Properties

Label 28.4.211...944.3
Degree $28$
Signature $[4, 12]$
Discriminant $2.114\times 10^{46}$
Root discriminant \(45.13\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $G(2,2)$ (as 28T393)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 4*x^27 - 6*x^26 + 36*x^25 + 33*x^24 - 48*x^23 - 624*x^22 - 1152*x^21 + 6498*x^20 + 13776*x^19 - 42768*x^18 - 93984*x^17 + 212112*x^16 + 410352*x^15 - 795648*x^14 - 1155648*x^13 + 2150847*x^12 + 2060532*x^11 - 4016202*x^10 - 2133348*x^9 + 4975275*x^8 + 920160*x^7 - 3936144*x^6 + 350160*x^5 + 1794336*x^4 - 567432*x^3 - 357444*x^2 + 188216*x - 3806)
 
gp: K = bnfinit(y^28 - 4*y^27 - 6*y^26 + 36*y^25 + 33*y^24 - 48*y^23 - 624*y^22 - 1152*y^21 + 6498*y^20 + 13776*y^19 - 42768*y^18 - 93984*y^17 + 212112*y^16 + 410352*y^15 - 795648*y^14 - 1155648*y^13 + 2150847*y^12 + 2060532*y^11 - 4016202*y^10 - 2133348*y^9 + 4975275*y^8 + 920160*y^7 - 3936144*y^6 + 350160*y^5 + 1794336*y^4 - 567432*y^3 - 357444*y^2 + 188216*y - 3806, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 4*x^27 - 6*x^26 + 36*x^25 + 33*x^24 - 48*x^23 - 624*x^22 - 1152*x^21 + 6498*x^20 + 13776*x^19 - 42768*x^18 - 93984*x^17 + 212112*x^16 + 410352*x^15 - 795648*x^14 - 1155648*x^13 + 2150847*x^12 + 2060532*x^11 - 4016202*x^10 - 2133348*x^9 + 4975275*x^8 + 920160*x^7 - 3936144*x^6 + 350160*x^5 + 1794336*x^4 - 567432*x^3 - 357444*x^2 + 188216*x - 3806);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 4*x^27 - 6*x^26 + 36*x^25 + 33*x^24 - 48*x^23 - 624*x^22 - 1152*x^21 + 6498*x^20 + 13776*x^19 - 42768*x^18 - 93984*x^17 + 212112*x^16 + 410352*x^15 - 795648*x^14 - 1155648*x^13 + 2150847*x^12 + 2060532*x^11 - 4016202*x^10 - 2133348*x^9 + 4975275*x^8 + 920160*x^7 - 3936144*x^6 + 350160*x^5 + 1794336*x^4 - 567432*x^3 - 357444*x^2 + 188216*x - 3806)
 

\( x^{28} - 4 x^{27} - 6 x^{26} + 36 x^{25} + 33 x^{24} - 48 x^{23} - 624 x^{22} - 1152 x^{21} + \cdots - 3806 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(21140839391697569190758072549457521572728274944\) \(\medspace = 2^{100}\cdot 3^{34}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.13\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3}a^{14}+\frac{1}{3}a^{13}+\frac{1}{3}a^{12}-\frac{1}{3}a^{11}-\frac{1}{3}a^{10}-\frac{1}{3}a^{9}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{15}+\frac{1}{3}a^{12}+\frac{1}{3}a^{9}-\frac{1}{3}a^{6}-\frac{1}{3}a^{3}-\frac{1}{3}$, $\frac{1}{3}a^{16}+\frac{1}{3}a^{13}+\frac{1}{3}a^{10}-\frac{1}{3}a^{7}-\frac{1}{3}a^{4}-\frac{1}{3}a$, $\frac{1}{3}a^{17}-\frac{1}{3}a^{13}-\frac{1}{3}a^{12}-\frac{1}{3}a^{11}+\frac{1}{3}a^{10}+\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{18}+\frac{1}{3}a^{9}+\frac{1}{3}$, $\frac{1}{3}a^{19}+\frac{1}{3}a^{10}+\frac{1}{3}a$, $\frac{1}{3}a^{20}+\frac{1}{3}a^{11}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{21}+\frac{1}{3}a^{12}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{22}+\frac{1}{3}a^{13}+\frac{1}{3}a^{4}$, $\frac{1}{3}a^{23}-\frac{1}{3}a^{13}-\frac{1}{3}a^{12}+\frac{1}{3}a^{11}+\frac{1}{3}a^{10}+\frac{1}{3}a^{9}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{6}a^{24}+\frac{1}{3}a^{12}+\frac{1}{3}a^{9}-\frac{1}{2}a^{8}+\frac{1}{3}a^{6}-\frac{1}{3}a^{3}-\frac{1}{3}$, $\frac{1}{6}a^{25}+\frac{1}{3}a^{13}+\frac{1}{3}a^{10}-\frac{1}{2}a^{9}+\frac{1}{3}a^{7}-\frac{1}{3}a^{4}-\frac{1}{3}a$, $\frac{1}{6}a^{26}-\frac{1}{3}a^{13}-\frac{1}{3}a^{12}-\frac{1}{3}a^{11}-\frac{1}{6}a^{10}+\frac{1}{3}a^{9}+\frac{1}{3}a^{8}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{41\!