Properties

Label 28.4.602...096.2
Degree $28$
Signature $[4, 12]$
Discriminant $6.027\times 10^{45}$
Root discriminant \(43.15\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $G(2,2)$ (as 28T393)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 8*x^27 + 18*x^26 + 12*x^25 - 87*x^24 + 144*x^23 - 732*x^22 + 1176*x^21 + 3933*x^20 - 6888*x^19 + 6*x^18 - 34092*x^17 + 44853*x^16 + 20832*x^15 + 197496*x^14 - 417264*x^13 + 142635*x^12 - 309816*x^11 + 1085166*x^10 - 484812*x^9 - 488061*x^8 + 335568*x^7 - 99996*x^6 + 94104*x^5 - 24537*x^4 - 6168*x^3 + 666*x^2 - 788*x - 977)
 
gp: K = bnfinit(y^28 - 8*y^27 + 18*y^26 + 12*y^25 - 87*y^24 + 144*y^23 - 732*y^22 + 1176*y^21 + 3933*y^20 - 6888*y^19 + 6*y^18 - 34092*y^17 + 44853*y^16 + 20832*y^15 + 197496*y^14 - 417264*y^13 + 142635*y^12 - 309816*y^11 + 1085166*y^10 - 484812*y^9 - 488061*y^8 + 335568*y^7 - 99996*y^6 + 94104*y^5 - 24537*y^4 - 6168*y^3 + 666*y^2 - 788*y - 977, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 8*x^27 + 18*x^26 + 12*x^25 - 87*x^24 + 144*x^23 - 732*x^22 + 1176*x^21 + 3933*x^20 - 6888*x^19 + 6*x^18 - 34092*x^17 + 44853*x^16 + 20832*x^15 + 197496*x^14 - 417264*x^13 + 142635*x^12 - 309816*x^11 + 1085166*x^10 - 484812*x^9 - 488061*x^8 + 335568*x^7 - 99996*x^6 + 94104*x^5 - 24537*x^4 - 6168*x^3 + 666*x^2 - 788*x - 977);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 8*x^27 + 18*x^26 + 12*x^25 - 87*x^24 + 144*x^23 - 732*x^22 + 1176*x^21 + 3933*x^20 - 6888*x^19 + 6*x^18 - 34092*x^17 + 44853*x^16 + 20832*x^15 + 197496*x^14 - 417264*x^13 + 142635*x^12 - 309816*x^11 + 1085166*x^10 - 484812*x^9 - 488061*x^8 + 335568*x^7 - 99996*x^6 + 94104*x^5 - 24537*x^4 - 6168*x^3 + 666*x^2 - 788*x - 977)
 

\( x^{28} - 8 x^{27} + 18 x^{26} + 12 x^{25} - 87 x^{24} + 144 x^{23} - 732 x^{22} + 1176 x^{21} + \cdots - 977 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(6026982035903235126420911997783559113692676096\) \(\medspace = 2^{76}\cdot 3^{48}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(43.15\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}-\frac{1}{4}a^{4}+\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{9}-\frac{1}{4}a^{5}+\frac{1}{4}a$, $\frac{1}{12}a^{14}-\frac{1}{12}a^{13}+\frac{1}{12}a^{12}-\frac{1}{6}a^{11}-\frac{1}{12}a^{10}+\frac{1}{12}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}+\frac{1}{12}a^{5}+\frac{5}{12}a^{4}-\frac{1}{6}a^{3}-\frac{5}{12}a^{2}-\frac{1}{12}a+\frac{1}{12}$, $\frac{1}{12}a^{15}-\frac{1}{12}a^{12}-\frac{1}{4}a^{11}-\frac{1}{6}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{6}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}+\frac{5}{12}a^{3}-\frac{1}{2}a^{2}+\frac{1}{12}$, $\frac{1}{12}a^{16}-\frac{1}{12}a^{13}-\frac{1}{6}a^{10}-\frac{1}{4}a^{9}-\frac{1}{6}a^{7}+\frac{1}{4}a^{5}-\frac{1}{3}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+\frac{1}{12}a+\frac{1}{4}$, $\frac{1}{24}a^{17}-\frac{1}{24}a^{16}-\frac{1}{12}a^{12}-\frac{1}{6}a^{11}+\frac{1}{6}a^{10}-\frac{1}{12}a^{9}+\frac{1}{6}a^{8}-\frac{1}{6}a^{7}+\frac{1}{4}a^{4}-\frac{1}{3}a^{3}-\frac{1}{6}a^{2}+\frac{1}{24}a+\frac{1}{24}$, $\frac{1}{24}a^{18}-\frac{1}{24}a^{16}-\frac{1}{12}a^{13}+\frac{1}{12}a^{10}+\frac{1}{12}a^{9}-\frac{1}{4}a^{8}-\frac{1}{6}a^{7}+\frac{1}{4}a^{5}-\frac{1}{3}a^{4}-\frac{1}{2}a^{3}-\frac{1}{8}a^{2}+\frac{1}{12}a+\frac{7}{24}$, $\frac{1}{24}a^{19}-\frac{1}{24}a^{16}-\frac{1}{12}a^{13}-\frac{1}{4}a^{11}+\frac{1}{6}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{6}a^{7}-\frac{1}{4}a^{5}+\frac{1}{6}a^{4}+\frac{3}{8}