Properties

Label 28.4.267...376.1
Degree $28$
Signature $[4, 12]$
Discriminant $2.679\times 10^{45}$
Root discriminant \(41.92\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $G(2,2)$ (as 28T393)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 8*x^27 + 18*x^26 + 24*x^25 - 219*x^24 + 528*x^23 - 504*x^22 - 792*x^21 + 3822*x^20 - 3720*x^19 - 10236*x^18 + 29088*x^17 - 2226*x^16 - 73848*x^15 + 58836*x^14 + 105792*x^13 - 134013*x^12 - 121848*x^11 + 172362*x^10 + 170040*x^9 - 221931*x^8 - 132624*x^7 + 164988*x^6 + 144528*x^5 - 154173*x^4 - 76368*x^3 + 49938*x^2 + 79840*x - 48347)
 
gp: K = bnfinit(y^28 - 8*y^27 + 18*y^26 + 24*y^25 - 219*y^24 + 528*y^23 - 504*y^22 - 792*y^21 + 3822*y^20 - 3720*y^19 - 10236*y^18 + 29088*y^17 - 2226*y^16 - 73848*y^15 + 58836*y^14 + 105792*y^13 - 134013*y^12 - 121848*y^11 + 172362*y^10 + 170040*y^9 - 221931*y^8 - 132624*y^7 + 164988*y^6 + 144528*y^5 - 154173*y^4 - 76368*y^3 + 49938*y^2 + 79840*y - 48347, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 8*x^27 + 18*x^26 + 24*x^25 - 219*x^24 + 528*x^23 - 504*x^22 - 792*x^21 + 3822*x^20 - 3720*x^19 - 10236*x^18 + 29088*x^17 - 2226*x^16 - 73848*x^15 + 58836*x^14 + 105792*x^13 - 134013*x^12 - 121848*x^11 + 172362*x^10 + 170040*x^9 - 221931*x^8 - 132624*x^7 + 164988*x^6 + 144528*x^5 - 154173*x^4 - 76368*x^3 + 49938*x^2 + 79840*x - 48347);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 8*x^27 + 18*x^26 + 24*x^25 - 219*x^24 + 528*x^23 - 504*x^22 - 792*x^21 + 3822*x^20 - 3720*x^19 - 10236*x^18 + 29088*x^17 - 2226*x^16 - 73848*x^15 + 58836*x^14 + 105792*x^13 - 134013*x^12 - 121848*x^11 + 172362*x^10 + 170040*x^9 - 221931*x^8 - 132624*x^7 + 164988*x^6 + 144528*x^5 - 154173*x^4 - 76368*x^3 + 49938*x^2 + 79840*x - 48347)
 

\( x^{28} - 8 x^{27} + 18 x^{26} + 24 x^{25} - 219 x^{24} + 528 x^{23} - 504 x^{22} - 792 x^{21} + \cdots - 48347 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2678658682623660056187071999014915161641189376\) \(\medspace = 2^{78}\cdot 3^{46}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(41.92\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{2}a^{26}-\frac{1}{2}a^{24}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{96\!\cdots\!92}a^{27}-\frac{68\!\cdots\!29}{32\!\cdots\!64}a^{26}-\frac{15\!\cdots\!89}{32\!\cdots\!64}a^{25}+\frac{11\!\cdots\!95}{32\!\cdots\!64}a^{24}+\frac{16\!\cdots\!01}{80\!\cdots\!41}a^{23}+\frac{26\!\cdots\!04}{80\!\cdots\!41}a^{22}+\frac{29\!\cdots\!29}{80\!\cdots\!41}a^{21}-\frac{13\!\cdots\!71}{80\!\cdots\!41}a^{20}-\frac{76\!\cdots\!89}{16\!\cdots\!82}a^{19}-\frac{58\!\cdots\!07}{16\!\cdots\!82}a^{18}-\frac{34\!\cdots\!49}{16\!\cdots\!82}a^{17}+\frac{40\!\cdots\!73}{16\!\cdots\!82}a^{16}-\frac{18\!\cdots\!93}{80\!\cdots\!41}a^{15}-\frac{11\!\cdots\!41}{80\!\cdots\!41}a^{14}+\frac{16\!\cdots\!41}{80\!\cdots\!41}a^{13}-\frac{29\!\cdots\!46}{80\!\cdots\!41}a^{12}-\frac{99\!\cdots\!59}{32\!\cdots\!64}a^{11}+\frac{23\!\cdots\!49}{32\!\cdots\!64}a^{10}+\frac{44\!\cdots\!05}{32\!\cdots\!64}a^{9}-\frac{57\!\cdots\!27}{32\!\cdots\!64}a^{8}-\frac{48\!\cdots\!61}{16\!\cdots\!82}a^{7}-\frac{60\!\cdots\!55}{16\!