Properties

Label 28.4.211...944.2
Degree $28$
Signature $[4, 12]$
Discriminant $2.114\times 10^{46}$
Root discriminant \(45.13\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $G(2,2)$ (as 28T393)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 8*x^27 + 24*x^26 - 48*x^25 + 18*x^24 - 48*x^23 + 288*x^22 - 240*x^21 - 1242*x^20 + 528*x^19 + 3504*x^18 + 576*x^17 - 9312*x^16 - 1344*x^15 + 16704*x^14 + 9600*x^13 - 25056*x^12 - 24192*x^11 + 18816*x^10 + 28416*x^9 - 21408*x^8 - 55296*x^7 - 25344*x^6 + 14592*x^5 + 5088*x^4 - 17664*x^3 - 16128*x^2 - 5120*x - 512)
 
gp: K = bnfinit(y^28 - 8*y^27 + 24*y^26 - 48*y^25 + 18*y^24 - 48*y^23 + 288*y^22 - 240*y^21 - 1242*y^20 + 528*y^19 + 3504*y^18 + 576*y^17 - 9312*y^16 - 1344*y^15 + 16704*y^14 + 9600*y^13 - 25056*y^12 - 24192*y^11 + 18816*y^10 + 28416*y^9 - 21408*y^8 - 55296*y^7 - 25344*y^6 + 14592*y^5 + 5088*y^4 - 17664*y^3 - 16128*y^2 - 5120*y - 512, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 8*x^27 + 24*x^26 - 48*x^25 + 18*x^24 - 48*x^23 + 288*x^22 - 240*x^21 - 1242*x^20 + 528*x^19 + 3504*x^18 + 576*x^17 - 9312*x^16 - 1344*x^15 + 16704*x^14 + 9600*x^13 - 25056*x^12 - 24192*x^11 + 18816*x^10 + 28416*x^9 - 21408*x^8 - 55296*x^7 - 25344*x^6 + 14592*x^5 + 5088*x^4 - 17664*x^3 - 16128*x^2 - 5120*x - 512);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 8*x^27 + 24*x^26 - 48*x^25 + 18*x^24 - 48*x^23 + 288*x^22 - 240*x^21 - 1242*x^20 + 528*x^19 + 3504*x^18 + 576*x^17 - 9312*x^16 - 1344*x^15 + 16704*x^14 + 9600*x^13 - 25056*x^12 - 24192*x^11 + 18816*x^10 + 28416*x^9 - 21408*x^8 - 55296*x^7 - 25344*x^6 + 14592*x^5 + 5088*x^4 - 17664*x^3 - 16128*x^2 - 5120*x - 512)
 

\( x^{28} - 8 x^{27} + 24 x^{26} - 48 x^{25} + 18 x^{24} - 48 x^{23} + 288 x^{22} - 240 x^{21} - 1242 x^{20} + \cdots - 512 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(21140839391697569190758072549457521572728274944\) \(\medspace = 2^{100}\cdot 3^{34}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.13\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{4}a^{12}-\frac{1}{2}a^{4}$, $\frac{1}{8}a^{13}+\frac{1}{4}a^{5}-\frac{1}{2}a$, $\frac{1}{16}a^{14}-\frac{1}{4}a^{10}+\frac{1}{8}a^{6}-\frac{1}{4}a^{2}$, $\frac{1}{32}a^{15}-\frac{1}{8}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{7}{16}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{8}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{32}a^{16}-\frac{1}{8}a^{12}-\frac{1}{4}a^{11}-\frac{1}{4}a^{10}+\frac{1}{16}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{8}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{32}a^{17}-\frac{1}{4}a^{11}+\frac{1}{16}a^{9}-\frac{1}{2}a^{7}+\frac{1}{8}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{64}a^{18}-\frac{1}{32}a^{14}-\frac{1}{8}a^{12}-\frac{1}{4}a^{11}+\frac{5}{32}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{4}-\frac{1}{8}a^{2}-\frac{1}{2}$, $\frac{1}{256}a^{19}-\frac{1}{128}a^{18}-\frac{1}{64}a^{17}-\frac{1}{128}a^{15}+\frac{1}{64}a^{14}-\frac{1}{32}a^{13}-\frac{27}{128}a^{11}-\frac{5}{64}a^{10}-\frac{1}{32}a^{9}+\frac{1}{8}a^{8}-\frac{3}{8}a^{7}-\frac{1}{4}a^{6}+\frac{1}{8}a^{4}+\frac{7}{32}a^{3}+\frac{1}{16}a^{2}-\frac{3}{8}a-\frac{1}{4}$, $\frac{1}{1024}a^{20}-\frac{1}{64}a^{17}-\frac{1}{512}a^{16}-\frac{1}{64}a^{15}-\frac{1}{32}a^{14}+\frac{1}{64}a^{13}+\frac{37}{512}a^{12}+\frac{1}{8}a^{11}+\frac{7}{32}a^{10}+\frac{1}{8}a^{9}+\frac{7}{32}a^{8}-\frac{13}{32}a^{7}-\frac{5}{32}a^{6}+\frac{1}{16}a^{5}-\frac{17}{128}a^{4}-\frac{3}{16}a^{3}+\frac{3}{16}a^{2}+\frac{1}{4}a+\frac{3}{8}$, $\frac{1}{2048}a^{21}-\frac{1}{128}a^{18}-\frac{1}{1024}a^{17}+\frac{1}{128}a^{16