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}a+\frac{1}{8}$, $\frac{1}{24}a^{20}-\frac{1}{24}a^{16}-\frac{1}{12}a^{13}-\frac{1}{6}a^{11}-\frac{1}{6}a^{10}-\frac{1}{4}a^{9}-\frac{1}{6}a^{7}+\frac{1}{4}a^{5}+\frac{7}{24}a^{4}+\frac{1}{6}a^{2}+\frac{1}{12}a+\frac{3}{8}$, $\frac{1}{24}a^{21}-\frac{1}{24}a^{16}-\frac{1}{12}a^{13}+\frac{1}{12}a^{12}-\frac{1}{6}a^{10}-\frac{1}{6}a^{7}+\frac{3}{8}a^{5}+\frac{5}{12}a^{4}+\frac{1}{6}a^{3}-\frac{1}{2}a^{2}+\frac{1}{3}a-\frac{1}{8}$, $\frac{1}{24}a^{22}-\frac{1}{24}a^{16}+\frac{1}{12}a^{10}-\frac{1}{4}a^{8}-\frac{1}{6}a^{7}+\frac{1}{8}a^{6}-\frac{1}{2}a^{5}-\frac{1}{6}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}-\frac{1}{6}a+\frac{1}{8}$, $\frac{1}{48}a^{23}-\frac{1}{48}a^{22}-\frac{1}{48}a^{21}-\frac{1}{48}a^{20}-\frac{1}{48}a^{19}-\frac{1}{48}a^{18}-\frac{1}{48}a^{17}+\frac{1}{48}a^{16}-\frac{1}{24}a^{15}-\frac{1}{24}a^{14}+\frac{1}{24}a^{13}-\frac{1}{24}a^{12}-\frac{1}{24}a^{11}+\frac{5}{24}a^{10}+\frac{1}{8}a^{9}-\frac{5}{24}a^{8}+\frac{1}{48}a^{7}-\frac{5}{48}a^{6}-\frac{3}{16}a^{5}+\frac{1}{16}a^{4}-\frac{13}{48}a^{3}-\frac{1}{48}a^{2}-\frac{13}{48}a-\frac{23}{48}$, $\frac{1}{48}a^{24}+\frac{1}{48}a^{16}-\frac{1}{12}a^{13}-\frac{1}{12}a^{12}-\frac{1}{6}a^{10}+\frac{1}{12}a^{9}-\frac{3}{16}a^{8}-\frac{1}{6}a^{7}+\frac{1}{6}a^{6}+\frac{1}{4}a^{5}-\frac{1}{12}a^{4}+\frac{1}{6}a^{3}+\frac{1}{12}a-\frac{17}{48}$, $\frac{1}{48}a^{25}-\frac{1}{48}a^{17}-\frac{1}{24}a^{16}-\frac{1}{12}a^{13}-\frac{1}{12}a^{12}-\frac{1}{6}a^{11}+\frac{11}{48}a^{9}+\frac{1}{6}a^{8}+\frac{1}{4}a^{5}-\frac{1}{12}a^{4}+\frac{1}{6}a^{3}+\frac{1}{3}a^{2}-\frac{1}{16}a+\frac{1}{24}$, $\frac{1}{48}a^{26}-\frac{1}{48}a^{18}-\frac{1}{24}a^{16}+\frac{1}{12}a^{13}+\frac{1}{12}a^{12}+\frac{1}{6}a^{11}-\frac{3}{16}a^{10}-\frac{1}{12}a^{9}+\frac{1}{6}a^{8}-\frac{1}{6}a^{7}-\frac{1}{4}a^{5}-\frac{5}{12}a^{4}+\frac{1}{3}a^{3}-\frac{7}{48}a^{2}+\frac{1}{4}a-\frac{1}{8}$, $\frac{1}{80\!\cdots\!24}a^{27}+\frac{28\!\cdots\!09}{44\!\cdots\!68}a^{26}+\frac{77\!\cdots\!90}{16\!\cdots\!13}a^{25}-\frac{92\!\cdots\!65}{13\!\cdots\!04}a^{24}+\frac{68\!\cdots\!97}{26\!\cdots\!08}a^{23}-\frac{51\!\cdots\!79}{26\!\cdots\!08}a^{22}-\frac{33\!\cdots\!07}{26\!\cdots\!08}a^{21}-\frac{47\!\cdots\!69}{26\!\cdots\!08}a^{20}-\frac{11\!\cdots\!10}{55\!\cdots\!71}a^{19}-\frac{51\!\cdots\!55}{26\!\cdots\!08}a^{18}-\frac{50\!\cdots\!11}{89\!\cdots\!36}a^{17}-\frac{45\!\cdots\!43}{26\!\cdots\!08}a^{16}-\frac{94\!\cdots\!81}{44\!\cdots\!68}a^{15}+\frac{11\!\cdots\!91}{13\!\cdots\!04}a^{14}+\frac{14\!\cdots\!61}{13\!\cdots\!04}a^{13}-\frac{45\!\cdots\!65}{44\!\cdots\!68}a^{12}-\frac{57\!\cdots\!37}{26\!\cdots\!08}a^{11}+\frac{33\!\cdots\!97}{16\!\cdots\!13}a^{10}-\frac{46\!\cdots\!23}{13\!\cdots\!04}a^{9}+\frac{15\!\cdots\!37}{11\!\cdots\!42}a^{8}-\frac{21\!\cdots\!77}{89\!\cdots\!36}a^{7}+\frac{41\!\cdots\!73}{26\!\cdots\!08}a^{6}+\frac{36\!\cdots\!45}{26\!\cdots\!08}a^{5}+\frac{64\!\cdots\!57}{89\!\cdots\!36}a^{4}-\frac{46\!\cdots\!89}{13\!\cdots\!04}a^{3}-\frac{98\!\cdots\!75}{26\!\cdots\!08}a^{2}-\frac{56\!\cdots\!17}{26\!\cdots\!08}a-\frac{14\!\cdots\!01}{80\!\cdots\!24}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{47\!\cdots\!37}{40\!\cdots\!12}a^{27}+\frac{23\!\cdots\!61}{26\!\cdots\!08}a^{26}-\frac{18\!\cdots\!05}{11\!\cdots\!42}a^{25}-\frac{60\!\cdots\!79}{26\!\cdots\!08}a^{24}+\frac{23\!\cdots\!57}{26\!\cdots\!08}a^{23}-\frac{10\!\cdots\!69}{89\!\cdots\!36}a^{22}+\frac{21\!\cdots\!53}{26\!\cdots\!08}a^{21}-\frac{25\!\cdots\!07}{26\!