\cdots\!22}a^{27}+\frac{25\!\cdots\!75}{69\!\cdots\!87}a^{26}+\frac{21\!\cdots\!63}{13\!\cdots\!74}a^{25}-\frac{25\!\cdots\!77}{69\!\cdots\!87}a^{24}+\frac{43\!\cdots\!89}{69\!\cdots\!87}a^{23}-\frac{14\!\cdots\!40}{23\!\cdots\!29}a^{22}+\frac{28\!\cdots\!99}{69\!\cdots\!87}a^{21}-\frac{17\!\cdots\!66}{23\!\cdots\!29}a^{20}-\frac{71\!\cdots\!73}{69\!\cdots\!87}a^{19}-\frac{42\!\cdots\!62}{69\!\cdots\!87}a^{18}+\frac{47\!\cdots\!61}{69\!\cdots\!87}a^{17}+\frac{14\!\cdots\!29}{69\!\cdots\!87}a^{16}-\frac{18\!\cdots\!48}{23\!\cdots\!29}a^{15}+\frac{54\!\cdots\!49}{69\!\cdots\!87}a^{14}-\frac{96\!\cdots\!01}{23\!\cdots\!29}a^{13}+\frac{20\!\cdots\!64}{23\!\cdots\!29}a^{12}+\frac{95\!\cdots\!13}{46\!\cdots\!58}a^{11}+\frac{28\!\cdots\!81}{69\!\cdots\!87}a^{10}-\frac{56\!\cdots\!03}{13\!\cdots\!74}a^{9}+\frac{11\!\cdots\!39}{23\!\cdots\!29}a^{8}-\frac{33\!\cdots\!93}{23\!\cdots\!29}a^{7}+\frac{15\!\cdots\!95}{69\!\cdots\!87}a^{6}+\frac{10\!\cdots\!99}{23\!\cdots\!29}a^{5}-\frac{14\!\cdots\!76}{23\!\cdots\!29}a^{4}-\frac{10\!\cdots\!01}{69\!\cdots\!87}a^{3}+\frac{74\!\cdots\!61}{23\!\cdots\!29}a^{2}-\frac{10\!\cdots\!44}{23\!\cdots\!29}a+\frac{96\!\cdots\!09}{20\!\cdots\!61}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{64\!\cdots\!45}{13\!\cdots\!74}a^{27}-\frac{65\!\cdots\!19}{46\!\cdots\!58}a^{26}-\frac{18\!\cdots\!01}{46\!\cdots\!58}a^{25}+\frac{16\!\cdots\!33}{13\!\cdots\!74}a^{24}+\frac{19\!\cdots\!86}{69\!\cdots\!87}a^{23}+\frac{68\!\cdots\!14}{69\!\cdots\!87}a^{22}-\frac{20\!\cdots\!01}{69\!\cdots\!87}a^{21}-\frac{57\!\cdots\!85}{69\!\cdots\!87}a^{20}+\frac{15\!\cdots\!69}{69\!\cdots\!87}a^{19}+\frac{60\!\cdots\!14}{69\!\cdots\!87}a^{18}-\frac{73\!\cdots\!69}{69\!\cdots\!87}a^{17}-\frac{38\!\cdots\!73}{69\!\cdots\!87}a^{16}+\frac{86\!\cdots\!85}{23\!\cdots\!29}a^{15}+\frac{54\!\cdots\!15}{23\!\cdots\!29}a^{14}-\frac{67\!\cdots\!79}{69\!\cdots\!87}a^{13}-\frac{15\!\cdots\!10}{23\!\cdots\!29}a^{12}+\frac{24\!\cdots\!55}{13\!\cdots\!74}a^{11}+\frac{17\!\cdots\!09}{13\!\cdots\!74}a^{10}-\frac{27\!\cdots\!45}{13\!\cdots\!74}a^{9}-\frac{22\!\cdots\!65}{13\!\cdots\!74}a^{8}+\frac{84\!\cdots\!28}{69\!\cdots\!87}a^{7}+\frac{85\!\cdots\!08}{69\!\cdots\!87}a^{6}-\frac{59\!\cdots\!35}{69\!\cdots\!87}a^{5}-\frac{13\!\cdots\!96}{23\!\cdots\!29}a^{4}+\frac{30\!\cdots\!67}{69\!\cdots\!87}a^{3}+\frac{97\!\cdots\!06}{69\!\cdots\!87}a^{2}-\frac{59\!\cdots\!61}{69\!\cdots\!87}a+\frac{46\!\cdots\!88}{23\!\cdots\!29}$, $\frac{84\!\cdots\!85}{13\!\cdots\!74}a^{27}+\frac{51\!\cdots\!57}{23\!\cdots\!29}a^{26}+\frac{55\!\cdots\!15}{13\!\cdots\!74}a^{25}-\frac{12\!\cdots\!13}{69\!\cdots\!87}a^{24}-\frac{16\!\cdots\!09}{69\!\cdots\!87}a^{23}+\frac{18\!\cdots\!42}{69\!\cdots\!87}a^{22}+\frac{83\!\cdots\!83}{23\!\cdots\!29}a^{21}+\frac{59\!\cdots\!36}{69\!\cdots\!87}a^{20}-\frac{23\!\cdots\!59}{69\!\cdots\!87}a^{19}-\frac{20\!\cdots\!62}{23\!\cdots\!29}a^{18}+\frac{13\!\cdots\!40}{69\!\cdots\!87}a^{17}+\frac{13\!\cdots\!23}{23\!\cdots\!29}a^{16}-\frac{61\!\cdots\!91}{69\!\cdots\!87}a^{15}-\frac{53\!\cdots\!55}{23\!\cdots\!29}a^{14}+\frac{21\!