\cdots\!82}a^{6}+\frac{33\!\cdots\!11}{16\!\cdots\!82}a^{5}-\frac{61\!\cdots\!29}{16\!\cdots\!82}a^{4}+\frac{15\!\cdots\!15}{32\!\cdots\!64}a^{3}-\frac{14\!\cdots\!65}{32\!\cdots\!64}a^{2}+\frac{86\!\cdots\!99}{32\!\cdots\!64}a-\frac{60\!\cdots\!75}{96\!\cdots\!92}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{88\!\cdots\!25}{16\!\cdots\!82}a^{27}+\frac{64\!\cdots\!65}{16\!\cdots\!82}a^{26}-\frac{11\!\cdots\!01}{16\!\cdots\!82}a^{25}-\frac{29\!\cdots\!31}{16\!\cdots\!82}a^{24}+\frac{87\!\cdots\!00}{80\!\cdots\!41}a^{23}-\frac{17\!\cdots\!70}{80\!\cdots\!41}a^{22}+\frac{97\!\cdots\!77}{80\!\cdots\!41}a^{21}+\frac{43\!\cdots\!46}{80\!\cdots\!41}a^{20}-\frac{14\!\cdots\!19}{80\!\cdots\!41}a^{19}+\frac{64\!\cdots\!81}{80\!\cdots\!41}a^{18}+\frac{51\!\cdots\!83}{80\!\cdots\!41}a^{17}-\frac{94\!\cdots\!57}{80\!\cdots\!41}a^{16}-\frac{59\!\cdots\!42}{80\!\cdots\!41}a^{15}+\frac{29\!\cdots\!72}{80\!\cdots\!41}a^{14}-\frac{50\!\cdots\!98}{80\!\cdots\!41}a^{13}-\frac{52\!\cdots\!97}{80\!\cdots\!41}a^{12}+\frac{45\!\cdots\!71}{16\!\cdots\!82}a^{11}+\frac{14\!\cdots\!63}{16\!\cdots\!82}a^{10}-\frac{52\!\cdots\!65}{16\!\cdots\!82}a^{9}-\frac{19\!\cdots\!57}{16\!\cdots\!82}a^{8}+\frac{30\!\cdots\!22}{80\!\cdots\!41}a^{7}+\frac{86\!\cdots\!52}{80\!\cdots\!41}a^{6}-\frac{14\!\cdots\!69}{80\!\cdots\!41}a^{5}-\frac{78\!\cdots\!66}{80\!\cdots\!41}a^{4}+\frac{30\!\cdots\!97}{16\!\cdots\!82}a^{3}+\frac{94\!\cdots\!11}{16\!\cdots\!82}a^{2}+\frac{21\!\cdots\!59}{16\!\cdots\!82}a-\frac{58\!\cdots\!19}{16\!\cdots\!82}$, $\frac{11\!\cdots\!21}{16\!\cdots\!82}a^{27}-\frac{87\!\cdots\!57}{16\!\cdots\!82}a^{26}+\frac{17\!\cdots\!19}{16\!\cdots\!82}a^{25}+\frac{36\!\cdots\!05}{16\!\cdots\!82}a^{24}-\frac{12\!\cdots\!91}{80\!\cdots\!41}a^{23}+\frac{25\!\cdots\!91}{80\!\cdots\!41}a^{22}-\frac{17\!\cdots\!18}{80\!\cdots\!41}a^{21}-\frac{55\!\cdots\!36}{80\!\cdots\!41}a^{20}+\frac{19\!\cdots\!81}{80\!\cdots\!41}a^{19}-\frac{12\!\cdots\!86}{80\!\cdots\!41}a^{18}-\frac{66\!\cdots\!02}{80\!\cdots\!41}a^{17}+\frac{14\!\cdots\!73}{80\!\cdots\!41}a^{16}+\frac{56\!\cdots\!27}{80\!\cdots\!41}a^{15}-\frac{41\!\cdots\!01}{80\!\cdots\!41}a^{14}+\frac{14\!\cdots\!29}{80\!\cdots\!41}a^{13}+\frac{72\!\cdots\!10}{80\!\cdots\!41}a^{12}-\frac{88\!\cdots\!79}{16\!\cdots\!82}a^{11}-\frac{19\!\cdots\!99}{16\!\cdots\!82}a^{10}+\frac{10\!\cdots\!39}{16\!\cdots\!82}a^{9}+\frac{27\!\cdots\!93}{16\!\cdots\!82}a^{8}-\frac{62\!\cdots\!24}{80\!\cdots\!41}a^{7}-\frac{12\!\cdots\!82}{80\!\cdots\!41}a^{6}+\frac{33\!\cdots\!87}{80\!\cdots\!41}a^{5}+\frac{11\!\cdots\!64}{80\!\cdots\!41}a^{4}-\frac{66\!\cdots\!47}{16\!\cdots\!82}a^{3}-\frac{13\!\cdots\!71}{16\!\cdots\!82}a^{2}-\frac{16\!\cdots\!91}{16\!\cdots\!82}a+\frac{97\!\cdots\!21}{16\!\cdots\!82}$, $\frac{10\!\cdots\!49}{96\!\cdots\!92}a^{27}+\frac{22\!\cdots\!83}{32\!\cdots\!64}a^{26}-\frac{29\!\cdots\!27}{32\!\cdots\!64}a^{25}-\frac{12\!\cdots\!17}{32\!\cdots\!64}a^{24}+\frac{14\!\cdots\!71}{80\!\cdots\!41}a^{23}-\frac{23\!\cdots\!73}{80\!\cdots\!41}a^{22}+\frac{39\!\cdots\!08}{80\!\cdots\!41}a^{21}+\frac{80\!\cdots\!48}{80\!\cdots\!41}a^{20}-\frac{40\!