\cdots\!08}a^{20}-\frac{13\!\cdots\!89}{26\!\cdots\!08}a^{19}+\frac{17\!\cdots\!49}{33\!\cdots\!26}a^{18}+\frac{70\!\cdots\!31}{26\!\cdots\!08}a^{17}+\frac{18\!\cdots\!79}{44\!\cdots\!68}a^{16}-\frac{39\!\cdots\!81}{13\!\cdots\!04}a^{15}-\frac{52\!\cdots\!45}{13\!\cdots\!04}a^{14}-\frac{11\!\cdots\!57}{44\!\cdots\!68}a^{13}+\frac{15\!\cdots\!45}{44\!\cdots\!68}a^{12}+\frac{44\!\cdots\!31}{33\!\cdots\!26}a^{11}+\frac{10\!\cdots\!57}{26\!\cdots\!08}a^{10}-\frac{14\!\cdots\!11}{13\!\cdots\!04}a^{9}-\frac{11\!\cdots\!87}{26\!\cdots\!08}a^{8}+\frac{47\!\cdots\!87}{89\!\cdots\!36}a^{7}-\frac{11\!\cdots\!33}{89\!\cdots\!36}a^{6}+\frac{28\!\cdots\!81}{26\!\cdots\!08}a^{5}-\frac{46\!\cdots\!25}{89\!\cdots\!36}a^{4}-\frac{21\!\cdots\!05}{26\!\cdots\!08}a^{3}+\frac{52\!\cdots\!27}{13\!\cdots\!04}a^{2}-\frac{13\!\cdots\!65}{26\!\cdots\!08}a-\frac{62\!\cdots\!03}{10\!\cdots\!78}$, $\frac{89\!\cdots\!59}{26\!\cdots\!08}a^{27}-\frac{25\!\cdots\!79}{89\!\cdots\!36}a^{26}+\frac{32\!\cdots\!71}{44\!\cdots\!68}a^{25}+\frac{19\!\cdots\!59}{13\!\cdots\!04}a^{24}-\frac{43\!\cdots\!47}{13\!\cdots\!04}a^{23}+\frac{10\!\cdots\!40}{16\!\cdots\!13}a^{22}-\frac{44\!\cdots\!85}{16\!\cdots\!13}a^{21}+\frac{17\!\cdots\!15}{33\!\cdots\!26}a^{20}+\frac{31\!\cdots\!25}{26\!\cdots\!08}a^{19}-\frac{81\!\cdots\!87}{26\!\cdots\!08}a^{18}+\frac{41\!\cdots\!01}{44\!\cdots\!68}a^{17}-\frac{37\!\cdots\!41}{33\!\cdots\!26}a^{16}+\frac{13\!\cdots\!99}{66\!\cdots\!52}a^{15}+\frac{27\!\cdots\!57}{16\!\cdots\!13}a^{14}+\frac{40\!\cdots\!87}{66\!\cdots\!52}a^{13}-\frac{11\!\cdots\!99}{66\!\cdots\!52}a^{12}+\frac{28\!\cdots\!69}{26\!\cdots\!08}a^{11}-\frac{28\!\cdots\!95}{26\!\cdots\!08}a^{10}+\frac{54\!\cdots\!89}{13\!\cdots\!04}a^{9}-\frac{14\!\cdots\!93}{44\!\cdots\!68}a^{8}-\frac{18\!\cdots\!95}{13\!\cdots\!04}a^{7}+\frac{23\!\cdots\!55}{11\!\cdots\!42}a^{6}-\frac{18\!\cdots\!89}{22\!\cdots\!84}a^{5}+\frac{67\!\cdots\!45}{22\!\cdots\!84}a^{4}-\frac{14\!\cdots\!57}{26\!\cdots\!08}a^{3}-\frac{21\!\cdots\!83}{89\!\cdots\!36}a^{2}-\frac{18\!\cdots\!53}{13\!\cdots\!04}a-\frac{55\!\cdots\!01}{33\!\cdots\!26}$, $\frac{26\!\cdots\!27}{80\!\cdots\!24}a^{27}+\frac{67\!\cdots\!43}{26\!\cdots\!08}a^{26}-\frac{43\!\cdots\!89}{89\!\cdots\!36}a^{25}-\frac{16\!\cdots\!31}{26\!\cdots\!08}a^{24}+\frac{70\!\cdots\!37}{26\!\cdots\!08}a^{23}-\frac{31\!\cdots\!17}{89\!\cdots\!36}a^{22}+\frac{61\!\cdots\!25}{26\!\cdots\!08}a^{21}-\frac{79\!\cdots\!61}{26\!\cdots\!08}a^{20}-\frac{24\!\cdots\!98}{16\!\cdots\!13}a^{19}+\frac{27\!\cdots\!60}{16\!\cdots\!13}a^{18}+\frac{11\!\cdots\!49}{13\!\cdots\!04}a^{17}+\frac{19\!\cdots\!26}{16\!\cdots\!13}a^{16}-\frac{45\!\cdots\!15}{44\!\cdots\!68}a^{15}-\frac{16\!\cdots\!99}{13\!\cdots\!04}a^{14}-\frac{97\!\cdots\!73}{13\!\cdots\!04}a^{13}+\frac{14\!\cdots\!73}{13\!\cdots\!04}a^{12}+\frac{12\!\cdots\!47}{26\!\cdots\!08}a^{11}+\frac{98\!\cdots\!69}{89\!\cdots\!36}a^{10}-\frac{88\!\cdots\!87}{26\!\cdots\!08}a^{9}+\frac{14\!\cdots\!15}{89\!\cdots\!36}a^{8}+\frac{45\!\cdots\!13}{26\!\cdots\!08}a^{7}+\frac{19\!\cdots\!25}{26\!\cdots\!08}a^{6}+\frac{13\!\cdots\!03}{89\!\cdots\!36}a^{5}-\frac{11\!\cdots\!97}{26\!\cdots\!08}a^{4}-\frac{17\!\cdots\!25}{44\!\cdots\!68}a^{3}+\frac{91\!\cdots\!53}{44\!\cdots\!68}a^{2}+\frac{11\!\cdots\!41}{33\!\cdots\!26}a+\frac{56\!\cdots\!65}{40\!\cdots\!12}$, $\frac{26\!\cdots\!53}{80\!\cdots\!24}a^{27}+\frac{43\!\cdots\!96}{16\!\cdots\!13}a^{26}-\frac{14\!\cdots\!09}{26\!\cdots\!08}a^{25}-\frac{44\!\cdots\!05}{89\!\cdots\!36}a^{24}+\frac{37\!\cdots\!85}{13\!