\cdots\!67}{69\!\cdots\!87}a^{13}+\frac{40\!\cdots\!79}{69\!\cdots\!87}a^{12}-\frac{10\!\cdots\!11}{13\!\cdots\!74}a^{11}-\frac{61\!\cdots\!92}{69\!\cdots\!87}a^{10}+\frac{15\!\cdots\!05}{13\!\cdots\!74}a^{9}+\frac{43\!\cdots\!88}{69\!\cdots\!87}a^{8}-\frac{70\!\cdots\!85}{69\!\cdots\!87}a^{7}+\frac{57\!\cdots\!83}{69\!\cdots\!87}a^{6}+\frac{26\!\cdots\!18}{69\!\cdots\!87}a^{5}-\frac{24\!\cdots\!85}{69\!\cdots\!87}a^{4}+\frac{62\!\cdots\!44}{69\!\cdots\!87}a^{3}+\frac{10\!\cdots\!77}{69\!\cdots\!87}a^{2}-\frac{17\!\cdots\!14}{23\!\cdots\!29}a+\frac{10\!\cdots\!63}{23\!\cdots\!29}$, $\frac{90\!\cdots\!37}{41\!\cdots\!22}a^{27}-\frac{42\!\cdots\!53}{46\!\cdots\!58}a^{26}-\frac{30\!\cdots\!60}{23\!\cdots\!29}a^{25}+\frac{21\!\cdots\!74}{23\!\cdots\!29}a^{24}+\frac{37\!\cdots\!08}{69\!\cdots\!87}a^{23}-\frac{42\!\cdots\!15}{23\!\cdots\!29}a^{22}-\frac{91\!\cdots\!37}{69\!\cdots\!87}a^{21}-\frac{15\!\cdots\!49}{69\!\cdots\!87}a^{20}+\frac{36\!\cdots\!09}{23\!\cdots\!29}a^{19}+\frac{19\!\cdots\!59}{69\!\cdots\!87}a^{18}-\frac{78\!\cdots\!81}{69\!\cdots\!87}a^{17}-\frac{13\!\cdots\!13}{69\!\cdots\!87}a^{16}+\frac{13\!\cdots\!10}{23\!\cdots\!29}a^{15}+\frac{20\!\cdots\!85}{23\!\cdots\!29}a^{14}-\frac{54\!\cdots\!36}{23\!\cdots\!29}a^{13}-\frac{54\!\cdots\!65}{23\!\cdots\!29}a^{12}+\frac{93\!\cdots\!69}{13\!\cdots\!74}a^{11}+\frac{50\!\cdots\!77}{13\!\cdots\!74}a^{10}-\frac{30\!\cdots\!97}{23\!\cdots\!29}a^{9}-\frac{13\!\cdots\!75}{69\!\cdots\!87}a^{8}+\frac{11\!\cdots\!89}{69\!\cdots\!87}a^{7}-\frac{56\!\cdots\!83}{23\!\cdots\!29}a^{6}-\frac{78\!\cdots\!52}{69\!\cdots\!87}a^{5}+\frac{10\!\cdots\!88}{23\!\cdots\!29}a^{4}+\frac{26\!\cdots\!85}{69\!\cdots\!87}a^{3}-\frac{17\!\cdots\!69}{69\!\cdots\!87}a^{2}-\frac{16\!\cdots\!38}{69\!\cdots\!87}a+\frac{72\!\cdots\!47}{20\!\cdots\!61}$, $\frac{20\!\cdots\!92}{69\!\cdots\!87}a^{27}-\frac{27\!\cdots\!43}{23\!\cdots\!29}a^{26}-\frac{11\!\cdots\!34}{69\!\cdots\!87}a^{25}+\frac{67\!\cdots\!00}{69\!\cdots\!87}a^{24}+\frac{66\!\cdots\!56}{69\!\cdots\!87}a^{23}-\frac{47\!\cdots\!68}{69\!\cdots\!87}a^{22}-\frac{12\!\cdots\!80}{69\!\cdots\!87}a^{21}-\frac{25\!\cdots\!28}{69\!\cdots\!87}a^{20}+\frac{41\!\cdots\!36}{23\!\cdots\!29}a^{19}+\frac{27\!\cdots\!39}{69\!\cdots\!87}a^{18}-\frac{77\!\cdots\!22}{69\!\cdots\!87}a^{17}-\frac{18\!\cdots\!55}{69\!\cdots\!87}a^{16}+\frac{37\!\cdots\!66}{69\!\cdots\!87}a^{15}+\frac{25\!\cdots\!90}{23\!\cdots\!29}a^{14}-\frac{13\!\cdots\!73}{69\!\cdots\!87}a^{13}-\frac{20\!\cdots\!12}{69\!\cdots\!87}a^{12}+\frac{10\!\cdots\!80}{23\!\cdots\!29}a^{11}+\frac{11\!\cdots\!36}{23\!\cdots\!29}a^{10}-\frac{55\!\cdots\!49}{69\!\cdots\!87}a^{9}-\frac{31\!\cdots\!54}{69\!\cdots\!87}a^{8}+\frac{57\!\cdots\!68}{69\!\cdots\!87}a^{7}+\frac{12\!\cdots\!94}{69\!\cdots\!87}a^{6}-\frac{36\!\cdots\!92}{69\!\cdots\!87}a^{5}+\frac{18\!\cdots\!70}{69\!\cdots\!87}a^{4}+\frac{11\!\cdots\!96}{69\!\cdots\!87}a^{3}-\frac{27\!\cdots\!81}{69\!\cdots\!87}a^{2}-\frac{42\!\cdots\!34}{23\!\cdots\!29}a+\frac{35\!\cdots\!55}{69\!\cdots\!87}$, $\frac{12\!\cdots\!39}{41\!\cdots\!22}a^{27}-\frac{24\!\cdots\!80}{23\!\cdots\!29}a^{26}-\frac{16\!\cdots\!01}{69\!\cdots\!87}a^{25}+\frac{14\!\cdots\!37}{13\!\cdots\!74}a^{24}+\frac{92\!\cdots\!90}{69\!\cdots\!87}a^{23}-\frac{26\!\cdots\!95}{23\!\cdots\!29}a^{22}-\frac{12\!