\cdots\!83}{16\!\cdots\!82}a^{19}-\frac{46\!\cdots\!13}{16\!\cdots\!82}a^{18}+\frac{19\!\cdots\!27}{16\!\cdots\!82}a^{17}-\frac{22\!\cdots\!71}{16\!\cdots\!82}a^{16}-\frac{19\!\cdots\!32}{80\!\cdots\!41}a^{15}+\frac{43\!\cdots\!15}{80\!\cdots\!41}a^{14}+\frac{22\!\cdots\!22}{80\!\cdots\!41}a^{13}-\frac{95\!\cdots\!11}{80\!\cdots\!41}a^{12}-\frac{80\!\cdots\!45}{32\!\cdots\!64}a^{11}+\frac{62\!\cdots\!17}{32\!\cdots\!64}a^{10}+\frac{12\!\cdots\!87}{32\!\cdots\!64}a^{9}-\frac{83\!\cdots\!27}{32\!\cdots\!64}a^{8}-\frac{51\!\cdots\!15}{16\!\cdots\!82}a^{7}+\frac{35\!\cdots\!97}{16\!\cdots\!82}a^{6}+\frac{79\!\cdots\!41}{16\!\cdots\!82}a^{5}-\frac{30\!\cdots\!61}{16\!\cdots\!82}a^{4}-\frac{12\!\cdots\!55}{32\!\cdots\!64}a^{3}+\frac{34\!\cdots\!55}{32\!\cdots\!64}a^{2}+\frac{21\!\cdots\!37}{32\!\cdots\!64}a-\frac{63\!\cdots\!03}{96\!\cdots\!92}$, $\frac{41\!\cdots\!49}{16\!\cdots\!82}a^{27}-\frac{15\!\cdots\!27}{80\!\cdots\!41}a^{26}+\frac{50\!\cdots\!65}{16\!\cdots\!82}a^{25}+\frac{71\!\cdots\!27}{80\!\cdots\!41}a^{24}-\frac{39\!\cdots\!11}{80\!\cdots\!41}a^{23}+\frac{76\!\cdots\!73}{80\!\cdots\!41}a^{22}-\frac{41\!\cdots\!25}{80\!\cdots\!41}a^{21}-\frac{19\!\cdots\!69}{80\!\cdots\!41}a^{20}+\frac{60\!\cdots\!01}{80\!\cdots\!41}a^{19}-\frac{21\!\cdots\!55}{80\!\cdots\!41}a^{18}-\frac{23\!\cdots\!63}{80\!\cdots\!41}a^{17}+\frac{39\!\cdots\!76}{80\!\cdots\!41}a^{16}+\frac{32\!\cdots\!07}{80\!\cdots\!41}a^{15}-\frac{12\!\cdots\!47}{80\!\cdots\!41}a^{14}+\frac{23\!\cdots\!57}{80\!\cdots\!41}a^{13}+\frac{23\!\cdots\!59}{80\!\cdots\!41}a^{12}-\frac{12\!\cdots\!05}{16\!\cdots\!82}a^{11}-\frac{35\!\cdots\!97}{80\!\cdots\!41}a^{10}+\frac{13\!\cdots\!67}{16\!\cdots\!82}a^{9}+\frac{46\!\cdots\!31}{80\!\cdots\!41}a^{8}-\frac{76\!\cdots\!60}{80\!\cdots\!41}a^{7}-\frac{38\!\cdots\!74}{80\!\cdots\!41}a^{6}-\frac{26\!\cdots\!67}{80\!\cdots\!41}a^{5}+\frac{37\!\cdots\!09}{80\!\cdots\!41}a^{4}-\frac{10\!\cdots\!99}{16\!\cdots\!82}a^{3}-\frac{19\!\cdots\!02}{80\!\cdots\!41}a^{2}-\frac{18\!\cdots\!69}{16\!\cdots\!82}a+\frac{14\!\cdots\!93}{80\!\cdots\!41}$, $\frac{59\!\cdots\!45}{96\!\cdots\!92}a^{27}+\frac{15\!\cdots\!85}{32\!\cdots\!64}a^{26}-\frac{31\!\cdots\!31}{32\!\cdots\!64}a^{25}-\frac{42\!\cdots\!15}{32\!\cdots\!64}a^{24}+\frac{95\!\cdots\!08}{80\!\cdots\!41}a^{23}-\frac{24\!\cdots\!42}{80\!\cdots\!41}a^{22}+\frac{27\!\cdots\!05}{80\!\cdots\!41}a^{21}+\frac{23\!\cdots\!29}{80\!\cdots\!41}a^{20}-\frac{32\!\cdots\!73}{16\!\cdots\!82}a^{19}+\frac{36\!\cdots\!75}{16\!\cdots\!82}a^{18}+\frac{70\!\cdots\!81}{16\!\cdots\!82}a^{17}-\frac{22\!\cdots\!31}{16\!\cdots\!82}a^{16}+\frac{35\!\cdots\!35}{80\!\cdots\!41}a^{15}+\frac{21\!\cdots\!67}{80\!\cdots\!41}a^{14}-\frac{23\!\cdots\!55}{80\!\cdots\!41}a^{13}-\frac{14\!\cdots\!07}{80\!\cdots\!41}a^{12}+\frac{11\!\cdots\!63}{32\!\cdots\!64}a^{11}+\frac{33\!\cdots\!71}{32\!\cdots\!64}a^{10}+\frac{83\!\cdots\!03}{32\!\cdots\!64}a^{9}-\frac{52\!\cdots\!13}{32\!\cdots\!64}a^{8}-\frac{27\!\cdots\!71}{16\!\cdots\!82}a^{7}-\frac{15\!\cdots\!59}{16\!\cdots\!82}a^{6}+\frac{10\!\cdots\!19}{16\!\cdots\!82}a^{5}-\frac{40\!\cdots\!61}{16\!