}-\frac{1}{64}a^{15}-\frac{3}{128}a^{14}+\frac{37}{1024}a^{13}-\frac{1}{64}a^{11}+\frac{1}{16}a^{10}+\frac{7}{64}a^{9}-\frac{11}{64}a^{8}+\frac{11}{64}a^{7}-\frac{9}{32}a^{6}-\frac{17}{256}a^{5}-\frac{5}{32}a^{4}-\frac{5}{32}a^{3}-\frac{5}{16}a-\frac{1}{2}$, $\frac{1}{2048}a^{22}-\frac{1}{1024}a^{18}+\frac{1}{128}a^{17}-\frac{1}{64}a^{16}-\frac{1}{128}a^{15}-\frac{27}{1024}a^{14}-\frac{1}{16}a^{13}+\frac{7}{64}a^{12}+\frac{1}{64}a^{11}+\frac{7}{64}a^{10}+\frac{5}{64}a^{9}-\frac{5}{64}a^{8}-\frac{15}{32}a^{7}+\frac{79}{256}a^{6}+\frac{15}{32}a^{5}-\frac{5}{32}a^{4}-\frac{3}{16}a^{3}+\frac{7}{16}a^{2}-\frac{1}{4}a$, $\frac{1}{2048}a^{23}-\frac{1}{1024}a^{19}-\frac{1}{128}a^{18}-\frac{1}{64}a^{17}-\frac{1}{128}a^{16}+\frac{5}{1024}a^{15}-\frac{1}{32}a^{14}-\frac{1}{64}a^{13}-\frac{7}{64}a^{12}+\frac{15}{64}a^{11}+\frac{11}{64}a^{10}+\frac{11}{64}a^{9}+\frac{1}{32}a^{8}+\frac{95}{256}a^{7}+\frac{15}{32}a^{6}+\frac{3}{32}a^{5}+\frac{1}{16}a^{4}+\frac{5}{16}a^{3}+\frac{3}{8}a^{2}-\frac{1}{2}$, $\frac{1}{16384}a^{24}-\frac{1}{4096}a^{23}-\frac{1}{4096}a^{22}+\frac{3}{2048}a^{19}+\frac{9}{2048}a^{18}-\frac{15}{1024}a^{17}-\frac{61}{8192}a^{16}-\frac{25}{2048}a^{15}-\frac{57}{2048}a^{14}-\frac{13}{256}a^{13}-\frac{483}{4096}a^{12}+\frac{69}{512}a^{11}+\frac{27}{512}a^{10}+\frac{21}{256}a^{9}+\frac{503}{2048}a^{8}-\frac{103}{512}a^{7}+\frac{229}{512}a^{6}+\frac{25}{64}a^{5}-\frac{329}{1024}a^{4}+\frac{51}{128}a^{3}-\frac{43}{128}a^{2}-\frac{5}{32}a-\frac{17}{64}$, $\frac{1}{16384}a^{25}-\frac{1}{4096}a^{23}-\frac{1}{2048}a^{20}+\frac{1}{2048}a^{19}+\frac{1}{1024}a^{18}+\frac{99}{8192}a^{17}+\frac{9}{1024}a^{16}-\frac{9}{2048}a^{15}+\frac{1}{256}a^{14}+\frac{221}{4096}a^{13}-\frac{109}{1024}a^{12}+\frac{71}{512}a^{11}+\frac{19}{256}a^{10}+\frac{407}{2048}a^{9}+\frac{3}{16}a^{8}-\frac{219}{512}a^{7}+\frac{3}{64}a^{6}-\frac{137}{1024}a^{5}+\frac{17}{256}a^{4}+\frac{41}{128}a^{3}-\frac{3}{8}a^{2}-\frac{9}{64}a-\frac{5}{16}$, $\frac{1}{16384}a^{26}-\frac{1}{2048}a^{20}+\frac{1}{1024}a^{19}-\frac{29}{8192}a^{18}-\frac{1}{256}a^{17}-\frac{9}{1024}a^{16}-\frac{3}{256}a^{15}-\frac{99}{4096}a^{14}-\frac{5}{128}a^{13}-\frac{31}{1024}a^{12}+\frac{15}{256}a^{11}-\frac{25}{2048}a^{10}-\frac{5}{32}a^{9}+\frac{9}{128}a^{8}-\frac{7}{16}a^{7}-\frac{425}{1024}a^{6}+\frac{51}{256}a^{4}-\frac{11}{32}a^{3}+\frac{1}{64}a^{2}-\frac{1}{8}a-\frac{3}{16}$, $\frac{1}{11\!\cdots\!92}a^{27}-\frac{66\!\cdots\!05}{99\!\cdots\!16}a^{26}-\frac{17\!\cdots\!63}{99\!\cdots\!16}a^{25}+\frac{76\!\cdots\!07}{19\!\cdots\!32}a^{24}+\frac{48\!\cdots\!07}{49\!\cdots\!08}a^{23}+\frac{56\!\cdots\!07}{12\!\cdots\!52}a^{22}-\frac{82\!\cdots\!01}{49\!\cdots\!08}a^{21}+\frac{52\!\cdots\!63}{12\!\cdots\!52}a^{20}+\frac{24\!\cdots\!49}{19\!\cdots\!32}a^{19}-\frac{91\!\cdots\!19}{49\!\cdots\!08}a^{18}-\frac{25\!\cdots\!35}{49\!\cdots\!08}a^{17}-\frac{76\!\cdots\!99}{99\!\cdots\!16}a^{16}-\frac{11\!\cdots\!69}{99\!\cdots\!16}a^{15}+\frac{13\!\cdots\!23}{24\!\cdots\!04}a^{14}-\frac{30\!\cdots\!59}{12\!\cdots\!52}a^{13}-\frac{25\!\cdots\!85}{49\!\cdots\!08}a^{12}-\frac{79\!\cdots\!71}{49\!\cdots\!08}a^{11}-\frac{10\!\cdots\!81}{12\!\cdots\!52}a^{10}+\frac{96\!\cdots\!03}{12\!\cdots\!52}a^{9}+\frac{33\!\cdots\!29}{24\!\cdots\!04}a^{8}+\frac{97\!\cdots\!05}{24\!\cdots\!04}a^{7}+\frac{10\!\cdots\!77}{62\!\cdots\!76}a^{6}-\frac{15\!\cdots\!49}{31\!\cdots\!88}a^{5}-\frac{32\!\cdots\!51}{12\!\cdots\!52}a^{4}+\frac{27\!\cdots\!41}{77\!\cdots\!72}a^{3}+\frac{17\!\cdots\!19}{15\!\cdots\!44}a^{2}+\frac{15\!\cdots\!13}{38\!\cdots\!36}a-\frac{78\!\cdots\!69}{23\!\cdots\!16}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{48\!