\cdots\!65}{69\!\cdots\!87}a^{21}-\frac{98\!\cdots\!24}{23\!\cdots\!29}a^{20}+\frac{12\!\cdots\!99}{69\!\cdots\!87}a^{19}+\frac{11\!\cdots\!53}{23\!\cdots\!29}a^{18}-\frac{26\!\cdots\!99}{23\!\cdots\!29}a^{17}-\frac{22\!\cdots\!32}{69\!\cdots\!87}a^{16}+\frac{12\!\cdots\!98}{23\!\cdots\!29}a^{15}+\frac{97\!\cdots\!86}{69\!\cdots\!87}a^{14}-\frac{46\!\cdots\!97}{23\!\cdots\!29}a^{13}-\frac{91\!\cdots\!07}{23\!\cdots\!29}a^{12}+\frac{25\!\cdots\!43}{46\!\cdots\!58}a^{11}+\frac{48\!\cdots\!54}{69\!\cdots\!87}a^{10}-\frac{24\!\cdots\!69}{23\!\cdots\!29}a^{9}-\frac{31\!\cdots\!35}{46\!\cdots\!58}a^{8}+\frac{86\!\cdots\!12}{69\!\cdots\!87}a^{7}+\frac{15\!\cdots\!39}{69\!\cdots\!87}a^{6}-\frac{59\!\cdots\!17}{69\!\cdots\!87}a^{5}+\frac{31\!\cdots\!63}{23\!\cdots\!29}a^{4}+\frac{18\!\cdots\!95}{69\!\cdots\!87}a^{3}-\frac{27\!\cdots\!68}{23\!\cdots\!29}a^{2}-\frac{37\!\cdots\!19}{69\!\cdots\!87}a-\frac{85\!\cdots\!74}{20\!\cdots\!61}$, $\frac{34\!\cdots\!99}{20\!\cdots\!61}a^{27}+\frac{21\!\cdots\!65}{46\!\cdots\!58}a^{26}+\frac{73\!\cdots\!19}{46\!\cdots\!58}a^{25}-\frac{29\!\cdots\!68}{69\!\cdots\!87}a^{24}-\frac{25\!\cdots\!07}{23\!\cdots\!29}a^{23}-\frac{16\!\cdots\!56}{69\!\cdots\!87}a^{22}+\frac{23\!\cdots\!92}{23\!\cdots\!29}a^{21}+\frac{70\!\cdots\!64}{23\!\cdots\!29}a^{20}-\frac{52\!\cdots\!84}{69\!\cdots\!87}a^{19}-\frac{22\!\cdots\!86}{69\!\cdots\!87}a^{18}+\frac{25\!\cdots\!13}{69\!\cdots\!87}a^{17}+\frac{48\!\cdots\!00}{23\!\cdots\!29}a^{16}-\frac{91\!\cdots\!61}{69\!\cdots\!87}a^{15}-\frac{20\!\cdots\!75}{23\!\cdots\!29}a^{14}+\frac{86\!\cdots\!38}{23\!\cdots\!29}a^{13}+\frac{18\!\cdots\!96}{69\!\cdots\!87}a^{12}-\frac{57\!\cdots\!85}{69\!\cdots\!87}a^{11}-\frac{73\!\cdots\!81}{13\!\cdots\!74}a^{10}+\frac{19\!\cdots\!13}{13\!\cdots\!74}a^{9}+\frac{47\!\cdots\!81}{69\!\cdots\!87}a^{8}-\frac{39\!\cdots\!97}{23\!\cdots\!29}a^{7}-\frac{39\!\cdots\!98}{69\!\cdots\!87}a^{6}+\frac{38\!\cdots\!08}{23\!\cdots\!29}a^{5}+\frac{20\!\cdots\!27}{69\!\cdots\!87}a^{4}-\frac{65\!\cdots\!16}{69\!\cdots\!87}a^{3}-\frac{55\!\cdots\!06}{69\!\cdots\!87}a^{2}+\frac{71\!\cdots\!19}{23\!\cdots\!29}a+\frac{27\!\cdots\!23}{20\!\cdots\!61}$, $\frac{23\!\cdots\!94}{20\!\cdots\!61}a^{27}-\frac{24\!\cdots\!92}{69\!\cdots\!87}a^{26}-\frac{45\!\cdots\!69}{46\!\cdots\!58}a^{25}+\frac{14\!\cdots\!91}{46\!\cdots\!58}a^{24}+\frac{45\!\cdots\!55}{69\!\cdots\!87}a^{23}+\frac{93\!\cdots\!79}{69\!\cdots\!87}a^{22}-\frac{48\!\cdots\!68}{69\!\cdots\!87}a^{21}-\frac{13\!\cdots\!29}{69\!\cdots\!87}a^{20}+\frac{39\!\cdots\!75}{69\!\cdots\!87}a^{19}+\frac{14\!\cdots\!94}{69\!\cdots\!87}a^{18}-\frac{70\!\cdots\!31}{23\!\cdots\!29}a^{17}-\frac{92\!\cdots\!86}{69\!\cdots\!87}a^{16}+\frac{28\!\cdots\!37}{23\!\cdots\!29}a^{15}+\frac{40\!\cdots\!38}{69\!\cdots\!87}a^{14}-\frac{27\!\cdots\!99}{69\!\cdots\!87}a^{13}-\frac{11\!\cdots\!99}{69\!\cdots\!87}a^{12}+\frac{66\!\cdots\!21}{69\!\cdots\!87}a^{11}+\frac{22\!\cdots\!25}{69\!\cdots\!87}a^{10}-\frac{23\!\cdots\!75}{13\!\cdots\!74}a^{9}-\frac{57\!\cdots\!91}{13\!\cdots\!74}a^{8}+\frac{13\!\cdots\!61}{69\!\cdots\!87}a^{7}+\frac{75\!\cdots\!68}{23\!\cdots\!29}a^{6}-\frac{11\!\cdots\!91}{69\!\cdots\!87}a^{5}-\frac{10\!\cdots\!62}{69\!\cdots\!87}a^{4}+\frac{20\!\cdots\!92}{23\!\cdots\!29}a^{3}+\frac{74\!\cdots\!32}{23\!