\cdots\!82}a^{4}-\frac{18\!\cdots\!27}{32\!\cdots\!64}a^{3}+\frac{51\!\cdots\!05}{32\!\cdots\!64}a^{2}+\frac{21\!\cdots\!21}{32\!\cdots\!64}a-\frac{38\!\cdots\!01}{96\!\cdots\!92}$, $\frac{11\!\cdots\!23}{96\!\cdots\!92}a^{27}-\frac{25\!\cdots\!45}{32\!\cdots\!64}a^{26}+\frac{41\!\cdots\!65}{32\!\cdots\!64}a^{25}+\frac{96\!\cdots\!55}{32\!\cdots\!64}a^{24}-\frac{13\!\cdots\!20}{80\!\cdots\!41}a^{23}+\frac{29\!\cdots\!30}{80\!\cdots\!41}a^{22}-\frac{37\!\cdots\!83}{80\!\cdots\!41}a^{21}+\frac{17\!\cdots\!33}{80\!\cdots\!41}a^{20}+\frac{20\!\cdots\!11}{16\!\cdots\!82}a^{19}+\frac{94\!\cdots\!87}{16\!\cdots\!82}a^{18}-\frac{11\!\cdots\!31}{16\!\cdots\!82}a^{17}+\frac{10\!\cdots\!21}{16\!\cdots\!82}a^{16}+\frac{13\!\cdots\!63}{80\!\cdots\!41}a^{15}-\frac{88\!\cdots\!53}{80\!\cdots\!41}a^{14}-\frac{51\!\cdots\!95}{80\!\cdots\!41}a^{13}+\frac{37\!\cdots\!71}{80\!\cdots\!41}a^{12}+\frac{48\!\cdots\!23}{32\!\cdots\!64}a^{11}-\frac{46\!\cdots\!63}{32\!\cdots\!64}a^{10}-\frac{70\!\cdots\!97}{32\!\cdots\!64}a^{9}+\frac{63\!\cdots\!81}{32\!\cdots\!64}a^{8}+\frac{36\!\cdots\!01}{16\!\cdots\!82}a^{7}-\frac{47\!\cdots\!15}{16\!\cdots\!82}a^{6}-\frac{55\!\cdots\!97}{16\!\cdots\!82}a^{5}+\frac{33\!\cdots\!33}{16\!\cdots\!82}a^{4}+\frac{18\!\cdots\!53}{32\!\cdots\!64}a^{3}+\frac{13\!\cdots\!99}{32\!\cdots\!64}a^{2}-\frac{74\!\cdots\!27}{32\!\cdots\!64}a+\frac{25\!\cdots\!09}{96\!\cdots\!92}$, $\frac{49\!\cdots\!57}{96\!\cdots\!92}a^{27}+\frac{11\!\cdots\!33}{32\!\cdots\!64}a^{26}-\frac{16\!\cdots\!63}{32\!\cdots\!64}a^{25}-\frac{58\!\cdots\!59}{32\!\cdots\!64}a^{24}+\frac{73\!\cdots\!68}{80\!\cdots\!41}a^{23}-\frac{13\!\cdots\!72}{80\!\cdots\!41}a^{22}+\frac{56\!\cdots\!84}{80\!\cdots\!41}a^{21}+\frac{39\!\cdots\!60}{80\!\cdots\!41}a^{20}-\frac{22\!\cdots\!25}{16\!\cdots\!82}a^{19}+\frac{53\!\cdots\!57}{16\!\cdots\!82}a^{18}+\frac{89\!\cdots\!15}{16\!\cdots\!82}a^{17}-\frac{13\!\cdots\!63}{16\!\cdots\!82}a^{16}-\frac{67\!\cdots\!33}{80\!\cdots\!41}a^{15}+\frac{22\!\cdots\!49}{80\!\cdots\!41}a^{14}+\frac{76\!\cdots\!02}{80\!\cdots\!41}a^{13}-\frac{42\!\cdots\!83}{80\!\cdots\!41}a^{12}+\frac{36\!\cdots\!31}{32\!\cdots\!64}a^{11}+\frac{23\!\cdots\!79}{32\!\cdots\!64}a^{10}-\frac{27\!\cdots\!73}{32\!\cdots\!64}a^{9}-\frac{30\!\cdots\!49}{32\!\cdots\!64}a^{8}+\frac{18\!\cdots\!59}{16\!\cdots\!82}a^{7}+\frac{12\!\cdots\!53}{16\!\cdots\!82}a^{6}+\frac{25\!\cdots\!69}{16\!\cdots\!82}a^{5}-\frac{11\!\cdots\!11}{16\!\cdots\!82}a^{4}+\frac{28\!\cdots\!05}{32\!\cdots\!64}a^{3}+\frac{12\!\cdots\!77}{32\!\cdots\!64}a^{2}+\frac{50\!\cdots\!13}{32\!\cdots\!64}a-\frac{22\!\cdots\!05}{96\!\cdots\!92}$, $\frac{34\!\cdots\!68}{80\!\cdots\!41}a^{27}+\frac{46\!\cdots\!25}{16\!\cdots\!82}a^{26}-\frac{33\!\cdots\!10}{80\!\cdots\!41}a^{25}-\frac{24\!\cdots\!61}{16\!\cdots\!82}a^{24}+\frac{60\!\cdots\!33}{80\!\cdots\!41}a^{23}-\frac{10\!\cdots\!16}{80\!\cdots\!41}a^{22}+\frac{41\!\cdots\!98}{80\!\cdots\!41}a^{21}+\frac{32\!\cdots\!77}{80\!\cdots\!41}a^{20}-\frac{91\!\cdots\!06}{80\!\cdots\!41}a^{19}+\frac{16\!\cdots\!34}{80\!\cdots\!41}a^{18}+\frac{36\!\cdots\!95}{80\!\cdots\!41}a^{17}-\frac{54\!