\cdots\!31}{11\!\cdots\!92}a^{27}-\frac{84\!\cdots\!63}{24\!\cdots\!04}a^{26}+\frac{10\!\cdots\!93}{99\!\cdots\!16}a^{25}-\frac{22\!\cdots\!39}{99\!\cdots\!16}a^{24}+\frac{37\!\cdots\!27}{24\!\cdots\!04}a^{23}-\frac{12\!\cdots\!21}{49\!\cdots\!08}a^{22}+\frac{63\!\cdots\!81}{49\!\cdots\!08}a^{21}-\frac{17\!\cdots\!23}{12\!\cdots\!52}a^{20}-\frac{90\!\cdots\!89}{19\!\cdots\!32}a^{19}+\frac{83\!\cdots\!31}{24\!\cdots\!04}a^{18}+\frac{65\!\cdots\!41}{49\!\cdots\!08}a^{17}-\frac{60\!\cdots\!85}{49\!\cdots\!08}a^{16}-\frac{36\!\cdots\!55}{99\!\cdots\!16}a^{15}+\frac{12\!\cdots\!87}{24\!\cdots\!04}a^{14}+\frac{40\!\cdots\!37}{62\!\cdots\!76}a^{13}+\frac{52\!\cdots\!71}{24\!\cdots\!04}a^{12}-\frac{52\!\cdots\!49}{49\!\cdots\!08}a^{11}-\frac{10\!\cdots\!01}{15\!\cdots\!44}a^{10}+\frac{11\!\cdots\!83}{12\!\cdots\!52}a^{9}+\frac{10\!\cdots\!91}{12\!\cdots\!52}a^{8}-\frac{26\!\cdots\!13}{24\!\cdots\!04}a^{7}-\frac{11\!\cdots\!71}{62\!\cdots\!76}a^{6}-\frac{78\!\cdots\!75}{15\!\cdots\!44}a^{5}+\frac{43\!\cdots\!49}{62\!\cdots\!76}a^{4}+\frac{11\!\cdots\!13}{15\!\cdots\!44}a^{3}-\frac{53\!\cdots\!59}{77\!\cdots\!72}a^{2}-\frac{44\!\cdots\!55}{96\!\cdots\!84}a-\frac{10\!\cdots\!33}{11\!\cdots\!08}$, $\frac{71\!\cdots\!57}{11\!\cdots\!92}a^{27}-\frac{90\!\cdots\!47}{19\!\cdots\!32}a^{26}+\frac{23\!\cdots\!75}{19\!\cdots\!32}a^{25}-\frac{36\!\cdots\!91}{19\!\cdots\!32}a^{24}-\frac{42\!\cdots\!25}{24\!\cdots\!04}a^{23}+\frac{28\!\cdots\!95}{24\!\cdots\!04}a^{22}+\frac{61\!\cdots\!11}{49\!\cdots\!08}a^{21}-\frac{13\!\cdots\!39}{62\!\cdots\!76}a^{20}-\frac{19\!\cdots\!55}{19\!\cdots\!32}a^{19}+\frac{24\!\cdots\!43}{99\!\cdots\!16}a^{18}+\frac{26\!\cdots\!65}{99\!\cdots\!16}a^{17}+\frac{59\!\cdots\!19}{99\!\cdots\!16}a^{16}-\frac{66\!\cdots\!89}{99\!\cdots\!16}a^{15}-\frac{11\!\cdots\!79}{49\!\cdots\!08}a^{14}+\frac{68\!\cdots\!41}{49\!\cdots\!08}a^{13}+\frac{35\!\cdots\!81}{49\!\cdots\!08}a^{12}-\frac{94\!\cdots\!19}{49\!\cdots\!08}a^{11}-\frac{49\!\cdots\!49}{24\!\cdots\!04}a^{10}+\frac{42\!\cdots\!77}{24\!\cdots\!04}a^{9}+\frac{57\!\cdots\!63}{24\!\cdots\!04}a^{8}-\frac{44\!\cdots\!63}{24\!\cdots\!04}a^{7}-\frac{52\!\cdots\!85}{12\!\cdots\!52}a^{6}-\frac{17\!\cdots\!37}{12\!\cdots\!52}a^{5}+\frac{20\!\cdots\!15}{12\!\cdots\!52}a^{4}+\frac{66\!\cdots\!49}{15\!\cdots\!44}a^{3}-\frac{25\!\cdots\!65}{15\!\cdots\!44}a^{2}-\frac{76\!\cdots\!43}{77\!\cdots\!72}a-\frac{30\!\cdots\!39}{23\!\cdots\!16}$, $\frac{71\!\cdots\!29}{24\!\cdots\!04}a^{27}+\frac{53\!\cdots\!13}{19\!\cdots\!32}a^{26}-\frac{20\!\cdots\!63}{19\!\cdots\!32}a^{25}+\frac{51\!\cdots\!37}{19\!\cdots\!32}a^{24}-\frac{81\!\cdots\!41}{24\!\cdots\!04}a^{23}+\frac{20\!\cdots\!59}{49\!\cdots\!08}a^{22}-\frac{11\!\cdots\!29}{96\!\cdots\!84}a^{21}+\frac{25\!\cdots\!93}{12\!\cdots\!52}a^{20}+\frac{12\!\cdots\!71}{77\!\cdots\!72}a^{19}-\frac{48\!\cdots\!01}{99\!\cdots\!16}a^{18}-\frac{50\!\cdots\!29}{99\!\cdots\!16}a^{17}+\frac{78\!\cdots\!55}{99\!\cdots\!16}a^{16}+\frac{25\!\cdots\!09}{12\!\cdots\!52}a^{15}-\frac{13\!\cdots\!17}{49\!\cdots\!08}a^{14}-\frac{13\!\cdots\!47}{49\!\cdots\!08}a^{13}+\frac{11\!\cdots\!21}{49\!\cdots\!08}a^{12}+\frac{25\!\cdots\!71}{38\!\cdots\!36}a^{11}-\frac{61\!\cdots\!25}{24\!\cdots\!04}a^{10}-\frac{17\!\cdots\!25}{24\!\cdots\!04}a^{9}+\frac{32\!\cdots\!15}{24\!\cdots\!04}a^{8}+\frac{29\!\cdots\!69}{31\!\cdots\!88}a^{7}+\frac{49\!\cdots\!17}{12\!\cdots\!52}a^{6}-\frac{57\!\cdots\!13}{12\!\cdots\!52}a^{5}-\frac{34\!\cdots\!25}{12\!\cdots\!52}a^{4}+\frac{16\!\cdots\!29}{38\!\cdots\!36}a^{3}+\frac{27\!\cdots\!07}{15\!\cdots\!44}a^{2}-\frac{28\!