Properties

Label 28.4.167...536.1
Degree $28$
Signature $[4, 12]$
Discriminant $1.670\times 10^{46}$
Root discriminant \(44.75\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $G(2,2)$ (as 28T393)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 12*x^27 + 66*x^26 - 252*x^25 + 855*x^24 - 2760*x^23 + 8292*x^22 - 22248*x^21 + 51651*x^20 - 108588*x^19 + 220410*x^18 - 408540*x^17 + 617625*x^16 - 735120*x^15 + 756744*x^14 - 746832*x^13 + 508599*x^12 + 206172*x^11 - 683370*x^10 - 1085940*x^9 + 6210633*x^8 - 11620008*x^7 + 11623572*x^6 - 5359560*x^5 - 587211*x^4 + 1555740*x^3 - 194994*x^2 - 25844*x - 163209)
 
gp: K = bnfinit(y^28 - 12*y^27 + 66*y^26 - 252*y^25 + 855*y^24 - 2760*y^23 + 8292*y^22 - 22248*y^21 + 51651*y^20 - 108588*y^19 + 220410*y^18 - 408540*y^17 + 617625*y^16 - 735120*y^15 + 756744*y^14 - 746832*y^13 + 508599*y^12 + 206172*y^11 - 683370*y^10 - 1085940*y^9 + 6210633*y^8 - 11620008*y^7 + 11623572*y^6 - 5359560*y^5 - 587211*y^4 + 1555740*y^3 - 194994*y^2 - 25844*y - 163209, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 12*x^27 + 66*x^26 - 252*x^25 + 855*x^24 - 2760*x^23 + 8292*x^22 - 22248*x^21 + 51651*x^20 - 108588*x^19 + 220410*x^18 - 408540*x^17 + 617625*x^16 - 735120*x^15 + 756744*x^14 - 746832*x^13 + 508599*x^12 + 206172*x^11 - 683370*x^10 - 1085940*x^9 + 6210633*x^8 - 11620008*x^7 + 11623572*x^6 - 5359560*x^5 - 587211*x^4 + 1555740*x^3 - 194994*x^2 - 25844*x - 163209);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 12*x^27 + 66*x^26 - 252*x^25 + 855*x^24 - 2760*x^23 + 8292*x^22 - 22248*x^21 + 51651*x^20 - 108588*x^19 + 220410*x^18 - 408540*x^17 + 617625*x^16 - 735120*x^15 + 756744*x^14 - 746832*x^13 + 508599*x^12 + 206172*x^11 - 683370*x^10 - 1085940*x^9 + 6210633*x^8 - 11620008*x^7 + 11623572*x^6 - 5359560*x^5 - 587211*x^4 + 1555740*x^3 - 194994*x^2 - 25844*x - 163209)
 

\( x^{28} - 12 x^{27} + 66 x^{26} - 252 x^{25} + 855 x^{24} - 2760 x^{23} + 8292 x^{22} - 22248 x^{21} + \cdots - 163209 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(16703873099612894175413785718089893588328513536\) \(\medspace = 2^{106}\cdot 3^{30}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(44.75\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6}a^{8}-\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{2}$, $\frac{1}{6}a^{9}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{6}a$, $\frac{1}{6}a^{10}-\frac{1}{2}a^{2}-\frac{1}{3}a$, $\frac{1}{6}a^{11}-\frac{1}{2}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{6}a^{12}-\frac{1}{2}a^{4}-\frac{1}{3}a^{3}$, $\frac{1}{6}a^{13}-\frac{1}{2}a^{5}-\frac{1}{3}a^{4}$, $\frac{1}{12}a^{14}-\frac{1}{12}a^{12}-\frac{1}{12}a^{10}-\frac{1}{12}a^{8}-\frac{1}{3}a^{7}-\frac{1}{4}a^{6}-\frac{1}{3}a^{5}-\frac{5}{12}a^{4}-\frac{1}{3}a^{3}-\frac{1}{12}a^{2}+\frac{1}{3}a+\frac{1}{4}$, $\frac{1}{36}a^{15}-\frac{1}{36}a^{14}+\frac{1}{36}a^{13}+\frac{1}{36}a^{12}-\frac{1}{36}a^{11}+\frac{1}{36}a^{10}-\frac{1}{12}a^{9}-\frac{1}{12}a^{8}-\frac{1}{12}a^{7}-\frac{17}{36}a^{6}-\frac{7}{36}a^{5}+\frac{13}{36}a^{4}-\frac{17}{36}a^{3}+\frac{5}{36}a^{2}-\frac{11}{36}a-\frac{1}{12}$, $\frac{1}{36}a^{16}+\frac{1}{18}a^{13}-\frac{1}{18}a^{10}+\frac{4}{9}a^{7}-\frac{1}{3}a^{6}-\frac{1}{2}a^{5}-\frac{1}{9}a^{4}+\frac{1}{3}a^{3}-\frac{1}{2}a^{2}+\frac{1}{9}a+\frac{5}{12}$, $\frac{1}{36}a^{17}-\frac{1}{36}a^{14}-\frac{1}{12}a^{12}-\frac{1}{18}a^{11}-\frac{1}{12}a^{10}+\frac{1}{36}a^{8}-\frac{1}{4}a^{6}+\frac{2}{9}a^{5}+\frac{1}{4}a^{4}+\frac{1}{6}a^{3}-\frac{11}{36}a^{2}+\frac{5}{12}a+\frac{1}{4}$, $\frac{1}{36}a^{18}-\frac{1}{36}a^{14}-\frac{1}{18}a^{13}-\frac{1}{36}a^{12}+\frac{1}{18}a^{11}+\frac{1}{36}a^{10}-\frac{1}{18}a^{9}-\frac{1}{12}a^{8}-\frac{1}{3}a^{7}-\frac{1}