\cdots\!37}{80\!\cdots\!41}a^{16}-\frac{58\!\cdots\!12}{80\!\cdots\!41}a^{15}+\frac{18\!\cdots\!57}{80\!\cdots\!41}a^{14}+\frac{19\!\cdots\!71}{80\!\cdots\!41}a^{13}-\frac{33\!\cdots\!40}{80\!\cdots\!41}a^{12}+\frac{44\!\cdots\!29}{80\!\cdots\!41}a^{11}+\frac{95\!\cdots\!99}{16\!\cdots\!82}a^{10}-\frac{97\!\cdots\!88}{80\!\cdots\!41}a^{9}-\frac{12\!\cdots\!29}{16\!\cdots\!82}a^{8}+\frac{26\!\cdots\!11}{80\!\cdots\!41}a^{7}+\frac{49\!\cdots\!63}{80\!\cdots\!41}a^{6}+\frac{35\!\cdots\!30}{80\!\cdots\!41}a^{5}-\frac{46\!\cdots\!09}{80\!\cdots\!41}a^{4}-\frac{23\!\cdots\!41}{80\!\cdots\!41}a^{3}+\frac{48\!\cdots\!73}{16\!\cdots\!82}a^{2}+\frac{11\!\cdots\!38}{80\!\cdots\!41}a-\frac{28\!\cdots\!21}{16\!\cdots\!82}$, $\frac{91\!\cdots\!37}{16\!\cdots\!82}a^{27}-\frac{66\!\cdots\!89}{16\!\cdots\!82}a^{26}+\frac{11\!\cdots\!99}{16\!\cdots\!82}a^{25}+\frac{30\!\cdots\!79}{16\!\cdots\!82}a^{24}-\frac{88\!\cdots\!18}{80\!\cdots\!41}a^{23}+\frac{17\!\cdots\!35}{80\!\cdots\!41}a^{22}-\frac{95\!\cdots\!03}{80\!\cdots\!41}a^{21}-\frac{44\!\cdots\!00}{80\!\cdots\!41}a^{20}+\frac{14\!\cdots\!66}{80\!\cdots\!41}a^{19}-\frac{61\!\cdots\!91}{80\!\cdots\!41}a^{18}-\frac{52\!\cdots\!63}{80\!\cdots\!41}a^{17}+\frac{94\!\cdots\!10}{80\!\cdots\!41}a^{16}+\frac{63\!\cdots\!67}{80\!\cdots\!41}a^{15}-\frac{29\!\cdots\!17}{80\!\cdots\!41}a^{14}+\frac{44\!\cdots\!10}{80\!\cdots\!41}a^{13}+\frac{53\!\cdots\!30}{80\!\cdots\!41}a^{12}-\frac{43\!\cdots\!53}{16\!\cdots\!82}a^{11}-\frac{14\!\cdots\!01}{16\!\cdots\!82}a^{10}+\frac{48\!\cdots\!75}{16\!\cdots\!82}a^{9}+\frac{19\!\cdots\!61}{16\!\cdots\!82}a^{8}-\frac{28\!\cdots\!36}{80\!\cdots\!41}a^{7}-\frac{86\!\cdots\!18}{80\!\cdots\!41}a^{6}+\frac{12\!\cdots\!55}{80\!\cdots\!41}a^{5}+\frac{79\!\cdots\!83}{80\!\cdots\!41}a^{4}-\frac{23\!\cdots\!83}{16\!\cdots\!82}a^{3}-\frac{94\!\cdots\!05}{16\!\cdots\!82}a^{2}-\frac{24\!\cdots\!55}{16\!\cdots\!82}a+\frac{57\!\cdots\!77}{16\!\cdots\!82}$, $\frac{25\!\cdots\!61}{96\!\cdots\!92}a^{27}-\frac{59\!\cdots\!07}{32\!\cdots\!64}a^{26}+\frac{91\!\cdots\!95}{32\!\cdots\!64}a^{25}+\frac{30\!\cdots\!81}{32\!\cdots\!64}a^{24}-\frac{38\!\cdots\!47}{80\!\cdots\!41}a^{23}+\frac{71\!\cdots\!37}{80\!\cdots\!41}a^{22}-\frac{32\!\cdots\!72}{80\!\cdots\!41}a^{21}-\frac{20\!\cdots\!83}{80\!\cdots\!41}a^{20}+\frac{12\!\cdots\!75}{16\!\cdots\!82}a^{19}-\frac{32\!\cdots\!43}{16\!\cdots\!82}a^{18}-\frac{46\!\cdots\!91}{16\!\cdots\!82}a^{17}+\frac{74\!\cdots\!41}{16\!\cdots\!82}a^{16}+\frac{34\!\cdots\!52}{80\!\cdots\!41}a^{15}-\frac{12\!\cdots\!85}{80\!\cdots\!41}a^{14}-\frac{41\!\cdots\!00}{80\!\cdots\!41}a^{13}+\frac{22\!\cdots\!55}{80\!\cdots\!41}a^{12}-\frac{17\!\cdots\!47}{32\!\cdots\!64}a^{11}-\frac{12\!\cdots\!65}{32\!\cdots\!64}a^{10}+\frac{85\!\cdots\!21}{32\!\cdots\!64}a^{9}+\frac{16\!\cdots\!99}{32\!\cdots\!64}a^{8}-\frac{54\!\cdots\!21}{16\!\cdots\!82}a^{7}-\frac{65\!\cdots\!95}{16\!\cdots\!82}a^{6}-\frac{38\!\cdots\!37}{16\!\cdots\!82}a^{5}+\frac{58\!\cdots\!67}{16\!\cdots\!82}a^{4}+\frac{38\!\cdots\!67}{32\!\cdots\!64}a^{3}-\frac{64\!\cdots\!23}{32\!\cdots\!64}a^{2}-\frac{34\!\cdots\!61}{32\!