Properties

Label 28.4.669...344.1
Degree $28$
Signature $[4, 12]$
Discriminant $6.697\times 10^{44}$
Root discriminant \(39.90\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $G(2,2)$ (as 28T393)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 4*x^27 + 12*x^25 + 12*x^24 - 264*x^22 + 336*x^21 + 387*x^20 + 396*x^19 - 2016*x^18 - 3780*x^17 + 3330*x^16 + 13104*x^15 - 1728*x^14 - 6192*x^13 - 28233*x^12 + 3780*x^11 + 27216*x^10 + 3348*x^9 - 17496*x^8 + 68688*x^7 - 71064*x^6 + 95904*x^5 - 36315*x^4 - 118476*x^3 + 123120*x^2 - 14364*x - 41526)
 
gp: K = bnfinit(y^28 - 4*y^27 + 12*y^25 + 12*y^24 - 264*y^22 + 336*y^21 + 387*y^20 + 396*y^19 - 2016*y^18 - 3780*y^17 + 3330*y^16 + 13104*y^15 - 1728*y^14 - 6192*y^13 - 28233*y^12 + 3780*y^11 + 27216*y^10 + 3348*y^9 - 17496*y^8 + 68688*y^7 - 71064*y^6 + 95904*y^5 - 36315*y^4 - 118476*y^3 + 123120*y^2 - 14364*y - 41526, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 4*x^27 + 12*x^25 + 12*x^24 - 264*x^22 + 336*x^21 + 387*x^20 + 396*x^19 - 2016*x^18 - 3780*x^17 + 3330*x^16 + 13104*x^15 - 1728*x^14 - 6192*x^13 - 28233*x^12 + 3780*x^11 + 27216*x^10 + 3348*x^9 - 17496*x^8 + 68688*x^7 - 71064*x^6 + 95904*x^5 - 36315*x^4 - 118476*x^3 + 123120*x^2 - 14364*x - 41526);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 4*x^27 + 12*x^25 + 12*x^24 - 264*x^22 + 336*x^21 + 387*x^20 + 396*x^19 - 2016*x^18 - 3780*x^17 + 3330*x^16 + 13104*x^15 - 1728*x^14 - 6192*x^13 - 28233*x^12 + 3780*x^11 + 27216*x^10 + 3348*x^9 - 17496*x^8 + 68688*x^7 - 71064*x^6 + 95904*x^5 - 36315*x^4 - 118476*x^3 + 123120*x^2 - 14364*x - 41526)
 

\( x^{28} - 4 x^{27} + 12 x^{25} + 12 x^{24} - 264 x^{22} + 336 x^{21} + 387 x^{20} + 396 x^{19} + \cdots - 41526 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(669664670655915014046767999753728790410297344\) \(\medspace = 2^{76}\cdot 3^{46}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(39.90\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{6}a^{10}-\frac{1}{6}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}$, $\frac{1}{6}a^{11}-\frac{1}{6}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}$, $\frac{1}{6}a^{12}-\frac{1}{6}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}$, $\frac{1}{6}a^{13}-\frac{1}{6}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{12}a^{14}-\frac{1}{12}a^{12}-\frac{1}{