{4}a^{6}+\frac{1}{18}a^{5}-\frac{17}{36}a^{4}-\frac{5}{18}a^{3}+\frac{2}{9}a^{2}-\frac{1}{18}a-\frac{1}{12}$, $\frac{1}{72}a^{19}-\frac{1}{72}a^{18}-\frac{1}{72}a^{17}-\frac{1}{72}a^{16}+\frac{1}{36}a^{14}-\frac{1}{36}a^{12}-\frac{1}{12}a^{10}-\frac{1}{18}a^{9}+\frac{1}{36}a^{8}-\frac{7}{18}a^{7}+\frac{1}{12}a^{6}-\frac{7}{18}a^{5}+\frac{1}{4}a^{4}+\frac{19}{72}a^{3}-\frac{11}{24}a^{2}-\frac{7}{72}a-\frac{11}{24}$, $\frac{1}{72}a^{20}-\frac{1}{72}a^{16}+\frac{1}{18}a^{13}-\frac{1}{18}a^{11}-\frac{1}{18}a^{10}-\frac{2}{9}a^{7}-\frac{1}{3}a^{6}-\frac{1}{2}a^{5}-\frac{17}{72}a^{4}-\frac{1}{6}a^{3}+\frac{1}{18}a^{2}+\frac{1}{9}a-\frac{5}{24}$, $\frac{1}{72}a^{21}-\frac{1}{72}a^{17}-\frac{1}{36}a^{14}+\frac{1}{36}a^{12}-\frac{1}{18}a^{11}-\frac{1}{12}a^{10}+\frac{1}{36}a^{8}-\frac{1}{3}a^{7}-\frac{1}{4}a^{6}+\frac{31}{72}a^{5}-\frac{5}{12}a^{4}+\frac{7}{18}a^{3}+\frac{13}{36}a^{2}+\frac{11}{24}a+\frac{1}{4}$, $\frac{1}{216}a^{22}+\frac{1}{216}a^{19}-\frac{1}{72}a^{17}-\frac{1}{72}a^{16}+\frac{1}{27}a^{13}-\frac{1}{18}a^{12}+\frac{1}{18}a^{11}-\frac{2}{27}a^{10}-\frac{1}{18}a^{9}-\frac{1}{18}a^{8}-\frac{1}{18}a^{7}+\frac{1}{8}a^{6}+\frac{1}{6}a^{5}+\frac{2}{27}a^{4}+\frac{5}{72}a^{3}+\frac{7}{18}a^{2}-\frac{53}{216}a-\frac{31}{72}$, $\frac{1}{216}a^{23}+\frac{1}{216}a^{20}-\frac{1}{72}a^{18}-\frac{1}{72}a^{17}+\frac{1}{27}a^{14}-\frac{1}{18}a^{13}+\frac{1}{18}a^{12}-\frac{2}{27}a^{11}-\frac{1}{18}a^{10}-\frac{1}{18}a^{9}-\frac{1}{18}a^{8}+\frac{1}{8}a^{7}+\frac{1}{6}a^{6}+\frac{2}{27}a^{5}+\frac{5}{72}a^{4}+\frac{7}{18}a^{3}-\frac{53}{216}a^{2}-\frac{31}{72}a$, $\frac{1}{432}a^{24}-\frac{1}{216}a^{21}-\frac{1}{72}a^{17}+\frac{1}{144}a^{16}-\frac{1}{108}a^{15}+\frac{1}{36}a^{14}-\frac{1}{12}a^{13}+\frac{1}{54}a^{12}-\frac{1}{12}a^{11}-\frac{1}{36}a^{10}-\frac{1}{12}a^{9}-\frac{11}{144}a^{8}+\frac{13}{36}a^{7}-\frac{17}{108}a^{6}+\frac{29}{72}a^{5}-\frac{29}{108}a^{3}+\frac{5}{12}a^{2}+\frac{19}{72}a+\frac{13}{48}$, $\frac{1}{864}a^{25}-\frac{1}{864}a^{24}+\frac{1}{432}a^{21}-\frac{1}{144}a^{20}-\frac{1}{216}a^{19}-\frac{1}{72}a^{18}-\frac{1}{288}a^{17}-\frac{1}{864}a^{16}-\frac{1}{108}a^{15}+\frac{1}{36}a^{14}-\frac{1}{24}a^{13}+\frac{1}{216}a^{12}+\frac{1}{36}a^{11}+\frac{5}{108}a^{10}+\frac{1}{32}a^{9}+\frac{23}{288}a^{8}-\frac{25}{108}a^{7}+\frac{43}{108}a^{6}+\frac{19}{144}a^{5}-\frac{5}{16}a^{4}+\frac{95}{216}a^{3}+\frac{31}{72}a^{2}+\frac{359}{864}a+\frac{31}{288}$, $\frac{1}{1728}a^{26}-\frac{1}{1728}a^{24}+\frac{1}{864}a^{22}+\frac{1}{216}a^{21}-\frac{5}{864}a^{20}+\frac{1}{216}a^{19}-\frac{5}{576}a^{18}-\frac{1}{108}a^{17}+\frac{5}{576}a^{16}+\frac{1}{108}a^{15}+\frac{1}{48}a^{14}+\frac{1}{108}a^{13}+\frac{31}{432}a^{12}+\frac{1}{108}a^{11}+\frac{67}{1728}a^{10}-\frac{1}{36}a^{9}+\frac{109}{1728}a^{8}-\frac{7}{36}a^{7}-\frac{419}{864}a^{6}-\frac{11}{24}a^{5}-\frac{425}{864}a^{4}+\frac{37}{216}a^{3}-\frac{37}{1728}a^{2}-\frac{13}{27}a-\frac{89}{576}$, $\frac{1}{12\!\cdots\!36}a^{27}-\frac{34\!\cdots\!33}{12\!\cdots\!36}a^{26}-\frac{44\!\cdots\!97}{12\!\cdots\!36}a^{25}+\frac{10\!\cdots\!45}{12\!\cdots\!36}a^{24}+\frac{10\!\cdots\!49}{61\!\cdots\!68}a^{23}+\frac{30\!\cdots\!93}{20\!\cdots\!56}a^{22}+\frac{23\!\cdots\!33}{20\!\cdots\!56}a^{21}+\frac{26\!\cdots\!85}{61\!\cdots\!68}a^{20}-\frac{42\!\cdots\!75}{12\!\cdots\!36}a^{19}+\frac{11\!\cdots\!95}{12\!\cdots\!36}a^{18}+\frac{82\!\cdots\!31}{12\!\cdots\!36}a^{17}-\frac{13\!\cdots\!47}{12\!\cdots\!36}a^{16}+\frac{24\!\cdots\!13}{30\!\cdots\!84}a^{15}+\frac{94\!\cdots\!75}{30\!\cdots\!84}a^{14}+\frac{10\!\cdots\!93}{10\!\cdots\!28}a^{13}-\frac{52\!\cdots\!85}{10\!\cdots\!28}a^{12}+\frac{66\!\cdots\!11}{12\!\cdots\!36}a^{11}+\frac{10\!\cdots\!61}{12\!