!\cdots\!96}{18\!\cdots\!33}a^{20}+\frac{25\!\cdots\!07}{55\!\cdots\!99}a^{19}-\frac{84\!\cdots\!70}{55\!\cdots\!99}a^{18}+\frac{16\!\cdots\!29}{36\!\cdots\!66}a^{17}+\frac{44\!\cdots\!51}{55\!\cdots\!99}a^{16}+\frac{43\!\cdots\!99}{55\!\cdots\!99}a^{15}+\frac{35\!\cdots\!95}{18\!\cdots\!33}a^{14}+\frac{27\!\cdots\!19}{11\!\cdots\!98}a^{13}+\frac{12\!\cdots\!50}{55\!\cdots\!99}a^{12}+\frac{52\!\cdots\!56}{18\!\cdots\!33}a^{11}+\frac{22\!\cdots\!92}{55\!\cdots\!99}a^{10}+\frac{23\!\cdots\!30}{55\!\cdots\!99}a^{9}+\frac{74\!\cdots\!90}{18\!\cdots\!33}a^{8}+\frac{20\!\cdots\!83}{55\!\cdots\!99}a^{7}+\frac{12\!\cdots\!86}{55\!\cdots\!99}a^{6}+\frac{16\!\cdots\!18}{18\!\cdots\!33}a^{5}+\frac{23\!\cdots\!38}{55\!\cdots\!99}a^{4}+\frac{12\!\cdots\!73}{55\!\cdots\!99}a^{3}+\frac{93\!\cdots\!94}{18\!\cdots\!33}a^{2}+\frac{12\!\cdots\!07}{55\!\cdots\!99}a+\frac{73\!\cdots\!29}{18\!\cdots\!33}$, $\frac{36\!\cdots\!79}{11\!\cdots\!98}a^{27}+\frac{86\!\cdots\!73}{55\!\cdots\!99}a^{26}-\frac{12\!\cdots\!99}{11\!\cdots\!98}a^{25}-\frac{20\!\cdots\!48}{18\!\cdots\!33}a^{24}+\frac{38\!\cdots\!83}{11\!\cdots\!98}a^{23}+\frac{52\!\cdots\!95}{55\!\cdots\!99}a^{22}-\frac{46\!\cdots\!23}{36\!\cdots\!66}a^{21}+\frac{14\!\cdots\!76}{55\!\cdots\!99}a^{20}+\frac{50\!\cdots\!07}{11\!\cdots\!98}a^{19}-\frac{44\!\cdots\!06}{18\!\cdots\!33}a^{18}+\frac{10\!\cdots\!07}{11\!\cdots\!98}a^{17}+\frac{19\!\cdots\!73}{55\!\cdots\!99}a^{16}+\frac{17\!\cdots\!41}{36\!\cdots\!66}a^{15}+\frac{47\!\cdots\!83}{55\!\cdots\!99}a^{14}+\frac{15\!\cdots\!81}{11\!\cdots\!98}a^{13}+\frac{27\!\cdots\!01}{18\!\cdots\!33}a^{12}+\frac{97\!\cdots\!19}{55\!\cdots\!99}a^{11}+\frac{12\!\cdots\!29}{55\!\cdots\!99}a^{10}+\frac{49\!\cdots\!16}{18\!\cdots\!33}a^{9}+\frac{15\!\cdots\!62}{55\!\cdots\!99}a^{8}+\frac{15\!\cdots\!98}{55\!\cdots\!99}a^{7}+\frac{41\!\cdots\!48}{18\!\cdots\!33}a^{6}+\frac{78\!\cdots\!43}{55\!\cdots\!99}a^{5}+\frac{41\!\cdots\!13}{55\!\cdots\!99}a^{4}+\frac{61\!\cdots\!33}{18\!\cdots\!33}a^{3}+\frac{56\!\cdots\!46}{55\!\cdots\!99}a^{2}+\frac{87\!\cdots\!95}{55\!\cdots\!99}a+\frac{85\!\cdots\!59}{55\!\cdots\!99}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 5246116940069.939 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{12}\cdot 5246116940069.939 \cdot 1}{2\cdot\sqrt{1357602166130257152481187563160405662935023616}}\cr\approx \mathstrut & 4.31221209429650 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 4*x^27 + 36*x^25 - 81*x^24 - 108*x^23 + 360*x^22 - 504*x^21 - 1971*x^20 - 312*x^19 - 2442*x^18 - 12744*x^17 - 21879*x^16 - 36504*x^15 - 61020*x^14 - 77040*x^13 - 88110*x^12 - 110808*x^11 - 134790*x^10 - 148188*x^9 - 149472*x^8 - 130860*x^7 - 93852*x^6 - 55404*x^5 - 27342*x^4 - 10656*x^3 - 2808*x^2 - 368*x - 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 4*x^27 + 36*x^25 - 81*x^24 - 108*x^23 + 360*x^22 - 504*x^21 - 1971*x^20 - 312*x^19 - 2442*x^18 - 12744*x^17 - 21879*x^16 - 36504*x^15 - 61020*x^14 - 77040*x^13 - 88110*x^12 - 110808*x^11 - 134790*x^10 - 148188*x^9 - 149472*x^8 - 130860*x^7 - 93852*x^6 - 55404*x^5 - 27342*x^4 - 10656*x^3 - 2808*x^2 - 368*x - 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 4*x^27 + 36*x^25 - 81*x^24 - 108*x^23 + 360*x^22 - 504*x^21 - 1971*x^20 - 312*x^19 - 2442*x^18 - 12744*x^17 - 21879*x^16 - 36504*x^15 - 61020*x^14 - 77040*x^13 - 88110*x^12 - 110808*x^11 - 134790*x^10 - 148188*x^9 - 149472*x^8 - 130860*x^7 - 93852*x^6 - 55404*x^5 - 27342*x^4 - 10656*x^3 - 2808*x^2 - 368*x - 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 4*x^27 + 36*x^25 - 81*x^24 - 108*x^23 + 360*x^22 - 504*x^21 - 1971*x^20 - 312*x^19 - 2442*x^18 - 12744*x^17 - 21879*x^16 - 36504*x^15 - 61020*x^14 - 77040*x^13 - 88110*x^12 - 110808*x^11 - 134790*x^10 - 148188*x^9 - 149472*x^8 - 130860*x^7 - 93852*x^6 - 55404*x^5 - 27342*x^4 - 10656*x^3 - 2808*x^2 - 368*x - 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$G(2,2)$ (as 28T393):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 12096
The 16 conjugacy class representatives for $G(2,2)$
Character table for $G(2,2)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.7.0.1}{7} }^{4}$ ${\href{/padicField/7.12.0.1}{12} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.12.0.1}{12} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.7.0.1}{7} }^{4}$ ${\href{/padicField/17.8.0.1}{8} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{4}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.6.0.1}{6} }^{4}{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.7.0.1}{7} }^{4}$ ${\href{/padicField/31.8.0.1}{8} }^{3}{,}\,{\href{/padicField/31.4.0.1}{4} }$ ${\href{/padicField/37.7.0.1}{7} }^{4}$ ${\href{/padicField/41.12.0.1}{12} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.6.0.1}{6} }^{4}{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.6.0.1}{6} }^{4}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.8.0.1}{8} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.8.0.1}{8} }^{3}{,}\,{\href{/padicField/59.4.0.1}{4} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.8.7$x^{4} + 4 x^{2} + 4 x + 2$$4$$1$$8$$S_4$$[8/3, 8/3]_{3}^{2}$
2.12.24.451$x^{12} + 2 x^{10} + 2 x^{8} + 4 x^{7} + 2 x^{6} + 4 x^{5} + 4 x^{3} + 4 x + 6$$12$$1$$24$$C_2 \times S_4$$[2, 8/3, 8/3]_{3}^{2}$
2.12.26.15$x^{12} + 4 x^{8} + 4 x^{6} + 4 x^{5} + 4 x^{4} + 4 x^{3} + 4 x^{2} + 2$$12$$1$$26$$C_2 \times S_4$$[2, 8/3, 8/3]_{3}^{2}$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $27$$27$$1$$58$