\cdots\!29}a^{2}-\frac{54\!\cdots\!97}{23\!\cdots\!29}a-\frac{63\!\cdots\!66}{20\!\cdots\!61}$, $\frac{14\!\cdots\!99}{46\!\cdots\!58}a^{27}+\frac{17\!\cdots\!28}{23\!\cdots\!29}a^{26}+\frac{17\!\cdots\!99}{46\!\cdots\!58}a^{25}-\frac{58\!\cdots\!84}{69\!\cdots\!87}a^{24}-\frac{64\!\cdots\!89}{23\!\cdots\!29}a^{23}+\frac{38\!\cdots\!22}{23\!\cdots\!29}a^{22}+\frac{50\!\cdots\!43}{23\!\cdots\!29}a^{21}+\frac{45\!\cdots\!10}{69\!\cdots\!87}a^{20}-\frac{34\!\cdots\!95}{23\!\cdots\!29}a^{19}-\frac{51\!\cdots\!85}{69\!\cdots\!87}a^{18}+\frac{48\!\cdots\!21}{69\!\cdots\!87}a^{17}+\frac{35\!\cdots\!98}{69\!\cdots\!87}a^{16}-\frac{15\!\cdots\!59}{69\!\cdots\!87}a^{15}-\frac{54\!\cdots\!94}{23\!\cdots\!29}a^{14}+\frac{11\!\cdots\!49}{23\!\cdots\!29}a^{13}+\frac{53\!\cdots\!41}{69\!\cdots\!87}a^{12}-\frac{48\!\cdots\!35}{46\!\cdots\!58}a^{11}-\frac{11\!\cdots\!77}{69\!\cdots\!87}a^{10}+\frac{10\!\cdots\!99}{46\!\cdots\!58}a^{9}+\frac{17\!\cdots\!13}{69\!\cdots\!87}a^{8}-\frac{29\!\cdots\!10}{69\!\cdots\!87}a^{7}-\frac{16\!\cdots\!06}{69\!\cdots\!87}a^{6}+\frac{14\!\cdots\!51}{23\!\cdots\!29}a^{5}+\frac{27\!\cdots\!00}{23\!\cdots\!29}a^{4}-\frac{35\!\cdots\!45}{69\!\cdots\!87}a^{3}-\frac{17\!\cdots\!98}{69\!\cdots\!87}a^{2}+\frac{11\!\cdots\!16}{69\!\cdots\!87}a-\frac{34\!\cdots\!59}{69\!\cdots\!87}$, $\frac{11\!\cdots\!67}{69\!\cdots\!87}a^{27}+\frac{38\!\cdots\!58}{69\!\cdots\!87}a^{26}+\frac{32\!\cdots\!74}{23\!\cdots\!29}a^{25}-\frac{35\!\cdots\!32}{69\!\cdots\!87}a^{24}-\frac{22\!\cdots\!46}{23\!\cdots\!29}a^{23}+\frac{20\!\cdots\!43}{69\!\cdots\!87}a^{22}+\frac{25\!\cdots\!20}{23\!\cdots\!29}a^{21}+\frac{18\!\cdots\!73}{69\!\cdots\!87}a^{20}-\frac{64\!\cdots\!59}{69\!\cdots\!87}a^{19}-\frac{20\!\cdots\!21}{69\!\cdots\!87}a^{18}+\frac{36\!\cdots\!81}{69\!\cdots\!87}a^{17}+\frac{46\!\cdots\!75}{23\!\cdots\!29}a^{16}-\frac{15\!\cdots\!20}{69\!\cdots\!87}a^{15}-\frac{62\!\cdots\!25}{69\!\cdots\!87}a^{14}+\frac{51\!\cdots\!71}{69\!\cdots\!87}a^{13}+\frac{18\!\cdots\!85}{69\!\cdots\!87}a^{12}-\frac{12\!\cdots\!41}{69\!\cdots\!87}a^{11}-\frac{38\!\cdots\!85}{69\!\cdots\!87}a^{10}+\frac{20\!\cdots\!47}{69\!\cdots\!87}a^{9}+\frac{50\!\cdots\!32}{69\!\cdots\!87}a^{8}-\frac{78\!\cdots\!69}{23\!\cdots\!29}a^{7}-\frac{13\!\cdots\!39}{23\!\cdots\!29}a^{6}+\frac{18\!\cdots\!53}{69\!\cdots\!87}a^{5}+\frac{61\!\cdots\!47}{23\!\cdots\!29}a^{4}-\frac{91\!\cdots\!79}{69\!\cdots\!87}a^{3}-\frac{14\!\cdots\!21}{23\!\cdots\!29}a^{2}+\frac{71\!\cdots\!05}{23\!\cdots\!29}a+\frac{11\!\cdots\!79}{23\!\cdots\!29}$, $\frac{94\!\cdots\!01}{46\!\cdots\!58}a^{27}-\frac{14\!\cdots\!31}{13\!\cdots\!74}a^{26}-\frac{67\!\cdots\!99}{46\!\cdots\!58}a^{25}+\frac{10\!\cdots\!69}{13\!\cdots\!74}a^{24}-\frac{42\!\cdots\!38}{23\!\cdots\!29}a^{23}-\frac{17\!\cdots\!60}{23\!\cdots\!29}a^{22}-\frac{81\!\cdots\!93}{69\!\cdots\!87}a^{21}-\frac{22\!\cdots\!60}{23\!\cdots\!29}a^{20}+\frac{33\!\cdots\!23}{23\!\cdots\!29}a^{19}+\frac{26\!\cdots\!72}{23\!\cdots\!29}a^{18}-\frac{69\!\cdots\!26}{69\!\cdots\!87}a^{17}-\frac{17\!\cdots\!62}{23\!\cdots\!29}a^{16}+\frac{36\!\cdots\!38}{69\!\cdots\!87}a^{15}+\frac{16\!\cdots\!11}{69\!\cdots\!87}a^{14}-\frac{13\!\cdots\!08}{69\!\cdots\!87}a^{13}-\frac{10\!\cdots\!76}{69\!\cdots\!87}a^{12}+\frac{21\!\cdots\!87}{46\!\cdots\!58}a^{11}-\frac{15\!