\cdots\!36}a^{10}-\frac{99\!\cdots\!59}{12\!\cdots\!36}a^{9}+\frac{55\!\cdots\!67}{12\!\cdots\!36}a^{8}-\frac{10\!\cdots\!75}{61\!\cdots\!68}a^{7}-\frac{28\!\cdots\!37}{61\!\cdots\!68}a^{6}+\frac{14\!\cdots\!63}{61\!\cdots\!68}a^{5}+\frac{17\!\cdots\!11}{20\!\cdots\!56}a^{4}+\frac{11\!\cdots\!49}{41\!\cdots\!12}a^{3}+\frac{65\!\cdots\!65}{12\!\cdots\!36}a^{2}-\frac{13\!\cdots\!59}{12\!\cdots\!36}a+\frac{98\!\cdots\!41}{41\!\cdots\!12}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{59\!\cdots\!85}{12\!\cdots\!36}a^{27}-\frac{53\!\cdots\!43}{12\!\cdots\!36}a^{26}+\frac{84\!\cdots\!57}{45\!\cdots\!68}a^{25}-\frac{80\!\cdots\!85}{12\!\cdots\!36}a^{24}+\frac{13\!\cdots\!57}{61\!\cdots\!68}a^{23}-\frac{14\!\cdots\!53}{20\!\cdots\!56}a^{22}+\frac{12\!\cdots\!71}{61\!\cdots\!68}a^{21}-\frac{30\!\cdots\!25}{61\!\cdots\!68}a^{20}+\frac{43\!\cdots\!87}{41\!\cdots\!12}a^{19}-\frac{27\!\cdots\!35}{12\!\cdots\!36}a^{18}+\frac{53\!\cdots\!23}{12\!\cdots\!36}a^{17}-\frac{29\!\cdots\!31}{41\!\cdots\!12}a^{16}+\frac{29\!\cdots\!61}{30\!\cdots\!84}a^{15}-\frac{32\!\cdots\!91}{30\!\cdots\!84}a^{14}+\frac{10\!\cdots\!57}{10\!\cdots\!28}a^{13}-\frac{27\!\cdots\!45}{30\!\cdots\!84}a^{12}+\frac{24\!\cdots\!83}{12\!\cdots\!36}a^{11}+\frac{40\!\cdots\!89}{45\!\cdots\!68}a^{10}-\frac{32\!\cdots\!23}{12\!\cdots\!36}a^{9}-\frac{62\!\cdots\!99}{12\!\cdots\!36}a^{8}+\frac{26\!\cdots\!39}{20\!\cdots\!56}a^{7}-\frac{10\!\cdots\!43}{61\!\cdots\!68}a^{6}+\frac{73\!\cdots\!51}{61\!\cdots\!68}a^{5}-\frac{36\!\cdots\!27}{20\!\cdots\!56}a^{4}-\frac{39\!\cdots\!93}{12\!\cdots\!36}a^{3}+\frac{12\!\cdots\!63}{12\!\cdots\!36}a^{2}+\frac{19\!\cdots\!15}{41\!\cdots\!12}a+\frac{54\!\cdots\!57}{13\!\cdots\!04}$, $\frac{90\!\cdots\!15}{51\!\cdots\!64}a^{27}-\frac{37\!\cdots\!07}{20\!\cdots\!56}a^{26}+\frac{99\!\cdots\!83}{11\!\cdots\!92}a^{25}-\frac{20\!\cdots\!05}{68\!\cdots\!52}a^{24}+\frac{10\!\cdots\!00}{10\!\cdots\!43}a^{23}-\frac{99\!\cdots\!01}{30\!\cdots\!84}a^{22}+\frac{16\!\cdots\!79}{17\!\cdots\!88}a^{21}-\frac{24\!\cdots\!87}{10\!\cdots\!28}a^{20}+\frac{80\!\cdots\!81}{15\!\cdots\!92}a^{19}-\frac{22\!\cdots\!67}{20\!\cdots\!56}a^{18}+\frac{22\!\cdots\!47}{10\!\cdots\!28}a^{17}-\frac{76\!\cdots\!79}{20\!\cdots\!56}a^{16}+\frac{52\!\cdots\!80}{10\!\cdots\!43}a^{15}-\frac{87\!\cdots\!73}{17\!\cdots\!88}a^{14}+\frac{41\!\cdots\!87}{77\!\cdots\!96}a^{13}-\frac{26\!\cdots\!31}{51\!\cdots\!64}a^{12}+\frac{65\!\cdots\!65}{57\!\cdots\!96}a^{11}+\frac{33\!\cdots\!25}{61\!\cdots\!68}a^{10}-\frac{30\!\cdots\!95}{10\!\cdots\!28}a^{9}-\frac{16\!\cdots\!31}{68\!\cdots\!52}a^{8}+\frac{44\!\cdots\!37}{64\!\cdots\!58}a^{7}-\frac{30\!\cdots\!49}{34\!\cdots\!76}a^{6}+\frac{30\!\cdots\!53}{57\!\cdots\!96}a^{5}-\frac{16\!\cdots\!37}{30\!\cdots\!84}a^{4}-\frac{45\!\cdots\!87}{51\!\cdots\!64}a^{3}+\frac{24\!\cdots\!83}{20\!\cdots\!56}a^{2}+\frac{12\!\cdots\!95}{30\!\cdots\!84}a+\frac{18\!\cdots\!39}{20\!\cdots\!56}$, $\frac{30\!\cdots\!97}{12\!\cdots\!36}a^{27}-\frac{32\!\cdots\!51}{12\!\cdots\!36}a^{26}+\frac{15\!\cdots\!79}{12\!\cdots\!36}a^{25}-\frac{18\!\cdots\!83}{41\!\cdots\!12}a^{24}+\frac{91\!\cdots\!65}{61\!\cdots\!68}a^{23}-\frac{97\!\cdots\!93}{20\!\cdots\!56}a^{22}+\frac{85\!\cdots\!23}{61\!\cdots\!68}a^{21}-\frac{21\!\cdots\!13}{61\!\cdots\!68}a^{20}+\frac{94\!\cdots\!93}{12\!\cdots\!36}a^{19}-\frac{19\!\cdots\!27}{12\!\cdots\!36}a^{18}+\frac{39\!\cdots\!15}{12\!\cdots\!36}a^{17}-\frac{68\!\cdots\!53}{12\!\cdots\!36}a^{16}+\frac{74\!\cdots\!03}{10\!\cdots\!28}a^{15}-\frac{23\!\cdots\!39}{30\!\cdots\!84}a^{14}+\frac{27\!\cdots\!71}{34\!\cdots\!76}a^{13}-\frac{23\!\cdots\!05}{30\!\cdots\!84}a^{12}+\frac{21\!\cdots\!15}{12\!\cdots\!36}a^{11}+\frac{98\!\cdots\!75}{12\!