\cdots\!95}{77\!\cdots\!72}a-\frac{18\!\cdots\!61}{77\!\cdots\!72}$, $\frac{12\!\cdots\!11}{24\!\cdots\!04}a^{27}-\frac{11\!\cdots\!93}{19\!\cdots\!32}a^{26}+\frac{56\!\cdots\!67}{19\!\cdots\!32}a^{25}-\frac{99\!\cdots\!25}{12\!\cdots\!52}a^{24}+\frac{68\!\cdots\!11}{49\!\cdots\!08}a^{23}-\frac{17\!\cdots\!45}{12\!\cdots\!52}a^{22}+\frac{37\!\cdots\!81}{12\!\cdots\!52}a^{21}-\frac{95\!\cdots\!11}{12\!\cdots\!52}a^{20}+\frac{61\!\cdots\!89}{24\!\cdots\!04}a^{19}+\frac{20\!\cdots\!45}{99\!\cdots\!16}a^{18}-\frac{44\!\cdots\!39}{99\!\cdots\!16}a^{17}-\frac{30\!\cdots\!87}{62\!\cdots\!76}a^{16}-\frac{57\!\cdots\!13}{24\!\cdots\!04}a^{15}+\frac{76\!\cdots\!83}{49\!\cdots\!08}a^{14}+\frac{22\!\cdots\!75}{49\!\cdots\!08}a^{13}-\frac{41\!\cdots\!27}{19\!\cdots\!68}a^{12}-\frac{80\!\cdots\!99}{62\!\cdots\!76}a^{11}+\frac{85\!\cdots\!93}{24\!\cdots\!04}a^{10}+\frac{57\!\cdots\!01}{24\!\cdots\!04}a^{9}-\frac{27\!\cdots\!61}{96\!\cdots\!84}a^{8}-\frac{19\!\cdots\!39}{62\!\cdots\!76}a^{7}+\frac{33\!\cdots\!93}{12\!\cdots\!52}a^{6}+\frac{62\!\cdots\!57}{12\!\cdots\!52}a^{5}+\frac{53\!\cdots\!99}{38\!\cdots\!36}a^{4}-\frac{31\!\cdots\!49}{15\!\cdots\!44}a^{3}+\frac{29\!\cdots\!75}{77\!\cdots\!72}a^{2}+\frac{92\!\cdots\!89}{77\!\cdots\!72}a+\frac{62\!\cdots\!99}{24\!\cdots\!46}$, $\frac{40\!\cdots\!87}{11\!\cdots\!92}a^{27}-\frac{57\!\cdots\!47}{19\!\cdots\!32}a^{26}+\frac{96\!\cdots\!07}{99\!\cdots\!16}a^{25}-\frac{21\!\cdots\!07}{99\!\cdots\!16}a^{24}+\frac{42\!\cdots\!93}{24\!\cdots\!04}a^{23}-\frac{12\!\cdots\!43}{49\!\cdots\!08}a^{22}+\frac{55\!\cdots\!11}{49\!\cdots\!08}a^{21}-\frac{34\!\cdots\!27}{24\!\cdots\!04}a^{20}-\frac{70\!\cdots\!17}{19\!\cdots\!32}a^{19}+\frac{35\!\cdots\!87}{99\!\cdots\!16}a^{18}+\frac{50\!\cdots\!03}{49\!\cdots\!08}a^{17}-\frac{16\!\cdots\!37}{49\!\cdots\!08}a^{16}-\frac{29\!\cdots\!03}{99\!\cdots\!16}a^{15}+\frac{53\!\cdots\!83}{49\!\cdots\!08}a^{14}+\frac{12\!\cdots\!07}{24\!\cdots\!46}a^{13}+\frac{16\!\cdots\!41}{24\!\cdots\!04}a^{12}-\frac{44\!\cdots\!21}{49\!\cdots\!08}a^{11}-\frac{92\!\cdots\!53}{24\!\cdots\!04}a^{10}+\frac{10\!\cdots\!05}{12\!\cdots\!52}a^{9}+\frac{68\!\cdots\!35}{12\!\cdots\!52}a^{8}-\frac{25\!\cdots\!57}{24\!\cdots\!04}a^{7}-\frac{17\!\cdots\!43}{12\!\cdots\!52}a^{6}-\frac{12\!\cdots\!97}{77\!\cdots\!72}a^{5}+\frac{36\!\cdots\!55}{62\!\cdots\!76}a^{4}-\frac{18\!\cdots\!59}{15\!\cdots\!44}a^{3}-\frac{21\!\cdots\!13}{38\!\cdots\!36}a^{2}-\frac{13\!\cdots\!03}{48\!\cdots\!92}a-\frac{39\!\cdots\!03}{11\!\cdots\!08}$, $\frac{84\!\cdots\!97}{11\!\cdots\!92}a^{27}+\frac{12\!\cdots\!17}{19\!\cdots\!32}a^{26}-\frac{23\!\cdots\!93}{99\!\cdots\!16}a^{25}+\frac{55\!\cdots\!03}{99\!\cdots\!16}a^{24}-\frac{77\!\cdots\!51}{12\!\cdots\!52}a^{23}+\frac{39\!\cdots\!65}{49\!\cdots\!08}a^{22}-\frac{13\!\cdots\!15}{49\!\cdots\!08}a^{21}+\frac{10\!\cdots\!73}{24\!\cdots\!04}a^{20}+\frac{10\!\cdots\!55}{19\!\cdots\!32}a^{19}-\frac{10\!\cdots\!25}{99\!\cdots\!16}a^{18}-\frac{76\!\cdots\!41}{49\!\cdots\!08}a^{17}+\frac{74\!\cdots\!69}{49\!\cdots\!08}a^{16}+\frac{54\!\cdots\!81}{99\!\cdots\!16}a^{15}-\frac{25\!\cdots\!53}{49\!\cdots\!08}a^{14}-\frac{10\!\cdots\!49}{12\!\cdots\!52}a^{13}+\frac{81\!\cdots\!31}{24\!\cdots\!04}a^{12}+\frac{82\!\cdots\!39}{49\!\cdots\!08}a^{11}-\frac{30\!\cdots\!41}{24\!\cdots\!04}a^{10}-\frac{20\!\cdots\!35}{12\!\cdots\!52}a^{9}-\frac{20\!\cdots\!35}{12\!\cdots\!52}a^{8}+\frac{54\!\cdots\!39}{24\!\cdots\!04}a^{7}+\frac{20\!\cdots\!65}{12\!\cdots\!52}a^{6}-\frac{17\!\cdots\!23}{31\!\cdots\!88}a^{5}-\frac{52\!\cdots\!39}{62\!\cdots\!76}a^{4}+\frac{11\!\cdots\!69}{15\!