\cdots\!93}{13\!\cdots\!74}a^{10}-\frac{94\!\cdots\!85}{13\!\cdots\!74}a^{9}+\frac{17\!\cdots\!89}{46\!\cdots\!58}a^{8}+\frac{12\!\cdots\!12}{23\!\cdots\!29}a^{7}-\frac{11\!\cdots\!48}{23\!\cdots\!29}a^{6}-\frac{13\!\cdots\!76}{69\!\cdots\!87}a^{5}+\frac{22\!\cdots\!57}{69\!\cdots\!87}a^{4}-\frac{23\!\cdots\!91}{69\!\cdots\!87}a^{3}-\frac{17\!\cdots\!27}{23\!\cdots\!29}a^{2}+\frac{21\!\cdots\!50}{69\!\cdots\!87}a-\frac{11\!\cdots\!52}{69\!\cdots\!87}$, $\frac{27\!\cdots\!35}{41\!\cdots\!22}a^{27}-\frac{32\!\cdots\!39}{13\!\cdots\!74}a^{26}-\frac{11\!\cdots\!83}{23\!\cdots\!29}a^{25}+\frac{14\!\cdots\!62}{69\!\cdots\!87}a^{24}+\frac{19\!\cdots\!67}{69\!\cdots\!87}a^{23}-\frac{11\!\cdots\!58}{69\!\cdots\!87}a^{22}-\frac{90\!\cdots\!73}{23\!\cdots\!29}a^{21}-\frac{21\!\cdots\!30}{23\!\cdots\!29}a^{20}+\frac{26\!\cdots\!64}{69\!\cdots\!87}a^{19}+\frac{23\!\cdots\!99}{23\!\cdots\!29}a^{18}-\frac{54\!\cdots\!49}{23\!\cdots\!29}a^{17}-\frac{46\!\cdots\!45}{69\!\cdots\!87}a^{16}+\frac{25\!\cdots\!50}{23\!\cdots\!29}a^{15}+\frac{19\!\cdots\!30}{69\!\cdots\!87}a^{14}-\frac{29\!\cdots\!43}{69\!\cdots\!87}a^{13}-\frac{53\!\cdots\!67}{69\!\cdots\!87}a^{12}+\frac{55\!\cdots\!89}{46\!\cdots\!58}a^{11}+\frac{61\!\cdots\!39}{46\!\cdots\!58}a^{10}-\frac{16\!\cdots\!90}{69\!\cdots\!87}a^{9}-\frac{84\!\cdots\!78}{69\!\cdots\!87}a^{8}+\frac{22\!\cdots\!15}{69\!\cdots\!87}a^{7}+\frac{15\!\cdots\!84}{69\!\cdots\!87}a^{6}-\frac{67\!\cdots\!65}{23\!\cdots\!29}a^{5}+\frac{40\!\cdots\!76}{69\!\cdots\!87}a^{4}+\frac{99\!\cdots\!40}{69\!\cdots\!87}a^{3}-\frac{14\!\cdots\!60}{23\!\cdots\!29}a^{2}-\frac{20\!\cdots\!55}{69\!\cdots\!87}a+\frac{42\!\cdots\!49}{20\!\cdots\!61}$, $\frac{74\!\cdots\!17}{41\!\cdots\!22}a^{27}-\frac{15\!\cdots\!59}{23\!\cdots\!29}a^{26}-\frac{88\!\cdots\!01}{69\!\cdots\!87}a^{25}+\frac{82\!\cdots\!67}{13\!\cdots\!74}a^{24}+\frac{55\!\cdots\!70}{69\!\cdots\!87}a^{23}-\frac{35\!\cdots\!64}{69\!\cdots\!87}a^{22}-\frac{80\!\cdots\!12}{69\!\cdots\!87}a^{21}-\frac{57\!\cdots\!72}{23\!\cdots\!29}a^{20}+\frac{75\!\cdots\!87}{69\!\cdots\!87}a^{19}+\frac{19\!\cdots\!80}{69\!\cdots\!87}a^{18}-\frac{45\!\cdots\!24}{69\!\cdots\!87}a^{17}-\frac{13\!\cdots\!42}{69\!\cdots\!87}a^{16}+\frac{20\!\cdots\!88}{69\!\cdots\!87}a^{15}+\frac{58\!\cdots\!88}{69\!\cdots\!87}a^{14}-\frac{72\!\cdots\!97}{69\!\cdots\!87}a^{13}-\frac{57\!\cdots\!03}{23\!\cdots\!29}a^{12}+\frac{36\!\cdots\!37}{13\!\cdots\!74}a^{11}+\frac{33\!\cdots\!18}{69\!\cdots\!87}a^{10}-\frac{30\!\cdots\!03}{69\!\cdots\!87}a^{9}-\frac{82\!\cdots\!41}{13\!\cdots\!74}a^{8}+\frac{34\!\cdots\!25}{69\!\cdots\!87}a^{7}+\frac{10\!\cdots\!05}{23\!\cdots\!29}a^{6}-\frac{24\!\cdots\!70}{69\!\cdots\!87}a^{5}-\frac{40\!\cdots\!72}{23\!\cdots\!29}a^{4}+\frac{11\!\cdots\!77}{69\!\cdots\!87}a^{3}+\frac{18\!\cdots\!83}{69\!\cdots\!87}a^{2}-\frac{91\!\cdots\!60}{23\!\cdots\!29}a+\frac{37\!\cdots\!18}{20\!\cdots\!61}$, $\frac{90\!\cdots\!16}{23\!\cdots\!29}a^{27}+\frac{80\!\cdots\!07}{69\!\cdots\!87}a^{26}+\frac{29\!\cdots\!57}{69\!\cdots\!87}a^{25}-\frac{95\!\cdots\!50}{69\!\cdots\!87}a^{24}-\frac{17\!\cdots\!90}{69\!\cdots\!87}a^{23}+\frac{11\!\cdots\!76}{69\!\cdots\!87}a^{22}+\frac{55\!\cdots\!24}{23\!\cdots\!29}a^{21}+\frac{47\!\cdots\!79}{69\!\cdots\!87}a^{20}-\frac{15\!\cdots\!81}{69\!\cdots\!87}a^{19}-\frac{18\!