\cdots\!04}a^{23}-\frac{29\!\cdots\!93}{66\!\cdots\!52}a^{22}+\frac{79\!\cdots\!47}{33\!\cdots\!26}a^{21}-\frac{46\!\cdots\!45}{13\!\cdots\!04}a^{20}-\frac{36\!\cdots\!93}{26\!\cdots\!08}a^{19}+\frac{13\!\cdots\!39}{66\!\cdots\!52}a^{18}+\frac{79\!\cdots\!81}{26\!\cdots\!08}a^{17}+\frac{30\!\cdots\!69}{26\!\cdots\!08}a^{16}-\frac{28\!\cdots\!05}{22\!\cdots\!84}a^{15}-\frac{49\!\cdots\!66}{55\!\cdots\!71}a^{14}-\frac{37\!\cdots\!59}{55\!\cdots\!71}a^{13}+\frac{27\!\cdots\!99}{22\!\cdots\!84}a^{12}-\frac{24\!\cdots\!43}{89\!\cdots\!36}a^{11}+\frac{53\!\cdots\!09}{55\!\cdots\!71}a^{10}-\frac{88\!\cdots\!67}{26\!\cdots\!08}a^{9}+\frac{26\!\cdots\!03}{26\!\cdots\!08}a^{8}+\frac{24\!\cdots\!09}{13\!\cdots\!04}a^{7}-\frac{24\!\cdots\!23}{22\!\cdots\!84}a^{6}+\frac{11\!\cdots\!91}{33\!\cdots\!26}a^{5}-\frac{23\!\cdots\!17}{13\!\cdots\!04}a^{4}-\frac{11\!\cdots\!27}{26\!\cdots\!08}a^{3}+\frac{57\!\cdots\!03}{66\!\cdots\!52}a^{2}-\frac{10\!\cdots\!45}{26\!\cdots\!08}a+\frac{13\!\cdots\!85}{80\!\cdots\!24}$, $\frac{18\!\cdots\!21}{80\!\cdots\!24}a^{27}-\frac{23\!\cdots\!23}{13\!\cdots\!04}a^{26}+\frac{88\!\cdots\!53}{26\!\cdots\!08}a^{25}+\frac{20\!\cdots\!51}{44\!\cdots\!68}a^{24}-\frac{49\!\cdots\!79}{26\!\cdots\!08}a^{23}+\frac{21\!\cdots\!29}{89\!\cdots\!36}a^{22}-\frac{13\!\cdots\!67}{89\!\cdots\!36}a^{21}+\frac{52\!\cdots\!75}{26\!\cdots\!08}a^{20}+\frac{13\!\cdots\!93}{13\!\cdots\!04}a^{19}-\frac{30\!\cdots\!11}{26\!\cdots\!08}a^{18}-\frac{97\!\cdots\!75}{13\!\cdots\!04}a^{17}-\frac{21\!\cdots\!47}{26\!\cdots\!08}a^{16}+\frac{91\!\cdots\!43}{13\!\cdots\!04}a^{15}+\frac{12\!\cdots\!19}{13\!\cdots\!04}a^{14}+\frac{21\!\cdots\!61}{44\!\cdots\!68}a^{13}-\frac{34\!\cdots\!71}{44\!\cdots\!68}a^{12}-\frac{27\!\cdots\!69}{26\!\cdots\!08}a^{11}-\frac{34\!\cdots\!37}{55\!\cdots\!71}a^{10}+\frac{61\!\cdots\!21}{26\!\cdots\!08}a^{9}-\frac{20\!\cdots\!91}{11\!\cdots\!42}a^{8}-\frac{13\!\cdots\!09}{89\!\cdots\!36}a^{7}+\frac{12\!\cdots\!75}{26\!\cdots\!08}a^{6}+\frac{24\!\cdots\!93}{89\!\cdots\!36}a^{5}+\frac{26\!\cdots\!49}{89\!\cdots\!36}a^{4}-\frac{18\!\cdots\!05}{22\!\cdots\!84}a^{3}-\frac{16\!\cdots\!63}{26\!\cdots\!08}a^{2}-\frac{51\!\cdots\!27}{66\!\cdots\!52}a+\frac{14\!\cdots\!79}{80\!\cdots\!24}$, $\frac{31\!\cdots\!13}{89\!\cdots\!36}a^{27}+\frac{70\!\cdots\!37}{26\!\cdots\!08}a^{26}-\frac{42\!\cdots\!85}{89\!\cdots\!36}a^{25}-\frac{11\!\cdots\!05}{16\!\cdots\!13}a^{24}+\frac{22\!\cdots\!75}{89\!\cdots\!36}a^{23}-\frac{32\!\cdots\!19}{89\!\cdots\!36}a^{22}+\frac{21\!\cdots\!79}{89\!\cdots\!36}a^{21}-\frac{23\!\cdots\!97}{89\!\cdots\!36}a^{20}-\frac{68\!\cdots\!25}{44\!\cdots\!68}a^{19}+\frac{17\!\cdots\!61}{13\!\cdots\!04}a^{18}+\frac{66\!\cdots\!87}{13\!\cdots\!04}a^{17}+\frac{34\!\cdots\!27}{26\!\cdots\!08}a^{16}-\frac{30\!\cdots\!91}{44\!\cdots\!68}a^{15}-\frac{39\!\cdots\!23}{44\!\cdots\!68}a^{14}-\frac{10\!\cdots\!75}{13\!\cdots\!04}a^{13}+\frac{12\!\cdots\!21}{13\!\cdots\!04}a^{12}-\frac{75\!\cdots\!05}{89\!\cdots\!36}a^{11}+\frac{36\!\cdots\!53}{26\!\cdots\!08}a^{10}-\frac{78\!\cdots\!39}{26\!\cdots\!08}a^{9}-\frac{19\!\cdots\!27}{13\!\cdots\!04}a^{8}+\frac{21\!\cdots\!97}{26\!\cdots\!08}a^{7}-\frac{15\!\cdots\!73}{26\!\cdots\!08}a^{6}+\frac{51\!\cdots\!15}{89\!\cdots\!36}a^{5}-\frac{11\!\cdots\!75}{26\!\cdots\!08}a^{4}-\frac{21\!\cdots\!15}{33\!\cdots\!26}a^{3}-\frac{90\!\cdots\!35}{22\!\cdots\!84}a^{2}-\frac{10\!\cdots\!25}{33\!\cdots\!26}a-\frac{97\!\cdots\!87}{89\!\cdots\!36}$, $\frac{22\!\cdots\!65}{40\!\cdots\!12}a^{27}+\frac{67\!