4}a^{6}+\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{12}a^{15}-\frac{1}{12}a^{13}-\frac{1}{4}a^{7}+\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{12}a^{16}-\frac{1}{12}a^{12}-\frac{1}{4}a^{8}-\frac{1}{4}a^{4}-\frac{1}{2}$, $\frac{1}{36}a^{17}-\frac{1}{36}a^{16}-\frac{1}{12}a^{13}-\frac{1}{12}a^{12}-\frac{1}{4}a^{9}-\frac{1}{12}a^{8}+\frac{1}{3}a^{7}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{36}a^{18}-\frac{1}{36}a^{16}-\frac{1}{12}a^{10}+\frac{1}{6}a^{9}+\frac{1}{4}a^{8}+\frac{1}{3}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}$, $\frac{1}{72}a^{19}-\frac{1}{72}a^{18}-\frac{1}{72}a^{17}+\frac{1}{72}a^{16}-\frac{1}{24}a^{15}-\frac{1}{24}a^{14}+\frac{1}{24}a^{13}+\frac{1}{24}a^{12}-\frac{1}{24}a^{11}+\frac{1}{24}a^{10}-\frac{1}{8}a^{9}-\frac{5}{24}a^{8}-\frac{7}{24}a^{7}+\frac{3}{8}a^{6}-\frac{3}{8}a^{5}-\frac{3}{8}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{72}a^{20}+\frac{1}{36}a^{16}-\frac{1}{12}a^{12}+\frac{1}{6}a^{9}+\frac{1}{6}a^{7}+\frac{1}{8}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{72}a^{21}+\frac{1}{36}a^{16}-\frac{1}{12}a^{12}+\frac{1}{12}a^{9}+\frac{1}{4}a^{8}-\frac{1}{3}a^{7}-\frac{1}{2}a^{6}+\frac{3}{8}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{72}a^{22}+\frac{1}{36}a^{16}-\frac{1}{12}a^{12}-\frac{1}{12}a^{10}-\frac{1}{6}a^{9}+\frac{1}{4}a^{8}+\frac{1}{6}a^{7}-\frac{1}{8}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{72}a^{23}+\frac{1}{36}a^{16}-\frac{1}{12}a^{12}-\frac{1}{12}a^{11}+\frac{1}{4}a^{8}-\frac{11}{24}a^{7}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}$, $\frac{1}{432}a^{24}+\frac{1}{216}a^{23}-\frac{1}{144}a^{20}+\frac{1}{36}a^{16}+\frac{1}{36}a^{15}-\frac{1}{36}a^{14}-\frac{1}{12}a^{13}+\frac{1}{24}a^{12}-\frac{1}{4}a^{9}+\frac{7}{16}a^{8}-\frac{11}{24}a^{7}+\frac{1}{12}a^{6}+\frac{5}{12}a^{5}+\frac{3}{16}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}a+\frac{1}{8}$, $\frac{1}{12528}a^{25}-\frac{1}{1044}a^{24}-\frac{11}{6264}a^{23}-\frac{1}{232}a^{22}-\frac{1}{4176}a^{21}-\frac{1}{261}a^{20}+\frac{1}{261}a^{19}-\frac{1}{522}a^{18}-\frac{5}{1044}a^{17}+\frac{7}{261}a^{16}-\frac{2}{87}a^{15}+\frac{5}{261}a^{14}-\frac{41}{696}a^{13}+\frac{23}{348}a^{12}+\frac{9}{116}a^{11}+\frac{1}{174}a^{10}+\frac{125}{1392}a^{9}-\frac{139}{348}a^{8}+\frac{227}{696}a^{7}+\frac{113