\cdots\!36}a^{10}-\frac{54\!\cdots\!47}{12\!\cdots\!36}a^{9}-\frac{44\!\cdots\!63}{12\!\cdots\!36}a^{8}+\frac{63\!\cdots\!81}{61\!\cdots\!68}a^{7}-\frac{90\!\cdots\!23}{68\!\cdots\!52}a^{6}+\frac{52\!\cdots\!43}{61\!\cdots\!68}a^{5}-\frac{23\!\cdots\!27}{20\!\cdots\!56}a^{4}-\frac{14\!\cdots\!93}{12\!\cdots\!36}a^{3}+\frac{57\!\cdots\!23}{12\!\cdots\!36}a^{2}-\frac{35\!\cdots\!55}{12\!\cdots\!36}a+\frac{94\!\cdots\!19}{41\!\cdots\!12}$, $\frac{14\!\cdots\!77}{41\!\cdots\!12}a^{27}-\frac{47\!\cdots\!77}{12\!\cdots\!36}a^{26}+\frac{77\!\cdots\!31}{41\!\cdots\!12}a^{25}-\frac{80\!\cdots\!23}{12\!\cdots\!36}a^{24}+\frac{14\!\cdots\!23}{68\!\cdots\!52}a^{23}-\frac{14\!\cdots\!71}{20\!\cdots\!56}a^{22}+\frac{12\!\cdots\!33}{61\!\cdots\!68}a^{21}-\frac{32\!\cdots\!67}{61\!\cdots\!68}a^{20}+\frac{15\!\cdots\!07}{13\!\cdots\!04}a^{19}-\frac{96\!\cdots\!95}{41\!\cdots\!12}a^{18}+\frac{59\!\cdots\!41}{12\!\cdots\!36}a^{17}-\frac{11\!\cdots\!95}{13\!\cdots\!04}a^{16}+\frac{33\!\cdots\!39}{30\!\cdots\!84}a^{15}-\frac{39\!\cdots\!09}{34\!\cdots\!76}a^{14}+\frac{43\!\cdots\!13}{34\!\cdots\!76}a^{13}-\frac{38\!\cdots\!07}{30\!\cdots\!84}a^{12}+\frac{42\!\cdots\!41}{12\!\cdots\!36}a^{11}+\frac{15\!\cdots\!25}{13\!\cdots\!04}a^{10}-\frac{22\!\cdots\!11}{41\!\cdots\!12}a^{9}-\frac{66\!\cdots\!81}{12\!\cdots\!36}a^{8}+\frac{31\!\cdots\!37}{20\!\cdots\!56}a^{7}-\frac{12\!\cdots\!25}{61\!\cdots\!68}a^{6}+\frac{29\!\cdots\!55}{22\!\cdots\!84}a^{5}-\frac{77\!\cdots\!17}{20\!\cdots\!56}a^{4}+\frac{44\!\cdots\!89}{12\!\cdots\!36}a^{3}+\frac{35\!\cdots\!41}{12\!\cdots\!36}a^{2}-\frac{13\!\cdots\!73}{13\!\cdots\!04}a+\frac{61\!\cdots\!35}{13\!\cdots\!04}$, $\frac{16\!\cdots\!55}{12\!\cdots\!36}a^{27}-\frac{20\!\cdots\!85}{12\!\cdots\!36}a^{26}+\frac{39\!\cdots\!79}{41\!\cdots\!12}a^{25}-\frac{44\!\cdots\!23}{12\!\cdots\!36}a^{24}+\frac{73\!\cdots\!35}{61\!\cdots\!68}a^{23}-\frac{88\!\cdots\!67}{22\!\cdots\!84}a^{22}+\frac{71\!\cdots\!17}{61\!\cdots\!68}a^{21}-\frac{63\!\cdots\!85}{20\!\cdots\!56}a^{20}+\frac{29\!\cdots\!97}{41\!\cdots\!12}a^{19}-\frac{17\!\cdots\!89}{12\!\cdots\!36}a^{18}+\frac{35\!\cdots\!01}{12\!\cdots\!36}a^{17}-\frac{22\!\cdots\!21}{41\!\cdots\!12}a^{16}+\frac{24\!\cdots\!11}{30\!\cdots\!84}a^{15}-\frac{24\!\cdots\!61}{30\!\cdots\!84}a^{14}+\frac{73\!\cdots\!51}{10\!\cdots\!28}a^{13}-\frac{22\!\cdots\!23}{30\!\cdots\!84}a^{12}+\frac{17\!\cdots\!43}{41\!\cdots\!12}a^{11}+\frac{32\!\cdots\!43}{41\!\cdots\!12}a^{10}-\frac{16\!\cdots\!85}{12\!\cdots\!36}a^{9}-\frac{24\!\cdots\!41}{12\!\cdots\!36}a^{8}+\frac{69\!\cdots\!03}{68\!\cdots\!52}a^{7}-\frac{10\!\cdots\!57}{61\!\cdots\!68}a^{6}+\frac{72\!\cdots\!61}{61\!\cdots\!68}a^{5}+\frac{12\!\cdots\!39}{20\!\cdots\!56}a^{4}-\frac{72\!\cdots\!59}{12\!\cdots\!36}a^{3}+\frac{15\!\cdots\!77}{13\!\cdots\!04}a^{2}+\frac{29\!\cdots\!85}{45\!\cdots\!68}a+\frac{29\!\cdots\!65}{45\!\cdots\!68}$, $\frac{65\!\cdots\!31}{64\!\cdots\!58}a^{27}-\frac{34\!\cdots\!25}{20\!\cdots\!56}a^{26}+\frac{17\!\cdots\!69}{15\!\cdots\!92}a^{25}-\frac{27\!\cdots\!53}{61\!\cdots\!68}a^{24}+\frac{19\!\cdots\!57}{12\!\cdots\!16}a^{23}-\frac{17\!\cdots\!47}{34\!\cdots\!76}a^{22}+\frac{11\!\cdots\!03}{77\!\cdots\!96}a^{21}-\frac{43\!\cdots\!15}{10\!\cdots\!28}a^{20}+\frac{98\!\cdots\!03}{96\!\cdots\!87}a^{19}-\frac{14\!\cdots\!59}{68\!\cdots\!52}a^{18}+\frac{22\!\cdots\!03}{51\!\cdots\!64}a^{17}-\frac{52\!\cdots\!37}{61\!\cdots\!68}a^{16}+\frac{25\!\cdots\!79}{19\!\cdots\!74}a^{15}-\frac{83\!\cdots\!53}{51\!\cdots\!64}a^{14}+\frac{22\!\cdots\!43}{12\!\cdots\!16}a^{13}-\frac{28\!\cdots\!17}{15\!\cdots\!92}a^{12}+\frac{95\!\cdots\!23}{64\!\cdots\!58}a^{11}+\frac{76\!\cdots\!79}{61\!\cdots\!68}a^{10}-\frac{89\!