\cdots\!79}{13\!\cdots\!04}a^{26}-\frac{39\!\cdots\!35}{26\!\cdots\!08}a^{25}+\frac{46\!\cdots\!19}{13\!\cdots\!04}a^{24}+\frac{25\!\cdots\!81}{44\!\cdots\!68}a^{23}-\frac{90\!\cdots\!07}{66\!\cdots\!52}a^{22}+\frac{32\!\cdots\!15}{66\!\cdots\!52}a^{21}-\frac{70\!\cdots\!31}{66\!\cdots\!52}a^{20}-\frac{10\!\cdots\!73}{66\!\cdots\!52}a^{19}+\frac{82\!\cdots\!97}{13\!\cdots\!04}a^{18}-\frac{11\!\cdots\!57}{26\!\cdots\!08}a^{17}+\frac{41\!\cdots\!79}{22\!\cdots\!84}a^{16}-\frac{28\!\cdots\!97}{66\!\cdots\!52}a^{15}+\frac{15\!\cdots\!09}{11\!\cdots\!42}a^{14}-\frac{20\!\cdots\!01}{22\!\cdots\!84}a^{13}+\frac{22\!\cdots\!75}{66\!\cdots\!52}a^{12}-\frac{43\!\cdots\!23}{13\!\cdots\!04}a^{11}+\frac{10\!\cdots\!95}{44\!\cdots\!68}a^{10}-\frac{59\!\cdots\!35}{89\!\cdots\!36}a^{9}+\frac{10\!\cdots\!85}{13\!\cdots\!04}a^{8}+\frac{28\!\cdots\!15}{13\!\cdots\!04}a^{7}-\frac{47\!\cdots\!37}{66\!\cdots\!52}a^{6}+\frac{27\!\cdots\!97}{55\!\cdots\!71}a^{5}-\frac{32\!\cdots\!17}{16\!\cdots\!13}a^{4}-\frac{16\!\cdots\!90}{16\!\cdots\!13}a^{3}+\frac{33\!\cdots\!19}{13\!\cdots\!04}a^{2}+\frac{27\!\cdots\!57}{26\!\cdots\!08}a-\frac{11\!\cdots\!89}{20\!\cdots\!56}$, $\frac{23\!\cdots\!81}{44\!\cdots\!68}a^{27}+\frac{48\!\cdots\!77}{11\!\cdots\!42}a^{26}-\frac{24\!\cdots\!27}{22\!\cdots\!84}a^{25}-\frac{61\!\cdots\!19}{26\!\cdots\!08}a^{24}+\frac{79\!\cdots\!39}{16\!\cdots\!13}a^{23}-\frac{63\!\cdots\!35}{66\!\cdots\!52}a^{22}+\frac{18\!\cdots\!25}{44\!\cdots\!68}a^{21}-\frac{50\!\cdots\!35}{66\!\cdots\!52}a^{20}-\frac{23\!\cdots\!97}{13\!\cdots\!04}a^{19}+\frac{29\!\cdots\!83}{66\!\cdots\!52}a^{18}-\frac{22\!\cdots\!25}{13\!\cdots\!04}a^{17}+\frac{47\!\cdots\!73}{26\!\cdots\!08}a^{16}-\frac{16\!\cdots\!60}{55\!\cdots\!71}a^{15}+\frac{87\!\cdots\!69}{66\!\cdots\!52}a^{14}-\frac{54\!\cdots\!41}{55\!\cdots\!71}a^{13}+\frac{16\!\cdots\!55}{66\!\cdots\!52}a^{12}-\frac{22\!\cdots\!17}{13\!\cdots\!04}a^{11}+\frac{13\!\cdots\!05}{66\!\cdots\!52}a^{10}-\frac{40\!\cdots\!15}{66\!\cdots\!52}a^{9}+\frac{12\!\cdots\!47}{26\!\cdots\!08}a^{8}+\frac{20\!\cdots\!18}{16\!\cdots\!13}a^{7}-\frac{11\!\cdots\!33}{33\!\cdots\!26}a^{6}+\frac{23\!\cdots\!09}{13\!\cdots\!04}a^{5}-\frac{70\!\cdots\!65}{16\!\cdots\!13}a^{4}+\frac{85\!\cdots\!05}{13\!\cdots\!04}a^{3}+\frac{24\!\cdots\!35}{11\!\cdots\!42}a^{2}+\frac{75\!\cdots\!17}{13\!\cdots\!04}a-\frac{61\!\cdots\!49}{26\!\cdots\!08}$, $\frac{73\!\cdots\!97}{40\!\cdots\!12}a^{27}+\frac{30\!\cdots\!15}{22\!\cdots\!84}a^{26}-\frac{17\!\cdots\!15}{66\!\cdots\!52}a^{25}-\frac{50\!\cdots\!85}{13\!\cdots\!04}a^{24}+\frac{13\!\cdots\!47}{89\!\cdots\!36}a^{23}-\frac{51\!\cdots\!63}{26\!\cdots\!08}a^{22}+\frac{10\!\cdots\!79}{89\!\cdots\!36}a^{21}-\frac{40\!\cdots\!25}{26\!\cdots\!08}a^{20}-\frac{22\!\cdots\!69}{26\!\cdots\!08}a^{19}+\frac{25\!\cdots\!35}{26\!\cdots\!08}a^{18}+\frac{15\!\cdots\!81}{26\!\cdots\!08}a^{17}+\frac{16\!\cdots\!07}{26\!\cdots\!08}a^{16}-\frac{71\!\cdots\!03}{13\!\cdots\!04}a^{15}-\frac{10\!\cdots\!89}{13\!\cdots\!04}a^{14}-\frac{48\!\cdots\!91}{13\!\cdots\!04}a^{13}+\frac{26\!\cdots\!01}{44\!\cdots\!68}a^{12}+\frac{67\!\cdots\!99}{66\!\cdots\!52}a^{11}+\frac{15\!\cdots\!99}{44\!\cdots\!68}a^{10}-\frac{72\!\cdots\!65}{44\!\cdots\!68}a^{9}-\frac{13\!\cdots\!39}{33\!\cdots\!26}a^{8}+\frac{13\!\cdots\!95}{89\!\cdots\!36}a^{7}-\frac{43\!\cdots\!37}{89\!\cdots\!36}a^{6}-\frac{23\!\cdots\!23}{26\!\cdots\!08}a^{5}+\frac{28\!\cdots\!83}{26\!\cdots\!08}a^{4}-\frac{52\!\cdots\!47}{89\!\cdots\!36}a^{3}-\frac{35\!\cdots\!21}{26\!\cdots\!08}a^{2}-\frac{30\!