}{232}a^{6}+\frac{101}{1392}a^{5}+\frac{49}{116}a^{4}-\frac{25}{116}a^{3}+\frac{8}{29}a^{2}+\frac{93}{232}a-\frac{4}{29}$, $\frac{1}{363312}a^{26}+\frac{5}{181656}a^{25}+\frac{91}{363312}a^{24}+\frac{413}{60552}a^{23}-\frac{571}{121104}a^{22}+\frac{155}{60552}a^{21}+\frac{91}{40368}a^{20}+\frac{259}{60552}a^{19}-\frac{475}{60552}a^{18}-\frac{773}{60552}a^{17}-\frac{1339}{60552}a^{16}-\frac{1}{60552}a^{15}-\frac{47}{2523}a^{14}-\frac{595}{20184}a^{13}-\frac{47}{10092}a^{12}+\frac{583}{20184}a^{11}-\frac{383}{13456}a^{10}-\frac{115}{841}a^{9}+\frac{4107}{13456}a^{8}+\frac{2225}{5046}a^{7}-\frac{11663}{40368}a^{6}-\frac{573}{3364}a^{5}-\frac{2893}{13456}a^{4}-\frac{231}{841}a^{3}+\frac{3125}{6728}a^{2}-\frac{385}{3364}a+\frac{1529}{6728}$, $\frac{1}{14\!\cdots\!52}a^{27}-\frac{26\!\cdots\!63}{73\!\cdots\!76}a^{26}+\frac{42\!\cdots\!05}{18\!\cdots\!94}a^{25}+\frac{99\!\cdots\!95}{91\!\cdots\!47}a^{24}+\frac{41\!\cdots\!19}{48\!\cdots\!84}a^{23}-\frac{22\!\cdots\!19}{40\!\cdots\!32}a^{22}-\frac{14\!\cdots\!59}{24\!\cdots\!92}a^{21}+\frac{20\!\cdots\!93}{12\!\cdots\!96}a^{20}+\frac{71\!\cdots\!57}{12\!\cdots\!96}a^{19}+\frac{21\!\cdots\!53}{21\!\cdots\!62}a^{18}-\frac{14\!\cdots\!57}{12\!\cdots\!96}a^{17}+\frac{57\!\cdots\!37}{30\!\cdots\!49}a^{16}-\frac{92\!\cdots\!25}{24\!\cdots\!92}a^{15}+\frac{14\!\cdots\!45}{40\!\cdots\!32}a^{14}-\frac{51\!\cdots\!02}{10\!\cdots\!83}a^{13}-\frac{22\!\cdots\!78}{10\!\cdots\!83}a^{12}+\frac{12\!\cdots\!89}{16\!\cdots\!28}a^{11}+\frac{17\!\cdots\!27}{28\!\cdots\!16}a^{10}-\frac{16\!\cdots\!85}{33\!\cdots\!61}a^{9}-\frac{23\!\cdots\!73}{10\!\cdots\!83}a^{8}-\frac{40\!\cdots\!11}{16\!\cdots\!28}a^{7}-\frac{16\!\cdots\!83}{20\!\cdots\!66}a^{6}-\frac{39\!\cdots\!25}{27\!\cdots\!88}a^{5}-\frac{87\!\cdots\!09}{13\!\cdots\!44}a^{4}+\frac{12\!\cdots\!53}{27\!\cdots\!88}a^{3}+\frac{25\!\cdots\!39}{67\!\cdots\!22}a^{2}-\frac{17\!\cdots\!37}{13\!\cdots\!44}a+\frac{13\!\cdots\!14}{33\!\cdots\!61}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{18\!\cdots\!05}{14\!\cdots\!52}a^{27}-\frac{29\!\cdots\!93}{73\!\cdots\!76}a^{26}-\frac{49\!\cdots\!21}{14\!\cdots\!52}a^{25}+\frac{23\!\cdots\!29}{18\!\cdots\!94}a^{24}+\frac{12\!\cdots\!09}{48\!\cdots\!84}a^{23}+\frac{33\!\cdots\!49}{20\!\cdots\!66}a^{22}-\frac{52\!\cdots\!07}{16\!\cdots\!28}a^{21}+\frac{22\!