\cdots\!10}{23\!\cdots\!29}a^{18}+\frac{94\!\cdots\!51}{69\!\cdots\!87}a^{17}+\frac{35\!\cdots\!59}{69\!\cdots\!87}a^{16}-\frac{14\!\cdots\!71}{23\!\cdots\!29}a^{15}-\frac{53\!\cdots\!57}{23\!\cdots\!29}a^{14}+\frac{16\!\cdots\!46}{69\!\cdots\!87}a^{13}+\frac{46\!\cdots\!80}{69\!\cdots\!87}a^{12}-\frac{50\!\cdots\!42}{69\!\cdots\!87}a^{11}-\frac{85\!\cdots\!72}{69\!\cdots\!87}a^{10}+\frac{34\!\cdots\!02}{23\!\cdots\!29}a^{9}+\frac{28\!\cdots\!75}{23\!\cdots\!29}a^{8}-\frac{44\!\cdots\!38}{23\!\cdots\!29}a^{7}-\frac{23\!\cdots\!95}{69\!\cdots\!87}a^{6}+\frac{92\!\cdots\!00}{69\!\cdots\!87}a^{5}-\frac{23\!\cdots\!45}{69\!\cdots\!87}a^{4}-\frac{22\!\cdots\!90}{69\!\cdots\!87}a^{3}+\frac{14\!\cdots\!79}{69\!\cdots\!87}a^{2}-\frac{90\!\cdots\!60}{23\!\cdots\!29}a+\frac{26\!\cdots\!93}{23\!\cdots\!29}$, $\frac{44\!\cdots\!17}{41\!\cdots\!22}a^{27}+\frac{13\!\cdots\!51}{46\!\cdots\!58}a^{26}+\frac{71\!\cdots\!16}{69\!\cdots\!87}a^{25}-\frac{18\!\cdots\!30}{69\!\cdots\!87}a^{24}-\frac{16\!\cdots\!60}{23\!\cdots\!29}a^{23}-\frac{55\!\cdots\!17}{23\!\cdots\!29}a^{22}+\frac{15\!\cdots\!53}{23\!\cdots\!29}a^{21}+\frac{14\!\cdots\!75}{69\!\cdots\!87}a^{20}-\frac{11\!\cdots\!82}{23\!\cdots\!29}a^{19}-\frac{14\!\cdots\!67}{69\!\cdots\!87}a^{18}+\frac{15\!\cdots\!71}{69\!\cdots\!87}a^{17}+\frac{95\!\cdots\!63}{69\!\cdots\!87}a^{16}-\frac{48\!\cdots\!80}{69\!\cdots\!87}a^{15}-\frac{41\!\cdots\!87}{69\!\cdots\!87}a^{14}+\frac{10\!\cdots\!35}{69\!\cdots\!87}a^{13}+\frac{12\!\cdots\!26}{69\!\cdots\!87}a^{12}-\frac{28\!\cdots\!45}{13\!\cdots\!74}a^{11}-\frac{48\!\cdots\!63}{13\!\cdots\!74}a^{10}+\frac{20\!\cdots\!16}{69\!\cdots\!87}a^{9}+\frac{32\!\cdots\!11}{69\!\cdots\!87}a^{8}+\frac{25\!\cdots\!87}{69\!\cdots\!87}a^{7}-\frac{27\!\cdots\!44}{69\!\cdots\!87}a^{6}-\frac{34\!\cdots\!41}{69\!\cdots\!87}a^{5}+\frac{14\!\cdots\!63}{69\!\cdots\!87}a^{4}+\frac{23\!\cdots\!05}{69\!\cdots\!87}a^{3}-\frac{37\!\cdots\!94}{69\!\cdots\!87}a^{2}-\frac{62\!\cdots\!14}{69\!\cdots\!87}a+\frac{10\!\cdots\!01}{20\!\cdots\!61}$, $\frac{14\!\cdots\!59}{13\!\cdots\!74}a^{27}+\frac{12\!\cdots\!43}{46\!\cdots\!58}a^{26}+\frac{14\!\cdots\!03}{13\!\cdots\!74}a^{25}-\frac{13\!\cdots\!27}{46\!\cdots\!58}a^{24}-\frac{50\!\cdots\!53}{69\!\cdots\!87}a^{23}-\frac{68\!\cdots\!86}{23\!\cdots\!29}a^{22}+\frac{45\!\cdots\!11}{69\!\cdots\!87}a^{21}+\frac{13\!\cdots\!88}{69\!\cdots\!87}a^{20}-\frac{11\!\cdots\!79}{23\!\cdots\!29}a^{19}-\frac{14\!\cdots\!06}{69\!\cdots\!87}a^{18}+\frac{16\!\cdots\!97}{69\!\cdots\!87}a^{17}+\frac{95\!\cdots\!64}{69\!\cdots\!87}a^{16}-\frac{63\!\cdots\!17}{69\!\cdots\!87}a^{15}-\frac{14\!\cdots\!89}{23\!\cdots\!29}a^{14}+\frac{65\!\cdots\!58}{23\!\cdots\!29}a^{13}+\frac{12\!\cdots\!78}{69\!\cdots\!87}a^{12}-\frac{10\!\cdots\!29}{13\!\cdots\!74}a^{11}-\frac{51\!\cdots\!85}{13\!\cdots\!74}a^{10}+\frac{68\!\cdots\!71}{46\!\cdots\!58}a^{9}+\frac{68\!\cdots\!25}{13\!\cdots\!74}a^{8}-\frac{50\!\cdots\!31}{23\!\cdots\!29}a^{7}-\frac{27\!\cdots\!11}{69\!\cdots\!87}a^{6}+\frac{14\!\cdots\!12}{69\!\cdots\!87}a^{5}+\frac{40\!\cdots\!83}{23\!\cdots\!29}a^{4}-\frac{84\!\cdots\!55}{69\!\cdots\!87}a^{3}-\frac{19\!\cdots\!66}{69\!\cdots\!87}a^{2}+\frac{22\!\cdots\!89}{69\!\cdots\!87}a-\frac{27\!\cdots\!76}{23\!