\cdots\!44}a^{3}+\frac{13\!\cdots\!77}{19\!\cdots\!68}a^{2}+\frac{28\!\cdots\!39}{19\!\cdots\!68}a+\frac{24\!\cdots\!27}{11\!\cdots\!08}$, $\frac{23\!\cdots\!89}{19\!\cdots\!32}a^{27}+\frac{19\!\cdots\!79}{19\!\cdots\!32}a^{26}-\frac{30\!\cdots\!03}{99\!\cdots\!16}a^{25}+\frac{12\!\cdots\!93}{19\!\cdots\!32}a^{24}-\frac{15\!\cdots\!63}{49\!\cdots\!08}a^{23}+\frac{29\!\cdots\!23}{49\!\cdots\!08}a^{22}-\frac{43\!\cdots\!61}{12\!\cdots\!52}a^{21}+\frac{86\!\cdots\!63}{24\!\cdots\!04}a^{20}+\frac{14\!\cdots\!65}{99\!\cdots\!16}a^{19}-\frac{94\!\cdots\!91}{99\!\cdots\!16}a^{18}-\frac{20\!\cdots\!01}{49\!\cdots\!08}a^{17}+\frac{20\!\cdots\!71}{99\!\cdots\!16}a^{16}+\frac{55\!\cdots\!17}{49\!\cdots\!08}a^{15}-\frac{37\!\cdots\!99}{49\!\cdots\!08}a^{14}-\frac{50\!\cdots\!23}{24\!\cdots\!04}a^{13}-\frac{34\!\cdots\!75}{49\!\cdots\!08}a^{12}+\frac{79\!\cdots\!21}{24\!\cdots\!04}a^{11}+\frac{55\!\cdots\!85}{24\!\cdots\!04}a^{10}-\frac{35\!\cdots\!89}{12\!\cdots\!52}a^{9}-\frac{69\!\cdots\!45}{24\!\cdots\!04}a^{8}+\frac{40\!\cdots\!91}{12\!\cdots\!52}a^{7}+\frac{74\!\cdots\!95}{12\!\cdots\!52}a^{6}+\frac{10\!\cdots\!27}{62\!\cdots\!76}a^{5}-\frac{27\!\cdots\!57}{12\!\cdots\!52}a^{4}-\frac{16\!\cdots\!97}{15\!\cdots\!44}a^{3}+\frac{34\!\cdots\!31}{15\!\cdots\!44}a^{2}+\frac{26\!\cdots\!87}{19\!\cdots\!68}a+\frac{19\!\cdots\!63}{77\!\cdots\!72}$, $\frac{10\!\cdots\!41}{99\!\cdots\!16}a^{27}+\frac{92\!\cdots\!31}{99\!\cdots\!16}a^{26}-\frac{31\!\cdots\!79}{99\!\cdots\!16}a^{25}+\frac{35\!\cdots\!59}{49\!\cdots\!08}a^{24}-\frac{41\!\cdots\!41}{62\!\cdots\!76}a^{23}+\frac{74\!\cdots\!61}{77\!\cdots\!72}a^{22}-\frac{11\!\cdots\!55}{31\!\cdots\!88}a^{21}+\frac{61\!\cdots\!35}{12\!\cdots\!52}a^{20}+\frac{50\!\cdots\!69}{49\!\cdots\!08}a^{19}-\frac{59\!\cdots\!63}{49\!\cdots\!08}a^{18}-\frac{14\!\cdots\!57}{49\!\cdots\!08}a^{17}+\frac{30\!\cdots\!13}{24\!\cdots\!04}a^{16}+\frac{23\!\cdots\!55}{24\!\cdots\!04}a^{15}-\frac{10\!\cdots\!69}{24\!\cdots\!04}a^{14}-\frac{37\!\cdots\!39}{24\!\cdots\!04}a^{13}-\frac{14\!\cdots\!67}{12\!\cdots\!52}a^{12}+\frac{34\!\cdots\!45}{12\!\cdots\!52}a^{11}+\frac{11\!\cdots\!97}{12\!\cdots\!52}a^{10}-\frac{31\!\cdots\!33}{12\!\cdots\!52}a^{9}-\frac{94\!\cdots\!15}{62\!\cdots\!76}a^{8}+\frac{19\!\cdots\!21}{62\!\cdots\!76}a^{7}+\frac{24\!\cdots\!33}{62\!\cdots\!76}a^{6}+\frac{21\!\cdots\!39}{62\!\cdots\!76}a^{5}-\frac{55\!\cdots\!61}{31\!\cdots\!88}a^{4}+\frac{29\!\cdots\!45}{77\!\cdots\!72}a^{3}+\frac{14\!\cdots\!73}{96\!\cdots\!84}a^{2}+\frac{30\!\cdots\!31}{38\!\cdots\!36}a+\frac{17\!\cdots\!71}{19\!\cdots\!68}$, $\frac{38\!\cdots\!95}{19\!\cdots\!32}a^{27}+\frac{16\!\cdots\!69}{99\!\cdots\!16}a^{26}-\frac{53\!\cdots\!29}{99\!\cdots\!16}a^{25}+\frac{73\!\cdots\!41}{62\!\cdots\!76}a^{24}-\frac{14\!\cdots\!75}{15\!\cdots\!44}a^{23}+\frac{16\!\cdots\!57}{12\!\cdots\!52}a^{22}-\frac{19\!\cdots\!81}{31\!\cdots\!88}a^{21}+\frac{94\!\cdots\!75}{12\!\cdots\!52}a^{20}+\frac{20\!\cdots\!19}{99\!\cdots\!16}a^{19}-\frac{99\!\cdots\!65}{49\!\cdots\!08}a^{18}-\frac{29\!\cdots\!43}{49\!\cdots\!08}a^{17}+\frac{26\!\cdots\!19}{15\!\cdots\!44}a^{16}+\frac{85\!\cdots\!33}{49\!\cdots\!08}a^{15}-\frac{14\!\cdots\!91}{24\!\cdots\!04}a^{14}-\frac{74\!\cdots\!57}{24\!\cdots\!04}a^{13}-\frac{13\!\cdots\!63}{31\!\cdots\!88}a^{12}+\frac{12\!\cdots\!47}{24\!\cdots\!04}a^{11}+\frac{27\!\cdots\!27}{12\!\cdots\!52}a^{10}-\frac{59\!\cdots\!95}{12\!\cdots\!52}a^{9}-\frac{25\!\cdots\!51}{77\!\cdots\!72}a^{8}+\frac{71\!\cdots\!31}{12\!\cdots\!52}a^{7}+\frac{49\!\cdots\!95}{62\!\cdots\!76}a^{6}+\frac{65\!\cdots\!29}{62\!\cdots\!76}a^{5}-\frac{13\!