\cdots\!59}{26\!\cdots\!08}a+\frac{81\!\cdots\!17}{80\!\cdots\!24}$, $\frac{18\!\cdots\!83}{89\!\cdots\!36}a^{27}-\frac{26\!\cdots\!45}{89\!\cdots\!36}a^{26}+\frac{87\!\cdots\!07}{66\!\cdots\!52}a^{25}-\frac{17\!\cdots\!41}{13\!\cdots\!04}a^{24}-\frac{20\!\cdots\!25}{44\!\cdots\!68}a^{23}+\frac{77\!\cdots\!65}{66\!\cdots\!52}a^{22}-\frac{17\!\cdots\!01}{66\!\cdots\!52}a^{21}+\frac{14\!\cdots\!57}{13\!\cdots\!04}a^{20}+\frac{13\!\cdots\!75}{89\!\cdots\!36}a^{19}-\frac{19\!\cdots\!39}{26\!\cdots\!08}a^{18}+\frac{48\!\cdots\!65}{13\!\cdots\!04}a^{17}-\frac{24\!\cdots\!63}{66\!\cdots\!52}a^{16}+\frac{39\!\cdots\!49}{66\!\cdots\!52}a^{15}-\frac{85\!\cdots\!13}{66\!\cdots\!52}a^{14}+\frac{43\!\cdots\!05}{33\!\cdots\!26}a^{13}-\frac{26\!\cdots\!17}{66\!\cdots\!52}a^{12}+\frac{85\!\cdots\!83}{26\!\cdots\!08}a^{11}-\frac{27\!\cdots\!75}{89\!\cdots\!36}a^{10}+\frac{12\!\cdots\!16}{16\!\cdots\!13}a^{9}-\frac{15\!\cdots\!21}{13\!\cdots\!04}a^{8}-\frac{44\!\cdots\!99}{13\!\cdots\!04}a^{7}+\frac{10\!\cdots\!43}{33\!\cdots\!26}a^{6}+\frac{10\!\cdots\!73}{66\!\cdots\!52}a^{5}+\frac{87\!\cdots\!05}{13\!\cdots\!04}a^{4}-\frac{15\!\cdots\!97}{26\!\cdots\!08}a^{3}-\frac{35\!\cdots\!71}{89\!\cdots\!36}a^{2}+\frac{34\!\cdots\!31}{44\!\cdots\!68}a-\frac{10\!\cdots\!81}{33\!\cdots\!26}$, $\frac{34\!\cdots\!89}{26\!\cdots\!08}a^{27}+\frac{64\!\cdots\!61}{13\!\cdots\!04}a^{26}-\frac{99\!\cdots\!69}{22\!\cdots\!84}a^{25}+\frac{48\!\cdots\!57}{44\!\cdots\!68}a^{24}+\frac{21\!\cdots\!85}{44\!\cdots\!68}a^{23}-\frac{64\!\cdots\!83}{13\!\cdots\!04}a^{22}+\frac{34\!\cdots\!27}{44\!\cdots\!68}a^{21}-\frac{14\!\cdots\!51}{33\!\cdots\!26}a^{20}+\frac{20\!\cdots\!31}{26\!\cdots\!08}a^{19}+\frac{28\!\cdots\!15}{13\!\cdots\!04}a^{18}-\frac{53\!\cdots\!33}{13\!\cdots\!04}a^{17}+\frac{30\!\cdots\!71}{66\!\cdots\!52}a^{16}-\frac{66\!\cdots\!15}{33\!\cdots\!26}a^{15}+\frac{60\!\cdots\!09}{22\!\cdots\!84}a^{14}+\frac{18\!\cdots\!42}{16\!\cdots\!13}a^{13}+\frac{19\!\cdots\!35}{16\!\cdots\!13}a^{12}-\frac{21\!\cdots\!83}{89\!\cdots\!36}a^{11}+\frac{14\!\cdots\!75}{13\!\cdots\!04}a^{10}-\frac{13\!\cdots\!55}{66\!\cdots\!52}a^{9}+\frac{28\!\cdots\!13}{44\!\cdots\!68}a^{8}-\frac{45\!\cdots\!83}{13\!\cdots\!04}a^{7}-\frac{23\!\cdots\!63}{13\!\cdots\!04}a^{6}+\frac{73\!\cdots\!21}{44\!\cdots\!68}a^{5}-\frac{35\!\cdots\!41}{33\!\cdots\!26}a^{4}+\frac{21\!\cdots\!13}{26\!\cdots\!08}a^{3}-\frac{34\!\cdots\!99}{13\!\cdots\!04}a^{2}+\frac{16\!\cdots\!51}{44\!\cdots\!68}a-\frac{78\!\cdots\!05}{16\!\cdots\!13}$, $\frac{25\!\cdots\!47}{40\!\cdots\!12}a^{27}-\frac{72\!\cdots\!93}{13\!\cdots\!04}a^{26}+\frac{85\!\cdots\!29}{66\!\cdots\!52}a^{25}+\frac{89\!\cdots\!73}{66\!\cdots\!52}a^{24}-\frac{23\!\cdots\!97}{26\!\cdots\!08}a^{23}+\frac{87\!\cdots\!39}{89\!\cdots\!36}a^{22}-\frac{10\!\cdots\!53}{26\!\cdots\!08}a^{21}+\frac{21\!\cdots\!43}{26\!\cdots\!08}a^{20}+\frac{84\!\cdots\!83}{26\!\cdots\!08}a^{19}-\frac{66\!\cdots\!21}{89\!\cdots\!36}a^{18}-\frac{36\!\cdots\!05}{89\!\cdots\!36}a^{17}-\frac{29\!\cdots\!07}{26\!\cdots\!08}a^{16}+\frac{58\!\cdots\!81}{13\!\cdots\!04}a^{15}+\frac{63\!\cdots\!11}{13\!\cdots\!04}a^{14}+\frac{23\!\cdots\!81}{44\!\cdots\!68}a^{13}-\frac{52\!\cdots\!19}{13\!\cdots\!04}a^{12}-\frac{28\!\cdots\!28}{55\!\cdots\!71}a^{11}+\frac{12\!\cdots\!29}{33\!\cdots\!26}a^{10}+\frac{97\!\cdots\!97}{13\!\cdots\!04}a^{9}-\frac{55\!\cdots\!21}{13\!\cdots\!04}a^{8}-\frac{46\!\cdots\!21}{26\!\cdots\!08}a^{7}+\frac{23\!\cdots\!25}{26\!\cdots\!08}a^{6}+\frac{97\!\cdots\!25}{89\!