\cdots\!23}{57\!\cdots\!96}a^{9}-\frac{31\!\cdots\!93}{20\!\cdots\!56}a^{8}+\frac{47\!\cdots\!59}{38\!\cdots\!48}a^{7}-\frac{77\!\cdots\!95}{30\!\cdots\!84}a^{6}+\frac{73\!\cdots\!97}{28\!\cdots\!48}a^{5}-\frac{14\!\cdots\!87}{10\!\cdots\!28}a^{4}+\frac{27\!\cdots\!83}{96\!\cdots\!87}a^{3}-\frac{68\!\cdots\!01}{68\!\cdots\!52}a^{2}+\frac{15\!\cdots\!55}{15\!\cdots\!92}a+\frac{80\!\cdots\!83}{20\!\cdots\!56}$, $\frac{64\!\cdots\!51}{15\!\cdots\!92}a^{27}+\frac{33\!\cdots\!69}{77\!\cdots\!96}a^{26}-\frac{10\!\cdots\!53}{51\!\cdots\!64}a^{25}+\frac{23\!\cdots\!67}{32\!\cdots\!29}a^{24}-\frac{18\!\cdots\!07}{77\!\cdots\!96}a^{23}+\frac{29\!\cdots\!03}{38\!\cdots\!48}a^{22}-\frac{17\!\cdots\!41}{77\!\cdots\!96}a^{21}+\frac{44\!\cdots\!33}{77\!\cdots\!96}a^{20}-\frac{19\!\cdots\!01}{15\!\cdots\!92}a^{19}+\frac{10\!\cdots\!73}{38\!\cdots\!48}a^{18}-\frac{81\!\cdots\!13}{15\!\cdots\!92}a^{17}+\frac{58\!\cdots\!19}{64\!\cdots\!58}a^{16}-\frac{15\!\cdots\!69}{12\!\cdots\!16}a^{15}+\frac{24\!\cdots\!21}{19\!\cdots\!74}a^{14}-\frac{50\!\cdots\!85}{38\!\cdots\!48}a^{13}+\frac{11\!\cdots\!14}{96\!\cdots\!87}a^{12}-\frac{55\!\cdots\!33}{15\!\cdots\!92}a^{11}-\frac{97\!\cdots\!49}{77\!\cdots\!96}a^{10}+\frac{13\!\cdots\!79}{15\!\cdots\!92}a^{9}+\frac{54\!\cdots\!32}{96\!\cdots\!87}a^{8}-\frac{43\!\cdots\!25}{25\!\cdots\!32}a^{7}+\frac{29\!\cdots\!47}{12\!\cdots\!16}a^{6}-\frac{11\!\cdots\!89}{77\!\cdots\!96}a^{5}+\frac{11\!\cdots\!55}{77\!\cdots\!96}a^{4}+\frac{55\!\cdots\!45}{15\!\cdots\!92}a^{3}-\frac{35\!\cdots\!19}{38\!\cdots\!48}a^{2}-\frac{72\!\cdots\!07}{15\!\cdots\!92}a-\frac{15\!\cdots\!34}{32\!\cdots\!29}$, $\frac{44\!\cdots\!95}{22\!\cdots\!84}a^{27}-\frac{32\!\cdots\!45}{15\!\cdots\!92}a^{26}+\frac{63\!\cdots\!89}{61\!\cdots\!68}a^{25}-\frac{37\!\cdots\!49}{10\!\cdots\!28}a^{24}+\frac{12\!\cdots\!55}{10\!\cdots\!28}a^{23}-\frac{15\!\cdots\!71}{38\!\cdots\!48}a^{22}+\frac{11\!\cdots\!63}{10\!\cdots\!28}a^{21}-\frac{45\!\cdots\!81}{15\!\cdots\!92}a^{20}+\frac{13\!\cdots\!47}{20\!\cdots\!56}a^{19}-\frac{23\!\cdots\!13}{17\!\cdots\!88}a^{18}+\frac{16\!\cdots\!21}{61\!\cdots\!68}a^{17}-\frac{14\!\cdots\!51}{30\!\cdots\!84}a^{16}+\frac{33\!\cdots\!67}{51\!\cdots\!64}a^{15}-\frac{75\!\cdots\!90}{10\!\cdots\!43}a^{14}+\frac{11\!\cdots\!97}{15\!\cdots\!92}a^{13}-\frac{18\!\cdots\!31}{25\!\cdots\!32}a^{12}+\frac{17\!\cdots\!67}{61\!\cdots\!68}a^{11}+\frac{97\!\cdots\!89}{17\!\cdots\!88}a^{10}-\frac{33\!\cdots\!01}{68\!\cdots\!52}a^{9}-\frac{83\!\cdots\!97}{30\!\cdots\!84}a^{8}+\frac{26\!\cdots\!05}{30\!\cdots\!84}a^{7}-\frac{15\!\cdots\!21}{12\!\cdots\!16}a^{6}+\frac{90\!\cdots\!79}{10\!\cdots\!28}a^{5}-\frac{30\!\cdots\!53}{15\!\cdots\!92}a^{4}-\frac{21\!\cdots\!75}{20\!\cdots\!56}a^{3}+\frac{29\!\cdots\!37}{15\!\cdots\!92}a^{2}+\frac{51\!\cdots\!93}{20\!\cdots\!56}a+\frac{20\!\cdots\!13}{11\!\cdots\!92}$, $\frac{17\!\cdots\!53}{22\!\cdots\!84}a^{27}-\frac{43\!\cdots\!15}{61\!\cdots\!68}a^{26}+\frac{60\!\cdots\!71}{20\!\cdots\!56}a^{25}-\frac{58\!\cdots\!13}{61\!\cdots\!68}a^{24}+\frac{96\!\cdots\!07}{30\!\cdots\!84}a^{23}-\frac{30\!\cdots\!55}{30\!\cdots\!84}a^{22}+\frac{85\!\cdots\!77}{30\!\cdots\!84}a^{21}-\frac{22\!\cdots\!85}{34\!\cdots\!76}a^{20}+\frac{81\!\cdots\!75}{61\!\cdots\!68}a^{19}-\frac{54\!\cdots\!25}{20\!\cdots\!56}a^{18}+\frac{33\!\cdots\!37}{61\!\cdots\!68}a^{17}-\frac{18\!\cdots\!35}{22\!\cdots\!84}a^{16}+\frac{12\!\cdots\!47}{15\!\cdots\!92}a^{15}-\frac{10\!\cdots\!07}{15\!\cdots\!92}a^{14}+\frac{13\!\cdots\!93}{15\!\cdots\!92}a^{13}-\frac{94\!\cdots\!85}{15\!\cdots\!92}a^{12}-\frac{19\!\cdots\!89}{20\!\cdots\!56}a^{11}+\frac{12\!\cdots\!91}{61\!\cdots\!68}a^{10}+\frac{27\!\cdots\!97}{20\!\cdots\!56}a^{9}-\frac{64\!