\cdots\!21}{12\!\cdots\!96}a^{20}+\frac{81\!\cdots\!91}{12\!\cdots\!96}a^{19}+\frac{10\!\cdots\!16}{10\!\cdots\!81}a^{18}-\frac{24\!\cdots\!89}{12\!\cdots\!96}a^{17}-\frac{24\!\cdots\!11}{40\!\cdots\!32}a^{16}-\frac{33\!\cdots\!25}{24\!\cdots\!92}a^{15}+\frac{11\!\cdots\!57}{67\!\cdots\!22}a^{14}+\frac{71\!\cdots\!87}{81\!\cdots\!64}a^{13}-\frac{16\!\cdots\!53}{40\!\cdots\!32}a^{12}-\frac{15\!\cdots\!61}{54\!\cdots\!76}a^{11}-\frac{32\!\cdots\!49}{28\!\cdots\!16}a^{10}+\frac{20\!\cdots\!03}{16\!\cdots\!28}a^{9}-\frac{32\!\cdots\!79}{40\!\cdots\!32}a^{8}-\frac{47\!\cdots\!73}{16\!\cdots\!28}a^{7}+\frac{10\!\cdots\!41}{10\!\cdots\!83}a^{6}+\frac{22\!\cdots\!03}{54\!\cdots\!76}a^{5}+\frac{40\!\cdots\!49}{67\!\cdots\!22}a^{4}+\frac{99\!\cdots\!11}{27\!\cdots\!88}a^{3}-\frac{81\!\cdots\!21}{13\!\cdots\!44}a^{2}+\frac{23\!\cdots\!49}{27\!\cdots\!88}a-\frac{13\!\cdots\!25}{33\!\cdots\!61}$, $\frac{84\!\cdots\!03}{73\!\cdots\!76}a^{27}+\frac{80\!\cdots\!15}{18\!\cdots\!94}a^{26}-\frac{18\!\cdots\!43}{16\!\cdots\!28}a^{25}-\frac{79\!\cdots\!61}{73\!\cdots\!76}a^{24}-\frac{54\!\cdots\!31}{36\!\cdots\!88}a^{23}-\frac{15\!\cdots\!21}{13\!\cdots\!44}a^{22}+\frac{47\!\cdots\!63}{16\!\cdots\!28}a^{21}-\frac{23\!\cdots\!95}{67\!\cdots\!22}a^{20}-\frac{81\!\cdots\!47}{27\!\cdots\!88}a^{19}-\frac{19\!\cdots\!99}{28\!\cdots\!16}a^{18}+\frac{50\!\cdots\!03}{27\!\cdots\!88}a^{17}+\frac{10\!\cdots\!07}{24\!\cdots\!92}a^{16}-\frac{42\!\cdots\!11}{24\!\cdots\!92}a^{15}-\frac{28\!\cdots\!43}{24\!\cdots\!92}a^{14}-\frac{56\!\cdots\!71}{67\!\cdots\!22}a^{13}-\frac{26\!\cdots\!13}{81\!\cdots\!64}a^{12}+\frac{11\!\cdots\!73}{40\!\cdots\!32}a^{11}+\frac{23\!\cdots\!51}{28\!\cdots\!16}a^{10}-\frac{11\!\cdots\!41}{16\!\cdots\!28}a^{9}+\frac{16\!\cdots\!99}{40\!\cdots\!32}a^{8}+\frac{81\!\cdots\!19}{81\!\cdots\!64}a^{7}-\frac{71\!\cdots\!85}{81\!\cdots\!64}a^{6}+\frac{11\!\cdots\!13}{16\!\cdots\!28}a^{5}-\frac{41\!\cdots\!33}{27\!\cdots\!88}a^{4}+\frac{73\!\cdots\!13}{13\!\cdots\!44}a^{3}+\frac{47\!\cdots\!01}{67\!\cdots\!22}a^{2}-\frac{30\!\cdots\!47}{27\!\cdots\!88}a+\frac{92\!\cdots\!57}{13\!\cdots\!44}$, $\frac{17\!\cdots\!93}{48\!\cdots\!84}a^{27}-\frac{16\!\cdots\!35}{16\!\cdots\!28}a^{26}-\frac{66\!\cdots\!81}{48\!\cdots\!84}a^{25}+\frac{43\!\cdots\!81}{12\!\cdots\!96}a^{24}+\frac{13\!\cdots\!69}{16\!