\cdots\!36}a^{5}-\frac{45\!\cdots\!47}{89\!\cdots\!36}a^{4}-\frac{74\!\cdots\!33}{26\!\cdots\!08}a^{3}+\frac{18\!\cdots\!97}{26\!\cdots\!08}a^{2}+\frac{14\!\cdots\!73}{26\!\cdots\!08}a+\frac{57\!\cdots\!51}{80\!\cdots\!24}$, $\frac{71\!\cdots\!89}{80\!\cdots\!24}a^{27}-\frac{18\!\cdots\!43}{26\!\cdots\!08}a^{26}+\frac{40\!\cdots\!99}{26\!\cdots\!08}a^{25}+\frac{61\!\cdots\!55}{44\!\cdots\!68}a^{24}-\frac{17\!\cdots\!11}{22\!\cdots\!84}a^{23}+\frac{39\!\cdots\!59}{33\!\cdots\!26}a^{22}-\frac{69\!\cdots\!79}{11\!\cdots\!42}a^{21}+\frac{42\!\cdots\!05}{44\!\cdots\!68}a^{20}+\frac{33\!\cdots\!45}{89\!\cdots\!36}a^{19}-\frac{15\!\cdots\!45}{26\!\cdots\!08}a^{18}-\frac{12\!\cdots\!13}{89\!\cdots\!36}a^{17}-\frac{33\!\cdots\!71}{11\!\cdots\!42}a^{16}+\frac{82\!\cdots\!49}{22\!\cdots\!84}a^{15}+\frac{19\!\cdots\!33}{66\!\cdots\!52}a^{14}+\frac{11\!\cdots\!05}{66\!\cdots\!52}a^{13}-\frac{11\!\cdots\!85}{33\!\cdots\!26}a^{12}+\frac{43\!\cdots\!83}{89\!\cdots\!36}a^{11}-\frac{18\!\cdots\!71}{89\!\cdots\!36}a^{10}+\frac{24\!\cdots\!33}{26\!\cdots\!08}a^{9}-\frac{35\!\cdots\!49}{13\!\cdots\!04}a^{8}-\frac{10\!\cdots\!65}{16\!\cdots\!13}a^{7}+\frac{63\!\cdots\!23}{22\!\cdots\!84}a^{6}+\frac{89\!\cdots\!77}{66\!\cdots\!52}a^{5}+\frac{27\!\cdots\!99}{44\!\cdots\!68}a^{4}-\frac{25\!\cdots\!43}{26\!\cdots\!08}a^{3}-\frac{19\!\cdots\!97}{89\!\cdots\!36}a^{2}+\frac{45\!\cdots\!77}{89\!\cdots\!36}a+\frac{36\!\cdots\!05}{10\!\cdots\!78}$, $\frac{66\!\cdots\!43}{26\!\cdots\!08}a^{27}-\frac{68\!\cdots\!61}{26\!\cdots\!08}a^{26}+\frac{79\!\cdots\!15}{89\!\cdots\!36}a^{25}-\frac{41\!\cdots\!09}{66\!\cdots\!52}a^{24}-\frac{84\!\cdots\!59}{26\!\cdots\!08}a^{23}+\frac{22\!\cdots\!73}{26\!\cdots\!08}a^{22}-\frac{67\!\cdots\!77}{26\!\cdots\!08}a^{21}+\frac{18\!\cdots\!15}{26\!\cdots\!08}a^{20}+\frac{27\!\cdots\!81}{66\!\cdots\!52}a^{19}-\frac{18\!\cdots\!95}{44\!\cdots\!68}a^{18}+\frac{11\!\cdots\!63}{33\!\cdots\!26}a^{17}-\frac{19\!\cdots\!47}{26\!\cdots\!08}a^{16}+\frac{41\!\cdots\!85}{13\!\cdots\!04}a^{15}-\frac{20\!\cdots\!97}{13\!\cdots\!04}a^{14}+\frac{13\!\cdots\!29}{44\!\cdots\!68}a^{13}-\frac{29\!\cdots\!21}{13\!\cdots\!04}a^{12}+\frac{21\!\cdots\!01}{89\!\cdots\!36}a^{11}-\frac{25\!\cdots\!13}{26\!\cdots\!08}a^{10}+\frac{36\!\cdots\!03}{89\!\cdots\!36}a^{9}-\frac{30\!\cdots\!21}{44\!\cdots\!68}a^{8}-\frac{13\!\cdots\!83}{26\!\cdots\!08}a^{7}+\frac{12\!\cdots\!25}{26\!\cdots\!08}a^{6}-\frac{18\!\cdots\!47}{89\!\cdots\!36}a^{5}+\frac{26\!\cdots\!75}{26\!\cdots\!08}a^{4}+\frac{26\!\cdots\!09}{13\!\cdots\!04}a^{3}-\frac{14\!\cdots\!83}{33\!\cdots\!26}a^{2}-\frac{73\!\cdots\!69}{44\!\cdots\!68}a+\frac{20\!\cdots\!33}{26\!\cdots\!08}$, $\frac{21\!\cdots\!19}{89\!\cdots\!36}a^{27}-\frac{50\!\cdots\!83}{26\!\cdots\!08}a^{26}+\frac{64\!\cdots\!98}{16\!\cdots\!13}a^{25}+\frac{36\!\cdots\!07}{89\!\cdots\!36}a^{24}-\frac{18\!\cdots\!99}{89\!\cdots\!36}a^{23}+\frac{78\!\cdots\!63}{26\!\cdots\!08}a^{22}-\frac{15\!\cdots\!57}{89\!\cdots\!36}a^{21}+\frac{64\!\cdots\!37}{26\!\cdots\!08}a^{20}+\frac{69\!\cdots\!49}{66\!\cdots\!52}a^{19}-\frac{46\!\cdots\!05}{33\!\cdots\!26}a^{18}-\frac{40\!\cdots\!49}{89\!\cdots\!36}a^{17}-\frac{11\!\cdots\!95}{13\!\cdots\!04}a^{16}+\frac{11\!\cdots\!33}{13\!\cdots\!04}a^{15}+\frac{34\!\cdots\!11}{44\!\cdots\!68}a^{14}+\frac{67\!\cdots\!59}{13\!\cdots\!04}a^{13}-\frac{11\!\cdots\!27}{13\!\cdots\!04}a^{12}+\frac{22\!\cdots\!73}{26\!\cdots\!08}a^{11}-\frac{18\!\cdots\!95}{26\!\cdots\!08}a^{10}+\frac{33\!\cdots\!33}{13\!\cdots\!04}a^{9}-\frac{14\!