\cdots\!27}{61\!\cdots\!68}a^{8}+\frac{17\!\cdots\!01}{10\!\cdots\!28}a^{7}-\frac{33\!\cdots\!91}{30\!\cdots\!84}a^{6}-\frac{84\!\cdots\!39}{30\!\cdots\!84}a^{5}+\frac{12\!\cdots\!91}{30\!\cdots\!84}a^{4}+\frac{16\!\cdots\!05}{61\!\cdots\!68}a^{3}-\frac{24\!\cdots\!59}{20\!\cdots\!56}a^{2}-\frac{49\!\cdots\!05}{61\!\cdots\!68}a-\frac{81\!\cdots\!77}{20\!\cdots\!56}$, $\frac{52\!\cdots\!55}{61\!\cdots\!68}a^{27}+\frac{30\!\cdots\!11}{30\!\cdots\!84}a^{26}-\frac{32\!\cdots\!23}{61\!\cdots\!68}a^{25}+\frac{14\!\cdots\!83}{77\!\cdots\!96}a^{24}-\frac{19\!\cdots\!47}{30\!\cdots\!84}a^{23}+\frac{10\!\cdots\!05}{51\!\cdots\!64}a^{22}-\frac{18\!\cdots\!75}{30\!\cdots\!84}a^{21}+\frac{59\!\cdots\!99}{38\!\cdots\!48}a^{20}-\frac{21\!\cdots\!71}{61\!\cdots\!68}a^{19}+\frac{21\!\cdots\!71}{30\!\cdots\!84}a^{18}-\frac{87\!\cdots\!43}{61\!\cdots\!68}a^{17}+\frac{19\!\cdots\!83}{77\!\cdots\!96}a^{16}-\frac{53\!\cdots\!87}{15\!\cdots\!92}a^{15}+\frac{27\!\cdots\!99}{77\!\cdots\!96}a^{14}-\frac{18\!\cdots\!29}{51\!\cdots\!64}a^{13}+\frac{35\!\cdots\!67}{96\!\cdots\!87}a^{12}-\frac{85\!\cdots\!13}{61\!\cdots\!68}a^{11}-\frac{11\!\cdots\!75}{30\!\cdots\!84}a^{10}+\frac{22\!\cdots\!31}{61\!\cdots\!68}a^{9}+\frac{10\!\cdots\!77}{77\!\cdots\!96}a^{8}-\frac{14\!\cdots\!79}{30\!\cdots\!84}a^{7}+\frac{10\!\cdots\!79}{15\!\cdots\!92}a^{6}-\frac{13\!\cdots\!95}{30\!\cdots\!84}a^{5}+\frac{14\!\cdots\!75}{42\!\cdots\!72}a^{4}+\frac{67\!\cdots\!35}{61\!\cdots\!68}a^{3}-\frac{48\!\cdots\!27}{30\!\cdots\!84}a^{2}-\frac{39\!\cdots\!25}{61\!\cdots\!68}a-\frac{35\!\cdots\!17}{25\!\cdots\!32}$, $\frac{11\!\cdots\!41}{61\!\cdots\!68}a^{27}+\frac{11\!\cdots\!33}{20\!\cdots\!56}a^{26}-\frac{26\!\cdots\!35}{61\!\cdots\!68}a^{25}+\frac{34\!\cdots\!03}{20\!\cdots\!56}a^{24}-\frac{16\!\cdots\!77}{30\!\cdots\!84}a^{23}+\frac{18\!\cdots\!45}{10\!\cdots\!28}a^{22}-\frac{16\!\cdots\!55}{30\!\cdots\!84}a^{21}+\frac{46\!\cdots\!89}{30\!\cdots\!84}a^{20}-\frac{21\!\cdots\!33}{61\!\cdots\!68}a^{19}+\frac{42\!\cdots\!87}{61\!\cdots\!68}a^{18}-\frac{31\!\cdots\!57}{22\!\cdots\!84}a^{17}+\frac{16\!\cdots\!73}{61\!\cdots\!68}a^{16}-\frac{21\!\cdots\!87}{57\!\cdots\!96}a^{15}+\frac{56\!\cdots\!19}{15\!\cdots\!92}a^{14}-\frac{16\!\cdots\!29}{51\!\cdots\!64}a^{13}+\frac{54\!\cdots\!93}{15\!\cdots\!92}a^{12}-\frac{98\!\cdots\!91}{61\!\cdots\!68}a^{11}-\frac{32\!\cdots\!47}{61\!\cdots\!68}a^{10}+\frac{52\!\cdots\!27}{61\!\cdots\!68}a^{9}+\frac{20\!\cdots\!01}{20\!\cdots\!56}a^{8}-\frac{16\!\cdots\!73}{30\!\cdots\!84}a^{7}+\frac{87\!\cdots\!49}{10\!\cdots\!28}a^{6}-\frac{16\!\cdots\!71}{30\!\cdots\!84}a^{5}-\frac{15\!\cdots\!21}{10\!\cdots\!28}a^{4}+\frac{22\!\cdots\!97}{61\!\cdots\!68}a^{3}-\frac{65\!\cdots\!59}{61\!\cdots\!68}a^{2}-\frac{30\!\cdots\!29}{61\!\cdots\!68}a+\frac{17\!\cdots\!57}{20\!\cdots\!56}$, $\frac{68\!\cdots\!81}{61\!\cdots\!68}a^{27}-\frac{34\!\cdots\!23}{30\!\cdots\!84}a^{26}+\frac{10\!\cdots\!35}{20\!\cdots\!56}a^{25}-\frac{27\!\cdots\!49}{15\!\cdots\!92}a^{24}+\frac{60\!\cdots\!03}{10\!\cdots\!28}a^{23}-\frac{10\!\cdots\!81}{57\!\cdots\!96}a^{22}+\frac{55\!\cdots\!15}{10\!\cdots\!28}a^{21}-\frac{10\!\cdots\!55}{77\!\cdots\!96}a^{20}+\frac{67\!\cdots\!11}{22\!\cdots\!84}a^{19}-\frac{18\!\cdots\!79}{30\!\cdots\!84}a^{18}+\frac{74\!\cdots\!77}{61\!\cdots\!68}a^{17}-\frac{10\!\cdots\!99}{51\!\cdots\!64}a^{16}+\frac{40\!\cdots\!01}{15\!\cdots\!92}a^{15}-\frac{70\!\cdots\!31}{25\!\cdots\!32}a^{14}+\frac{14\!\cdots\!51}{51\!\cdots\!64}a^{13}-\frac{81\!\cdots\!11}{32\!\cdots\!29}a^{12}+\frac{22\!\cdots\!43}{61\!\cdots\!68}a^{11}+\frac{32\!\cdots\!17}{10\!\cdots\!28}a^{10}-\frac{77\!\cdots\!21}{61\!\cdots\!68}a^{9}-\frac{22\!\cdots\!23}{15\!\cdots\!92}a^{8}+\frac{13\!