\cdots\!64}a+\frac{10\!\cdots\!83}{96\!\cdots\!92}$, $\frac{46\!\cdots\!35}{96\!\cdots\!92}a^{27}+\frac{10\!\cdots\!99}{32\!\cdots\!64}a^{26}-\frac{16\!\cdots\!17}{32\!\cdots\!64}a^{25}-\frac{53\!\cdots\!97}{32\!\cdots\!64}a^{24}+\frac{69\!\cdots\!13}{80\!\cdots\!41}a^{23}-\frac{13\!\cdots\!29}{80\!\cdots\!41}a^{22}+\frac{62\!\cdots\!31}{80\!\cdots\!41}a^{21}+\frac{35\!\cdots\!59}{80\!\cdots\!41}a^{20}-\frac{21\!\cdots\!87}{16\!\cdots\!82}a^{19}+\frac{64\!\cdots\!53}{16\!\cdots\!82}a^{18}+\frac{83\!\cdots\!13}{16\!\cdots\!82}a^{17}-\frac{13\!\cdots\!07}{16\!\cdots\!82}a^{16}-\frac{59\!\cdots\!07}{80\!\cdots\!41}a^{15}+\frac{21\!\cdots\!11}{80\!\cdots\!41}a^{14}-\frac{16\!\cdots\!15}{80\!\cdots\!41}a^{13}-\frac{38\!\cdots\!41}{80\!\cdots\!41}a^{12}+\frac{35\!\cdots\!57}{32\!\cdots\!64}a^{11}+\frac{21\!\cdots\!53}{32\!\cdots\!64}a^{10}-\frac{15\!\cdots\!47}{32\!\cdots\!64}a^{9}-\frac{27\!\cdots\!87}{32\!\cdots\!64}a^{8}+\frac{85\!\cdots\!57}{16\!\cdots\!82}a^{7}+\frac{11\!\cdots\!19}{16\!\cdots\!82}a^{6}+\frac{11\!\cdots\!23}{16\!\cdots\!82}a^{5}-\frac{10\!\cdots\!79}{16\!\cdots\!82}a^{4}-\frac{17\!\cdots\!93}{32\!\cdots\!64}a^{3}+\frac{96\!\cdots\!03}{32\!\cdots\!64}a^{2}+\frac{56\!\cdots\!39}{32\!\cdots\!64}a-\frac{16\!\cdots\!59}{96\!\cdots\!92}$, $\frac{53\!\cdots\!47}{96\!\cdots\!92}a^{27}+\frac{12\!\cdots\!09}{32\!\cdots\!64}a^{26}-\frac{21\!\cdots\!25}{32\!\cdots\!64}a^{25}-\frac{61\!\cdots\!15}{32\!\cdots\!64}a^{24}+\frac{85\!\cdots\!26}{80\!\cdots\!41}a^{23}-\frac{16\!\cdots\!15}{80\!\cdots\!41}a^{22}+\frac{88\!\cdots\!23}{80\!\cdots\!41}a^{21}+\frac{43\!\cdots\!90}{80\!\cdots\!41}a^{20}-\frac{27\!\cdots\!47}{16\!\cdots\!82}a^{19}+\frac{10\!\cdots\!37}{16\!\cdots\!82}a^{18}+\frac{10\!\cdots\!95}{16\!\cdots\!82}a^{17}-\frac{17\!\cdots\!17}{16\!\cdots\!82}a^{16}-\frac{64\!\cdots\!61}{80\!\cdots\!41}a^{15}+\frac{28\!\cdots\!05}{80\!\cdots\!41}a^{14}-\frac{31\!\cdots\!60}{80\!\cdots\!41}a^{13}-\frac{50\!\cdots\!61}{80\!\cdots\!41}a^{12}+\frac{72\!\cdots\!01}{32\!\cdots\!64}a^{11}+\frac{28\!\cdots\!95}{32\!\cdots\!64}a^{10}-\frac{73\!\cdots\!35}{32\!\cdots\!64}a^{9}-\frac{37\!\cdots\!69}{32\!\cdots\!64}a^{8}+\frac{42\!\cdots\!77}{16\!\cdots\!82}a^{7}+\frac{15\!\cdots\!79}{16\!\cdots\!82}a^{6}-\frac{13\!\cdots\!73}{16\!\cdots\!82}a^{5}-\frac{14\!\cdots\!03}{16\!\cdots\!82}a^{4}+\frac{33\!\cdots\!63}{32\!\cdots\!64}a^{3}+\frac{17\!\cdots\!49}{32\!\cdots\!64}a^{2}+\frac{55\!\cdots\!15}{32\!\cdots\!64}a-\frac{30\!\cdots\!69}{96\!\cdots\!92}$, $\frac{24\!\cdots\!91}{96\!\cdots\!92}a^{27}+\frac{57\!\cdots\!71}{32\!\cdots\!64}a^{26}-\frac{89\!\cdots\!17}{32\!\cdots\!64}a^{25}-\frac{29\!\cdots\!45}{32\!\cdots\!64}a^{24}+\frac{37\!\cdots\!34}{80\!\cdots\!41}a^{23}-\frac{70\!\cdots\!79}{80\!\cdots\!41}a^{22}+\frac{30\!\cdots\!41}{80\!\cdots\!41}a^{21}+\frac{20\!\cdots\!85}{80\!\cdots\!41}a^{20}-\frac{11\!\cdots\!71}{16\!\cdots\!82}a^{19}+\frac{31\!\cdots\!47}{16\!\cdots\!82}a^{18}+\frac{46\!\cdots\!95}{16\!\cdots\!82}a^{17}-\frac{74\!\cdots\!71}{16\!\cdots\!82}a^{16}-\frac{33\!\cdots\!68}{80\!\cdots\!41}a^{15}+\frac{12\!\cdots\!32}{80\!\cdots\!41}a^{14}-\frac{11\!