\cdots\!95}{38\!\cdots\!36}a^{4}+\frac{25\!\cdots\!13}{38\!\cdots\!36}a^{3}+\frac{12\!\cdots\!45}{38\!\cdots\!36}a^{2}+\frac{62\!\cdots\!21}{38\!\cdots\!36}a+\frac{50\!\cdots\!27}{24\!\cdots\!46}$, $\frac{12\!\cdots\!13}{99\!\cdots\!16}a^{27}+\frac{20\!\cdots\!05}{19\!\cdots\!32}a^{26}-\frac{64\!\cdots\!73}{19\!\cdots\!32}a^{25}+\frac{33\!\cdots\!59}{49\!\cdots\!08}a^{24}-\frac{19\!\cdots\!61}{49\!\cdots\!08}a^{23}+\frac{13\!\cdots\!07}{24\!\cdots\!04}a^{22}-\frac{84\!\cdots\!77}{24\!\cdots\!04}a^{21}+\frac{23\!\cdots\!23}{62\!\cdots\!76}a^{20}+\frac{70\!\cdots\!43}{49\!\cdots\!08}a^{19}-\frac{12\!\cdots\!17}{99\!\cdots\!16}a^{18}-\frac{38\!\cdots\!59}{99\!\cdots\!16}a^{17}+\frac{27\!\cdots\!45}{24\!\cdots\!04}a^{16}+\frac{13\!\cdots\!11}{12\!\cdots\!52}a^{15}-\frac{14\!\cdots\!67}{49\!\cdots\!08}a^{14}-\frac{95\!\cdots\!37}{49\!\cdots\!08}a^{13}-\frac{33\!\cdots\!95}{12\!\cdots\!52}a^{12}+\frac{38\!\cdots\!99}{12\!\cdots\!52}a^{11}+\frac{36\!\cdots\!79}{24\!\cdots\!04}a^{10}-\frac{70\!\cdots\!51}{24\!\cdots\!04}a^{9}-\frac{12\!\cdots\!55}{62\!\cdots\!76}a^{8}+\frac{10\!\cdots\!05}{31\!\cdots\!88}a^{7}+\frac{64\!\cdots\!79}{12\!\cdots\!52}a^{6}+\frac{11\!\cdots\!33}{12\!\cdots\!52}a^{5}-\frac{50\!\cdots\!97}{31\!\cdots\!88}a^{4}+\frac{93\!\cdots\!15}{15\!\cdots\!44}a^{3}+\frac{15\!\cdots\!39}{77\!\cdots\!72}a^{2}+\frac{84\!\cdots\!61}{77\!\cdots\!72}a+\frac{35\!\cdots\!79}{19\!\cdots\!68}$, $\frac{47\!\cdots\!03}{11\!\cdots\!92}a^{27}+\frac{71\!\cdots\!51}{19\!\cdots\!32}a^{26}-\frac{24\!\cdots\!07}{19\!\cdots\!32}a^{25}+\frac{27\!\cdots\!21}{99\!\cdots\!16}a^{24}-\frac{96\!\cdots\!75}{49\!\cdots\!08}a^{23}+\frac{17\!\cdots\!63}{49\!\cdots\!08}a^{22}-\frac{38\!\cdots\!87}{49\!\cdots\!08}a^{21}+\frac{12\!\cdots\!37}{12\!\cdots\!52}a^{20}+\frac{11\!\cdots\!05}{19\!\cdots\!32}a^{19}-\frac{97\!\cdots\!99}{99\!\cdots\!16}a^{18}-\frac{71\!\cdots\!41}{99\!\cdots\!16}a^{17}+\frac{41\!\cdots\!51}{49\!\cdots\!08}a^{16}+\frac{34\!\cdots\!15}{99\!\cdots\!16}a^{15}-\frac{14\!\cdots\!67}{49\!\cdots\!08}a^{14}-\frac{30\!\cdots\!81}{49\!\cdots\!08}a^{13}+\frac{98\!\cdots\!07}{24\!\cdots\!04}a^{12}+\frac{39\!\cdots\!97}{49\!\cdots\!08}a^{11}+\frac{55\!\cdots\!97}{24\!\cdots\!04}a^{10}-\frac{33\!\cdots\!33}{24\!\cdots\!04}a^{9}+\frac{25\!\cdots\!91}{12\!\cdots\!52}a^{8}+\frac{19\!\cdots\!89}{24\!\cdots\!04}a^{7}+\frac{13\!\cdots\!43}{12\!\cdots\!52}a^{6}-\frac{83\!\cdots\!39}{12\!\cdots\!52}a^{5}-\frac{36\!\cdots\!59}{62\!\cdots\!76}a^{4}-\frac{48\!\cdots\!69}{77\!\cdots\!72}a^{3}-\frac{30\!\cdots\!29}{12\!\cdots\!73}a^{2}-\frac{28\!\cdots\!91}{77\!\cdots\!72}a-\frac{11\!\cdots\!89}{11\!\cdots\!08}$, $\frac{36\!\cdots\!99}{11\!\cdots\!92}a^{27}-\frac{25\!\cdots\!17}{99\!\cdots\!16}a^{26}+\frac{21\!\cdots\!41}{24\!\cdots\!04}a^{25}-\frac{18\!\cdots\!69}{99\!\cdots\!16}a^{24}+\frac{37\!\cdots\!05}{24\!\cdots\!04}a^{23}-\frac{10\!\cdots\!93}{49\!\cdots\!08}a^{22}+\frac{49\!\cdots\!13}{49\!\cdots\!08}a^{21}-\frac{15\!\cdots\!19}{12\!\cdots\!52}a^{20}-\frac{62\!\cdots\!93}{19\!\cdots\!32}a^{19}+\frac{15\!\cdots\!35}{49\!\cdots\!08}a^{18}+\frac{22\!\cdots\!59}{24\!\cdots\!04}a^{17}-\frac{14\!\cdots\!47}{49\!\cdots\!08}a^{16}-\frac{26\!\cdots\!27}{99\!\cdots\!16}a^{15}+\frac{11\!\cdots\!45}{12\!\cdots\!52}a^{14}+\frac{11\!\cdots\!47}{24\!\cdots\!04}a^{13}+\frac{14\!\cdots\!13}{24\!\cdots\!04}a^{12}-\frac{39\!\cdots\!89}{49\!\cdots\!08}a^{11}-\frac{41\!\cdots\!67}{12\!\cdots\!52}a^{10}+\frac{14\!\cdots\!47}{19\!\cdots\!68}a^{9}+\frac{60\!\cdots\!57}{12\!\cdots\!52}a^{8}-\frac{22\!\cdots\!01}{24\!\cdots\!04}a^{7}-\frac{37\!\cdots\!85}{31\!