\cdots\!01}{34\!\cdots\!76}a^{7}-\frac{75\!\cdots\!19}{15\!\cdots\!92}a^{6}+\frac{29\!\cdots\!99}{10\!\cdots\!28}a^{5}-\frac{36\!\cdots\!87}{25\!\cdots\!32}a^{4}-\frac{16\!\cdots\!99}{20\!\cdots\!56}a^{3}+\frac{44\!\cdots\!83}{30\!\cdots\!84}a^{2}+\frac{12\!\cdots\!17}{20\!\cdots\!56}a+\frac{15\!\cdots\!93}{17\!\cdots\!88}$, $\frac{33\!\cdots\!09}{12\!\cdots\!36}a^{27}-\frac{35\!\cdots\!83}{12\!\cdots\!36}a^{26}+\frac{17\!\cdots\!11}{12\!\cdots\!36}a^{25}-\frac{19\!\cdots\!59}{41\!\cdots\!12}a^{24}+\frac{99\!\cdots\!49}{61\!\cdots\!68}a^{23}-\frac{10\!\cdots\!61}{20\!\cdots\!56}a^{22}+\frac{92\!\cdots\!51}{61\!\cdots\!68}a^{21}-\frac{23\!\cdots\!13}{61\!\cdots\!68}a^{20}+\frac{10\!\cdots\!41}{12\!\cdots\!36}a^{19}-\frac{20\!\cdots\!43}{12\!\cdots\!36}a^{18}+\frac{42\!\cdots\!31}{12\!\cdots\!36}a^{17}-\frac{73\!\cdots\!65}{12\!\cdots\!36}a^{16}+\frac{88\!\cdots\!91}{11\!\cdots\!92}a^{15}-\frac{25\!\cdots\!51}{30\!\cdots\!84}a^{14}+\frac{30\!\cdots\!99}{34\!\cdots\!76}a^{13}-\frac{26\!\cdots\!53}{30\!\cdots\!84}a^{12}+\frac{28\!\cdots\!59}{12\!\cdots\!36}a^{11}+\frac{94\!\cdots\!59}{12\!\cdots\!36}a^{10}-\frac{40\!\cdots\!11}{12\!\cdots\!36}a^{9}-\frac{48\!\cdots\!59}{12\!\cdots\!36}a^{8}+\frac{67\!\cdots\!57}{61\!\cdots\!68}a^{7}-\frac{28\!\cdots\!93}{20\!\cdots\!56}a^{6}+\frac{57\!\cdots\!91}{61\!\cdots\!68}a^{5}-\frac{49\!\cdots\!83}{20\!\cdots\!56}a^{4}-\frac{46\!\cdots\!77}{12\!\cdots\!36}a^{3}+\frac{24\!\cdots\!91}{12\!\cdots\!36}a^{2}-\frac{11\!\cdots\!75}{12\!\cdots\!36}a+\frac{17\!\cdots\!43}{41\!\cdots\!12}$, $\frac{13\!\cdots\!05}{61\!\cdots\!68}a^{27}+\frac{33\!\cdots\!81}{15\!\cdots\!92}a^{26}-\frac{60\!\cdots\!41}{61\!\cdots\!68}a^{25}+\frac{11\!\cdots\!13}{34\!\cdots\!76}a^{24}-\frac{35\!\cdots\!29}{30\!\cdots\!84}a^{23}+\frac{30\!\cdots\!49}{85\!\cdots\!44}a^{22}-\frac{32\!\cdots\!37}{30\!\cdots\!84}a^{21}+\frac{15\!\cdots\!65}{57\!\cdots\!96}a^{20}-\frac{35\!\cdots\!57}{61\!\cdots\!68}a^{19}+\frac{18\!\cdots\!83}{15\!\cdots\!92}a^{18}-\frac{14\!\cdots\!93}{61\!\cdots\!68}a^{17}+\frac{12\!\cdots\!97}{30\!\cdots\!84}a^{16}-\frac{26\!\cdots\!55}{51\!\cdots\!64}a^{15}+\frac{20\!\cdots\!25}{38\!\cdots\!48}a^{14}-\frac{27\!\cdots\!87}{51\!\cdots\!64}a^{13}+\frac{37\!\cdots\!85}{77\!\cdots\!96}a^{12}-\frac{14\!\cdots\!97}{20\!\cdots\!56}a^{11}-\frac{92\!\cdots\!61}{15\!\cdots\!92}a^{10}+\frac{13\!\cdots\!53}{61\!\cdots\!68}a^{9}+\frac{87\!\cdots\!11}{30\!\cdots\!84}a^{8}-\frac{23\!\cdots\!21}{30\!\cdots\!84}a^{7}+\frac{24\!\cdots\!31}{25\!\cdots\!32}a^{6}-\frac{16\!\cdots\!13}{30\!\cdots\!84}a^{5}+\frac{69\!\cdots\!57}{51\!\cdots\!64}a^{4}+\frac{90\!\cdots\!73}{61\!\cdots\!68}a^{3}-\frac{13\!\cdots\!13}{51\!\cdots\!64}a^{2}-\frac{49\!\cdots\!83}{61\!\cdots\!68}a-\frac{16\!\cdots\!87}{10\!\cdots\!28}$, $\frac{16\!\cdots\!47}{30\!\cdots\!84}a^{27}+\frac{29\!\cdots\!43}{61\!\cdots\!68}a^{26}-\frac{18\!\cdots\!35}{10\!\cdots\!28}a^{25}+\frac{33\!\cdots\!49}{61\!\cdots\!68}a^{24}-\frac{27\!\cdots\!51}{15\!\cdots\!92}a^{23}+\frac{57\!\cdots\!93}{10\!\cdots\!28}a^{22}-\frac{77\!\cdots\!15}{51\!\cdots\!64}a^{21}+\frac{10\!\cdots\!57}{30\!\cdots\!84}a^{20}-\frac{61\!\cdots\!29}{10\!\cdots\!28}a^{19}+\frac{71\!\cdots\!79}{61\!\cdots\!68}a^{18}-\frac{73\!\cdots\!49}{30\!\cdots\!84}a^{17}+\frac{56\!\cdots\!95}{20\!\cdots\!56}a^{16}-\frac{23\!\cdots\!49}{77\!\cdots\!96}a^{15}-\frac{22\!\cdots\!21}{15\!\cdots\!92}a^{14}+\frac{18\!\cdots\!15}{25\!\cdots\!32}a^{13}-\frac{15\!\cdots\!45}{51\!\cdots\!64}a^{12}+\frac{41\!\cdots\!55}{30\!\cdots\!84}a^{11}-\frac{25\!\cdots\!45}{20\!\cdots\!56}a^{10}-\frac{63\!\cdots\!91}{30\!\cdots\!84}a^{9}+\frac{46\!\cdots\!63}{61\!\cdots\!68}a^{8}-\frac{14\!\cdots\!55}{17\!