\cdots\!00}{80\!\cdots\!41}a^{13}-\frac{22\!\cdots\!42}{80\!\cdots\!41}a^{12}+\frac{24\!\cdots\!85}{32\!\cdots\!64}a^{11}+\frac{12\!\cdots\!05}{32\!\cdots\!64}a^{10}-\frac{23\!\cdots\!59}{32\!\cdots\!64}a^{9}-\frac{15\!\cdots\!99}{32\!\cdots\!64}a^{8}+\frac{15\!\cdots\!89}{16\!\cdots\!82}a^{7}+\frac{67\!\cdots\!95}{16\!\cdots\!82}a^{6}-\frac{55\!\cdots\!93}{16\!\cdots\!82}a^{5}-\frac{61\!\cdots\!55}{16\!\cdots\!82}a^{4}+\frac{11\!\cdots\!07}{32\!\cdots\!64}a^{3}+\frac{70\!\cdots\!19}{32\!\cdots\!64}a^{2}+\frac{23\!\cdots\!75}{32\!\cdots\!64}a-\frac{12\!\cdots\!87}{96\!\cdots\!92}$, $\frac{25\!\cdots\!49}{96\!\cdots\!92}a^{27}+\frac{50\!\cdots\!03}{32\!\cdots\!64}a^{26}-\frac{26\!\cdots\!47}{32\!\cdots\!64}a^{25}-\frac{60\!\cdots\!89}{32\!\cdots\!64}a^{24}+\frac{40\!\cdots\!47}{80\!\cdots\!41}a^{23}-\frac{93\!\cdots\!91}{80\!\cdots\!41}a^{22}-\frac{18\!\cdots\!16}{80\!\cdots\!41}a^{21}+\frac{52\!\cdots\!94}{80\!\cdots\!41}a^{20}-\frac{11\!\cdots\!01}{16\!\cdots\!82}a^{19}-\frac{23\!\cdots\!89}{16\!\cdots\!82}a^{18}+\frac{99\!\cdots\!97}{16\!\cdots\!82}a^{17}-\frac{52\!\cdots\!09}{16\!\cdots\!82}a^{16}-\frac{15\!\cdots\!17}{80\!\cdots\!41}a^{15}+\frac{25\!\cdots\!29}{80\!\cdots\!41}a^{14}+\frac{19\!\cdots\!89}{80\!\cdots\!41}a^{13}-\frac{72\!\cdots\!60}{80\!\cdots\!41}a^{12}+\frac{28\!\cdots\!43}{32\!\cdots\!64}a^{11}+\frac{46\!\cdots\!33}{32\!\cdots\!64}a^{10}-\frac{20\!\cdots\!29}{32\!\cdots\!64}a^{9}-\frac{50\!\cdots\!55}{32\!\cdots\!64}a^{8}+\frac{13\!\cdots\!11}{16\!\cdots\!82}a^{7}+\frac{22\!\cdots\!23}{16\!\cdots\!82}a^{6}-\frac{16\!\cdots\!87}{16\!\cdots\!82}a^{5}-\frac{13\!\cdots\!67}{16\!\cdots\!82}a^{4}+\frac{20\!\cdots\!69}{32\!\cdots\!64}a^{3}+\frac{19\!\cdots\!03}{32\!\cdots\!64}a^{2}-\frac{14\!\cdots\!31}{32\!\cdots\!64}a+\frac{10\!\cdots\!17}{96\!\cdots\!92}$, $\frac{45\!\cdots\!51}{16\!\cdots\!82}a^{27}-\frac{31\!\cdots\!57}{16\!\cdots\!82}a^{26}+\frac{51\!\cdots\!85}{16\!\cdots\!82}a^{25}+\frac{14\!\cdots\!27}{16\!\cdots\!82}a^{24}-\frac{40\!\cdots\!19}{80\!\cdots\!41}a^{23}+\frac{80\!\cdots\!76}{80\!\cdots\!41}a^{22}-\frac{50\!\cdots\!06}{80\!\cdots\!41}a^{21}-\frac{18\!\cdots\!30}{80\!\cdots\!41}a^{20}+\frac{62\!\cdots\!75}{80\!\cdots\!41}a^{19}-\frac{25\!\cdots\!91}{80\!\cdots\!41}a^{18}-\frac{22\!\cdots\!92}{80\!\cdots\!41}a^{17}+\frac{39\!\cdots\!80}{80\!\cdots\!41}a^{16}+\frac{28\!\cdots\!98}{80\!\cdots\!41}a^{15}-\frac{11\!\cdots\!13}{80\!\cdots\!41}a^{14}+\frac{66\!\cdots\!59}{80\!\cdots\!41}a^{13}+\frac{20\!\cdots\!62}{80\!\cdots\!41}a^{12}-\frac{93\!\cdots\!35}{16\!\cdots\!82}a^{11}-\frac{57\!\cdots\!61}{16\!\cdots\!82}a^{10}+\frac{44\!\cdots\!19}{16\!\cdots\!82}a^{9}+\frac{75\!\cdots\!17}{16\!\cdots\!82}a^{8}-\frac{50\!\cdots\!25}{80\!\cdots\!41}a^{7}-\frac{28\!\cdots\!55}{80\!\cdots\!41}a^{6}-\frac{21\!\cdots\!01}{80\!\cdots\!41}a^{5}+\frac{28\!\cdots\!25}{80\!\cdots\!41}a^{4}-\frac{15\!\cdots\!91}{16\!\cdots\!82}a^{3}-\frac{27\!\cdots\!53}{16\!\cdots\!82}a^{2}-\frac{13\!\cdots\!57}{16\!\cdots\!82}a+\frac{14\!\cdots\!87}{16\!