\cdots\!15}{26\!\cdots\!08}a^{8}-\frac{12\!\cdots\!23}{89\!\cdots\!36}a^{7}+\frac{91\!\cdots\!63}{26\!\cdots\!08}a^{6}+\frac{13\!\cdots\!83}{89\!\cdots\!36}a^{5}+\frac{63\!\cdots\!53}{26\!\cdots\!08}a^{4}-\frac{23\!\cdots\!83}{13\!\cdots\!04}a^{3}+\frac{13\!\cdots\!21}{44\!\cdots\!68}a^{2}+\frac{68\!\cdots\!63}{89\!\cdots\!36}a-\frac{59\!\cdots\!15}{66\!\cdots\!52}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 7222992276658.049 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{12}\cdot 7222992276658.049 \cdot 1}{2\cdot\sqrt{6026982035903235126420911997783559113692676096}}\cr\approx \mathstrut & 2.81783532520035 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 8*x^27 + 18*x^26 + 12*x^25 - 87*x^24 + 144*x^23 - 732*x^22 + 1176*x^21 + 3933*x^20 - 6888*x^19 + 6*x^18 - 34092*x^17 + 44853*x^16 + 20832*x^15 + 197496*x^14 - 417264*x^13 + 142635*x^12 - 309816*x^11 + 1085166*x^10 - 484812*x^9 - 488061*x^8 + 335568*x^7 - 99996*x^6 + 94104*x^5 - 24537*x^4 - 6168*x^3 + 666*x^2 - 788*x - 977)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 8*x^27 + 18*x^26 + 12*x^25 - 87*x^24 + 144*x^23 - 732*x^22 + 1176*x^21 + 3933*x^20 - 6888*x^19 + 6*x^18 - 34092*x^17 + 44853*x^16 + 20832*x^15 + 197496*x^14 - 417264*x^13 + 142635*x^12 - 309816*x^11 + 1085166*x^10 - 484812*x^9 - 488061*x^8 + 335568*x^7 - 99996*x^6 + 94104*x^5 - 24537*x^4 - 6168*x^3 + 666*x^2 - 788*x - 977, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 8*x^27 + 18*x^26 + 12*x^25 - 87*x^24 + 144*x^23 - 732*x^22 + 1176*x^21 + 3933*x^20 - 6888*x^19 + 6*x^18 - 34092*x^17 + 44853*x^16 + 20832*x^15 + 197496*x^14 - 417264*x^13 + 142635*x^12 - 309816*x^11 + 1085166*x^10 - 484812*x^9 - 488061*x^8 + 335568*x^7 - 99996*x^6 + 94104*x^5 - 24537*x^4 - 6168*x^3 + 666*x^2 - 788*x - 977);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 8*x^27 + 18*x^26 + 12*x^25 - 87*x^24 + 144*x^23 - 732*x^22 + 1176*x^21 + 3933*x^20 - 6888*x^19 + 6*x^18 - 34092*x^17 + 44853*x^16 + 20832*x^15 + 197496*x^14 - 417264*x^13 + 142635*x^12 - 309816*x^11 + 1085166*x^10 - 484812*x^9 - 488061*x^8 + 335568*x^7 - 99996*x^6 + 94104*x^5 - 24537*x^4 - 6168*x^3 + 666*x^2 - 788*x - 977);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$G(2,2)$ (as 28T393):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 12096
The 16 conjugacy class representatives for $G(2,2)$
Character table for $G(2,2)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.3.0.1}{3} }^{9}{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.12.0.1}{12} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.6.0.1}{6} }^{4}{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.12.0.1}{12} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.7.0.1}{7} }^{4}$ ${\href{/padicField/19.12.0.1}{12} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.8.0.1}{8} }^{3}{,}\,{\href{/padicField/23.4.0.1}{4} }$ ${\href{/padicField/29.12.0.1}{12} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.12.0.1}{12} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.7.0.1}{7} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{6}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }^{4}{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.6.0.1}{6} }^{4}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.8.0.1}{8} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.12.0.1}{12} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.8.8$x^{4} + 4 x + 2$$4$$1$$8$$S_4$$[8/3, 8/3]_{3}^{2}$
Deg $24$$24$$1$$68$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $27$$27$$1$$48$