\cdots\!88}a^{7}-\frac{48\!\cdots\!41}{30\!\cdots\!84}a^{6}+\frac{20\!\cdots\!23}{15\!\cdots\!92}a^{5}-\frac{11\!\cdots\!37}{11\!\cdots\!92}a^{4}-\frac{72\!\cdots\!91}{10\!\cdots\!28}a^{3}+\frac{16\!\cdots\!01}{61\!\cdots\!68}a^{2}+\frac{20\!\cdots\!39}{10\!\cdots\!28}a+\frac{83\!\cdots\!41}{22\!\cdots\!84}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 19660631807398.406 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{12}\cdot 19660631807398.406 \cdot 1}{2\cdot\sqrt{16703873099612894175413785718089893588328513536}}\cr\approx \mathstrut & 4.60720234279782 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 12*x^27 + 66*x^26 - 252*x^25 + 855*x^24 - 2760*x^23 + 8292*x^22 - 22248*x^21 + 51651*x^20 - 108588*x^19 + 220410*x^18 - 408540*x^17 + 617625*x^16 - 735120*x^15 + 756744*x^14 - 746832*x^13 + 508599*x^12 + 206172*x^11 - 683370*x^10 - 1085940*x^9 + 6210633*x^8 - 11620008*x^7 + 11623572*x^6 - 5359560*x^5 - 587211*x^4 + 1555740*x^3 - 194994*x^2 - 25844*x - 163209)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 12*x^27 + 66*x^26 - 252*x^25 + 855*x^24 - 2760*x^23 + 8292*x^22 - 22248*x^21 + 51651*x^20 - 108588*x^19 + 220410*x^18 - 408540*x^17 + 617625*x^16 - 735120*x^15 + 756744*x^14 - 746832*x^13 + 508599*x^12 + 206172*x^11 - 683370*x^10 - 1085940*x^9 + 6210633*x^8 - 11620008*x^7 + 11623572*x^6 - 5359560*x^5 - 587211*x^4 + 1555740*x^3 - 194994*x^2 - 25844*x - 163209, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 12*x^27 + 66*x^26 - 252*x^25 + 855*x^24 - 2760*x^23 + 8292*x^22 - 22248*x^21 + 51651*x^20 - 108588*x^19 + 220410*x^18 - 408540*x^17 + 617625*x^16 - 735120*x^15 + 756744*x^14 - 746832*x^13 + 508599*x^12 + 206172*x^11 - 683370*x^10 - 1085940*x^9 + 6210633*x^8 - 11620008*x^7 + 11623572*x^6 - 5359560*x^5 - 587211*x^4 + 1555740*x^3 - 194994*x^2 - 25844*x - 163209);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 12*x^27 + 66*x^26 - 252*x^25 + 855*x^24 - 2760*x^23 + 8292*x^22 - 22248*x^21 + 51651*x^20 - 108588*x^19 + 220410*x^18 - 408540*x^17 + 617625*x^16 - 735120*x^15 + 756744*x^14 - 746832*x^13 + 508599*x^12 + 206172*x^11 - 683370*x^10 - 1085940*x^9 + 6210633*x^8 - 11620008*x^7 + 11623572*x^6 - 5359560*x^5 - 587211*x^4 + 1555740*x^3 - 194994*x^2 - 25844*x - 163209);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$G(2,2)$ (as 28T393):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 12096
The 16 conjugacy class representatives for $G(2,2)$
Character table for $G(2,2)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.7.0.1}{7} }^{4}$ ${\href{/padicField/7.6.0.1}{6} }^{4}{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.12.0.1}{12} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.7.0.1}{7} }^{4}$ ${\href{/padicField/17.8.0.1}{8} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.12.0.1}{12} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.6.0.1}{6} }^{4}{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.6.0.1}{6} }^{4}{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.6.0.1}{6} }^{4}{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.6.0.1}{6} }^{4}{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.4.0.1}{4} }^{6}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }^{3}{,}\,{\href{/padicField/43.4.0.1}{4} }$ ${\href{/padicField/47.6.0.1}{6} }^{4}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.12.0.1}{12} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.12.0.1}{12} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.9.4$x^{4} + 10 x^{2} + 8 x + 2$$4$$1$$9$$D_{4}$$[2, 3, 7/2]$
2.8.31.113$x^{8} + 4 x^{4} + 42$$8$$1$$31$$(C_8:C_2):C_2$$[2, 3, 7/2, 4, 5]$
Deg $16$$16$$1$$66$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $27$$27$$1$$30$