\cdots\!88}a^{6}-\frac{86\!\cdots\!63}{62\!\cdots\!76}a^{5}+\frac{32\!\cdots\!23}{62\!\cdots\!76}a^{4}-\frac{17\!\cdots\!21}{15\!\cdots\!44}a^{3}-\frac{37\!\cdots\!31}{77\!\cdots\!72}a^{2}-\frac{94\!\cdots\!19}{38\!\cdots\!36}a-\frac{35\!\cdots\!87}{11\!\cdots\!08}$, $\frac{13\!\cdots\!05}{19\!\cdots\!32}a^{27}-\frac{60\!\cdots\!51}{99\!\cdots\!16}a^{26}+\frac{42\!\cdots\!41}{19\!\cdots\!32}a^{25}-\frac{49\!\cdots\!77}{99\!\cdots\!16}a^{24}+\frac{24\!\cdots\!05}{49\!\cdots\!08}a^{23}-\frac{15\!\cdots\!95}{24\!\cdots\!04}a^{22}+\frac{29\!\cdots\!67}{12\!\cdots\!52}a^{21}-\frac{86\!\cdots\!25}{24\!\cdots\!04}a^{20}-\frac{61\!\cdots\!93}{99\!\cdots\!16}a^{19}+\frac{46\!\cdots\!83}{49\!\cdots\!08}a^{18}+\frac{17\!\cdots\!79}{99\!\cdots\!16}a^{17}-\frac{58\!\cdots\!15}{49\!\cdots\!08}a^{16}-\frac{28\!\cdots\!85}{49\!\cdots\!08}a^{15}+\frac{97\!\cdots\!63}{24\!\cdots\!04}a^{14}+\frac{45\!\cdots\!45}{49\!\cdots\!08}a^{13}-\frac{40\!\cdots\!03}{24\!\cdots\!04}a^{12}-\frac{42\!\cdots\!53}{24\!\cdots\!04}a^{11}-\frac{27\!\cdots\!17}{12\!\cdots\!52}a^{10}+\frac{43\!\cdots\!35}{24\!\cdots\!04}a^{9}+\frac{64\!\cdots\!37}{12\!\cdots\!52}a^{8}-\frac{26\!\cdots\!67}{12\!\cdots\!52}a^{7}-\frac{12\!\cdots\!75}{62\!\cdots\!76}a^{6}+\frac{34\!\cdots\!79}{12\!\cdots\!52}a^{5}+\frac{62\!\cdots\!27}{62\!\cdots\!76}a^{4}-\frac{90\!\cdots\!43}{15\!\cdots\!44}a^{3}-\frac{68\!\cdots\!39}{77\!\cdots\!72}a^{2}-\frac{21\!\cdots\!69}{77\!\cdots\!72}a-\frac{11\!\cdots\!49}{38\!\cdots\!36}$, $\frac{35\!\cdots\!95}{19\!\cdots\!32}a^{27}+\frac{29\!\cdots\!45}{19\!\cdots\!32}a^{26}-\frac{48\!\cdots\!29}{99\!\cdots\!16}a^{25}+\frac{20\!\cdots\!19}{19\!\cdots\!32}a^{24}-\frac{38\!\cdots\!25}{49\!\cdots\!08}a^{23}+\frac{62\!\cdots\!15}{49\!\cdots\!08}a^{22}-\frac{69\!\cdots\!19}{12\!\cdots\!52}a^{21}+\frac{16\!\cdots\!63}{24\!\cdots\!04}a^{20}+\frac{18\!\cdots\!71}{99\!\cdots\!16}a^{19}-\frac{16\!\cdots\!57}{99\!\cdots\!16}a^{18}-\frac{26\!\cdots\!43}{49\!\cdots\!08}a^{17}+\frac{93\!\cdots\!85}{99\!\cdots\!16}a^{16}+\frac{75\!\cdots\!67}{49\!\cdots\!08}a^{15}-\frac{19\!\cdots\!37}{49\!\cdots\!08}a^{14}-\frac{65\!\cdots\!17}{24\!\cdots\!04}a^{13}-\frac{29\!\cdots\!77}{49\!\cdots\!08}a^{12}+\frac{10\!\cdots\!87}{24\!\cdots\!04}a^{11}+\frac{57\!\cdots\!27}{24\!\cdots\!04}a^{10}-\frac{48\!\cdots\!07}{12\!\cdots\!52}a^{9}-\frac{73\!\cdots\!71}{24\!\cdots\!04}a^{8}+\frac{61\!\cdots\!01}{12\!\cdots\!52}a^{7}+\frac{91\!\cdots\!49}{12\!\cdots\!52}a^{6}+\frac{91\!\cdots\!41}{62\!\cdots\!76}a^{5}-\frac{33\!\cdots\!31}{12\!\cdots\!52}a^{4}+\frac{80\!\cdots\!65}{15\!\cdots\!44}a^{3}+\frac{43\!\cdots\!69}{15\!\cdots\!44}a^{2}+\frac{30\!\cdots\!33}{19\!\cdots\!68}a+\frac{18\!\cdots\!69}{77\!\cdots\!72}$, $\frac{15\!\cdots\!17}{11\!\cdots\!92}a^{27}+\frac{23\!\cdots\!77}{19\!\cdots\!32}a^{26}-\frac{98\!\cdots\!69}{24\!\cdots\!04}a^{25}+\frac{43\!\cdots\!97}{49\!\cdots\!08}a^{24}-\frac{92\!\cdots\!39}{12\!\cdots\!52}a^{23}+\frac{47\!\cdots\!23}{49\!\cdots\!08}a^{22}-\frac{20\!\cdots\!79}{49\!\cdots\!08}a^{21}+\frac{14\!\cdots\!07}{24\!\cdots\!04}a^{20}+\frac{26\!\cdots\!87}{19\!\cdots\!32}a^{19}-\frac{17\!\cdots\!09}{99\!\cdots\!16}a^{18}-\frac{89\!\cdots\!53}{24\!\cdots\!04}a^{17}+\frac{50\!\cdots\!63}{24\!\cdots\!04}a^{16}+\frac{10\!\cdots\!65}{99\!\cdots\!16}a^{15}-\frac{31\!\cdots\!85}{49\!\cdots\!08}a^{14}-\frac{45\!\cdots\!65}{24\!\cdots\!04}a^{13}+\frac{28\!\cdots\!27}{12\!\cdots\!52}a^{12}+\frac{15\!\cdots\!87}{49\!\cdots\!08}a^{11}+\frac{17\!\cdots\!71}{24\!\cdots\!04}a^{10}-\frac{11\!\cdots\!61}{38\!\cdots\!36}a^{9}-\frac{71\!\cdots\!89}{62\!\cdots\!76}a^{8}+\frac{87\!