\cdots\!29}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 24722969331194.223 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{12}\cdot 24722969331194.223 \cdot 1}{2\cdot\sqrt{21140839391697569190758072549457521572728274944}}\cr\approx \mathstrut & 5.14977107956120 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 4*x^27 - 6*x^26 + 36*x^25 + 33*x^24 - 48*x^23 - 624*x^22 - 1152*x^21 + 6498*x^20 + 13776*x^19 - 42768*x^18 - 93984*x^17 + 212112*x^16 + 410352*x^15 - 795648*x^14 - 1155648*x^13 + 2150847*x^12 + 2060532*x^11 - 4016202*x^10 - 2133348*x^9 + 4975275*x^8 + 920160*x^7 - 3936144*x^6 + 350160*x^5 + 1794336*x^4 - 567432*x^3 - 357444*x^2 + 188216*x - 3806)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 4*x^27 - 6*x^26 + 36*x^25 + 33*x^24 - 48*x^23 - 624*x^22 - 1152*x^21 + 6498*x^20 + 13776*x^19 - 42768*x^18 - 93984*x^17 + 212112*x^16 + 410352*x^15 - 795648*x^14 - 1155648*x^13 + 2150847*x^12 + 2060532*x^11 - 4016202*x^10 - 2133348*x^9 + 4975275*x^8 + 920160*x^7 - 3936144*x^6 + 350160*x^5 + 1794336*x^4 - 567432*x^3 - 357444*x^2 + 188216*x - 3806, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 4*x^27 - 6*x^26 + 36*x^25 + 33*x^24 - 48*x^23 - 624*x^22 - 1152*x^21 + 6498*x^20 + 13776*x^19 - 42768*x^18 - 93984*x^17 + 212112*x^16 + 410352*x^15 - 795648*x^14 - 1155648*x^13 + 2150847*x^12 + 2060532*x^11 - 4016202*x^10 - 2133348*x^9 + 4975275*x^8 + 920160*x^7 - 3936144*x^6 + 350160*x^5 + 1794336*x^4 - 567432*x^3 - 357444*x^2 + 188216*x - 3806);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 4*x^27 - 6*x^26 + 36*x^25 + 33*x^24 - 48*x^23 - 624*x^22 - 1152*x^21 + 6498*x^20 + 13776*x^19 - 42768*x^18 - 93984*x^17 + 212112*x^16 + 410352*x^15 - 795648*x^14 - 1155648*x^13 + 2150847*x^12 + 2060532*x^11 - 4016202*x^10 - 2133348*x^9 + 4975275*x^8 + 920160*x^7 - 3936144*x^6 + 350160*x^5 + 1794336*x^4 - 567432*x^3 - 357444*x^2 + 188216*x - 3806);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$G(2,2)$ (as 28T393):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 12096
The 16 conjugacy class representatives for $G(2,2)$
Character table for $G(2,2)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.12.0.1}{12} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.6.0.1}{6} }^{4}{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.12.0.1}{12} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.7.0.1}{7} }^{4}$ ${\href{/padicField/17.8.0.1}{8} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }^{3}{,}\,{\href{/padicField/19.4.0.1}{4} }$ ${\href{/padicField/23.8.0.1}{8} }^{3}{,}\,{\href{/padicField/23.4.0.1}{4} }$ ${\href{/padicField/29.3.0.1}{3} }^{9}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.6.0.1}{6} }^{4}{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.8.0.1}{8} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.7.0.1}{7} }^{4}$ ${\href{/padicField/43.12.0.1}{12} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.8.0.1}{8} }^{3}{,}\,{\href{/padicField/47.4.0.1}{4} }$ ${\href{/padicField/53.7.0.1}{7} }^{4}$ ${\href{/padicField/59.8.0.1}{8} }^{3}{,}\,{\href{/padicField/59.4.0.1}{4} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.11.3$x^{4} + 4 x^{2} + 18$$4$$1$$11$$C_4$$[3, 4]$
2.8.27.25$x^{8} + 10 x^{4} + 2$$8$$1$$27$$C_4\wr C_2$$[2, 3, 7/2, 4, 9/2]$
Deg $16$$16$$1$$62$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $27$$27$$1$$34$