\cdots\!82}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1704998304150.298 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{12}\cdot 1704998304150.298 \cdot 1}{2\cdot\sqrt{2678658682623660056187071999014915161641189376}}\cr\approx \mathstrut & 0.997731466438238 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 8*x^27 + 18*x^26 + 24*x^25 - 219*x^24 + 528*x^23 - 504*x^22 - 792*x^21 + 3822*x^20 - 3720*x^19 - 10236*x^18 + 29088*x^17 - 2226*x^16 - 73848*x^15 + 58836*x^14 + 105792*x^13 - 134013*x^12 - 121848*x^11 + 172362*x^10 + 170040*x^9 - 221931*x^8 - 132624*x^7 + 164988*x^6 + 144528*x^5 - 154173*x^4 - 76368*x^3 + 49938*x^2 + 79840*x - 48347)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 8*x^27 + 18*x^26 + 24*x^25 - 219*x^24 + 528*x^23 - 504*x^22 - 792*x^21 + 3822*x^20 - 3720*x^19 - 10236*x^18 + 29088*x^17 - 2226*x^16 - 73848*x^15 + 58836*x^14 + 105792*x^13 - 134013*x^12 - 121848*x^11 + 172362*x^10 + 170040*x^9 - 221931*x^8 - 132624*x^7 + 164988*x^6 + 144528*x^5 - 154173*x^4 - 76368*x^3 + 49938*x^2 + 79840*x - 48347, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 8*x^27 + 18*x^26 + 24*x^25 - 219*x^24 + 528*x^23 - 504*x^22 - 792*x^21 + 3822*x^20 - 3720*x^19 - 10236*x^18 + 29088*x^17 - 2226*x^16 - 73848*x^15 + 58836*x^14 + 105792*x^13 - 134013*x^12 - 121848*x^11 + 172362*x^10 + 170040*x^9 - 221931*x^8 - 132624*x^7 + 164988*x^6 + 144528*x^5 - 154173*x^4 - 76368*x^3 + 49938*x^2 + 79840*x - 48347);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 8*x^27 + 18*x^26 + 24*x^25 - 219*x^24 + 528*x^23 - 504*x^22 - 792*x^21 + 3822*x^20 - 3720*x^19 - 10236*x^18 + 29088*x^17 - 2226*x^16 - 73848*x^15 + 58836*x^14 + 105792*x^13 - 134013*x^12 - 121848*x^11 + 172362*x^10 + 170040*x^9 - 221931*x^8 - 132624*x^7 + 164988*x^6 + 144528*x^5 - 154173*x^4 - 76368*x^3 + 49938*x^2 + 79840*x - 48347);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$G(2,2)$ (as 28T393):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 12096
The 16 conjugacy class representatives for $G(2,2)$
Character table for $G(2,2)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.7.0.1}{7} }^{4}$ ${\href{/padicField/7.8.0.1}{8} }^{3}{,}\,{\href{/padicField/7.4.0.1}{4} }$ ${\href{/padicField/11.8.0.1}{8} }^{3}{,}\,{\href{/padicField/11.4.0.1}{4} }$ ${\href{/padicField/13.6.0.1}{6} }^{4}{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.7.0.1}{7} }^{4}$ ${\href{/padicField/19.12.0.1}{12} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.6.0.1}{6} }^{4}{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.7.0.1}{7} }^{4}$ ${\href{/padicField/31.12.0.1}{12} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.6.0.1}{6} }^{4}{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.3.0.1}{3} }^{9}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.12.0.1}{12} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.6.0.1}{6} }^{4}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.3.0.1}{3} }^{9}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.6.0.1}{6} }^{4}{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.6.7$x^{4} + 2 x^{3} + 2 x^{2} + 2$$4$$1$$6$$A_4$$[2, 2]^{3}$
Deg $24$$8$$3$$72$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $27$$27$$1$$46$