\cdots\!95}{24\!\cdots\!04}a^{7}+\frac{52\!\cdots\!25}{12\!\cdots\!52}a^{6}+\frac{37\!\cdots\!21}{62\!\cdots\!76}a^{5}-\frac{57\!\cdots\!25}{31\!\cdots\!88}a^{4}+\frac{73\!\cdots\!77}{15\!\cdots\!44}a^{3}+\frac{14\!\cdots\!07}{77\!\cdots\!72}a^{2}+\frac{36\!\cdots\!91}{38\!\cdots\!36}a+\frac{59\!\cdots\!55}{58\!\cdots\!04}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 17445632490941.885 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{12}\cdot 17445632490941.885 \cdot 1}{2\cdot\sqrt{21140839391697569190758072549457521572728274944}}\cr\approx \mathstrut & 3.63390871310708 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 8*x^27 + 24*x^26 - 48*x^25 + 18*x^24 - 48*x^23 + 288*x^22 - 240*x^21 - 1242*x^20 + 528*x^19 + 3504*x^18 + 576*x^17 - 9312*x^16 - 1344*x^15 + 16704*x^14 + 9600*x^13 - 25056*x^12 - 24192*x^11 + 18816*x^10 + 28416*x^9 - 21408*x^8 - 55296*x^7 - 25344*x^6 + 14592*x^5 + 5088*x^4 - 17664*x^3 - 16128*x^2 - 5120*x - 512)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 8*x^27 + 24*x^26 - 48*x^25 + 18*x^24 - 48*x^23 + 288*x^22 - 240*x^21 - 1242*x^20 + 528*x^19 + 3504*x^18 + 576*x^17 - 9312*x^16 - 1344*x^15 + 16704*x^14 + 9600*x^13 - 25056*x^12 - 24192*x^11 + 18816*x^10 + 28416*x^9 - 21408*x^8 - 55296*x^7 - 25344*x^6 + 14592*x^5 + 5088*x^4 - 17664*x^3 - 16128*x^2 - 5120*x - 512, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 8*x^27 + 24*x^26 - 48*x^25 + 18*x^24 - 48*x^23 + 288*x^22 - 240*x^21 - 1242*x^20 + 528*x^19 + 3504*x^18 + 576*x^17 - 9312*x^16 - 1344*x^15 + 16704*x^14 + 9600*x^13 - 25056*x^12 - 24192*x^11 + 18816*x^10 + 28416*x^9 - 21408*x^8 - 55296*x^7 - 25344*x^6 + 14592*x^5 + 5088*x^4 - 17664*x^3 - 16128*x^2 - 5120*x - 512);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 8*x^27 + 24*x^26 - 48*x^25 + 18*x^24 - 48*x^23 + 288*x^22 - 240*x^21 - 1242*x^20 + 528*x^19 + 3504*x^18 + 576*x^17 - 9312*x^16 - 1344*x^15 + 16704*x^14 + 9600*x^13 - 25056*x^12 - 24192*x^11 + 18816*x^10 + 28416*x^9 - 21408*x^8 - 55296*x^7 - 25344*x^6 + 14592*x^5 + 5088*x^4 - 17664*x^3 - 16128*x^2 - 5120*x - 512);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$G(2,2)$ (as 28T393):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 12096
The 16 conjugacy class representatives for $G(2,2)$
Character table for $G(2,2)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.7.0.1}{7} }^{4}$ ${\href{/padicField/7.8.0.1}{8} }^{3}{,}\,{\href{/padicField/7.4.0.1}{4} }$ ${\href{/padicField/11.12.0.1}{12} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.7.0.1}{7} }^{4}$ ${\href{/padicField/17.7.0.1}{7} }^{4}$ ${\href{/padicField/19.12.0.1}{12} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.12.0.1}{12} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.8.0.1}{8} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{3}{,}\,{\href{/padicField/31.4.0.1}{4} }$ ${\href{/padicField/37.12.0.1}{12} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.3.0.1}{3} }^{9}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.6.0.1}{6} }^{4}{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.12.0.1}{12} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.7.0.1}{7} }^{4}$ ${\href{/padicField/59.6.0.1}{6} }^{4}{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.11.14$x^{4} + 8 x + 10$$4$$1$$11$$D_{4}$$[3, 4]^{2}$
2.8.27.98$x^{8} + 8 x^{7} + 8 x^{6} + 18 x^{4} + 24 x^{2} + 6$$8$$1$$27$$(C_4^2 : C_2):C_2$$[2, 3, 7/2, 4, 9/2]^{2}$
2.16.62.87$x^{16} + 8 x^{15} + 8 x^{14} + 12 x^{12} + 12 x^{8} + 8 x^{6} + 16 x^{3} + 18$$16$$1$$62$16T135$[2, 3, 7/2, 4, 9/2]^{2}$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $27$$27$$1$$34$