\cdots\!28}a^{23}+\frac{36\!\cdots\!95}{48\!\cdots\!84}a^{22}-\frac{14\!\cdots\!51}{16\!\cdots\!28}a^{21}+\frac{46\!\cdots\!81}{24\!\cdots\!92}a^{20}+\frac{25\!\cdots\!73}{12\!\cdots\!96}a^{19}+\frac{32\!\cdots\!36}{10\!\cdots\!81}a^{18}-\frac{40\!\cdots\!34}{10\!\cdots\!83}a^{17}-\frac{23\!\cdots\!53}{12\!\cdots\!96}a^{16}-\frac{57\!\cdots\!31}{81\!\cdots\!64}a^{15}+\frac{12\!\cdots\!57}{27\!\cdots\!88}a^{14}+\frac{34\!\cdots\!83}{81\!\cdots\!64}a^{13}+\frac{42\!\cdots\!19}{40\!\cdots\!32}a^{12}-\frac{47\!\cdots\!23}{54\!\cdots\!76}a^{11}-\frac{59\!\cdots\!35}{56\!\cdots\!32}a^{10}+\frac{25\!\cdots\!61}{16\!\cdots\!28}a^{9}+\frac{68\!\cdots\!99}{13\!\cdots\!44}a^{8}+\frac{18\!\cdots\!53}{16\!\cdots\!28}a^{7}+\frac{12\!\cdots\!79}{54\!\cdots\!76}a^{6}-\frac{36\!\cdots\!65}{54\!\cdots\!76}a^{5}+\frac{44\!\cdots\!37}{27\!\cdots\!88}a^{4}+\frac{76\!\cdots\!23}{27\!\cdots\!88}a^{3}-\frac{88\!\cdots\!81}{27\!\cdots\!88}a^{2}+\frac{30\!\cdots\!97}{27\!\cdots\!88}a+\frac{10\!\cdots\!05}{13\!\cdots\!44}$, $\frac{21\!\cdots\!51}{73\!\cdots\!76}a^{27}+\frac{65\!\cdots\!23}{48\!\cdots\!84}a^{26}-\frac{59\!\cdots\!09}{73\!\cdots\!76}a^{25}-\frac{36\!\cdots\!03}{14\!\cdots\!52}a^{24}-\frac{50\!\cdots\!01}{18\!\cdots\!94}a^{23}-\frac{10\!\cdots\!35}{48\!\cdots\!84}a^{22}+\frac{19\!\cdots\!11}{24\!\cdots\!92}a^{21}-\frac{67\!\cdots\!95}{48\!\cdots\!84}a^{20}-\frac{33\!\cdots\!77}{60\!\cdots\!98}a^{19}-\frac{27\!\cdots\!09}{14\!\cdots\!56}a^{18}+\frac{68\!\cdots\!78}{10\!\cdots\!83}a^{17}+\frac{91\!\cdots\!57}{12\!\cdots\!96}a^{16}-\frac{63\!\cdots\!91}{60\!\cdots\!98}a^{15}-\frac{70\!\cdots\!05}{24\!\cdots\!92}a^{14}+\frac{38\!\cdots\!63}{40\!\cdots\!32}a^{13}-\frac{40\!\cdots\!71}{81\!\cdots\!64}a^{12}+\frac{77\!\cdots\!31}{81\!\cdots\!64}a^{11}-\frac{87\!\cdots\!13}{18\!\cdots\!44}a^{10}+\frac{12\!\cdots\!73}{81\!\cdots\!64}a^{9}-\frac{20\!\cdots\!69}{54\!\cdots\!76}a^{8}+\frac{10\!\cdots\!22}{10\!\cdots\!83}a^{7}-\frac{40\!\cdots\!33}{16\!\cdots\!28}a^{6}+\frac{22\!\cdots\!93}{81\!\cdots\!64}a^{5}-\frac{26\!\cdots\!87}{54\!\cdots\!76}a^{4}+\frac{17\!\cdots\!13}{33\!\cdots\!61}a^{3}-\frac{16\!\cdots\!53}{27\!\cdots\!88}a^{2}-\frac{73\!\cdots\!35}{33\!\cdots\!61}a+\frac{39\!\cdots\!43}{27\!\cdots\!88}$, $\frac{50\!\cdots\!05}{48\!\cdots\!84}a^{27}-\frac{51\!\cdots\!51}{73\!\cdots\!76}a^{26}+\frac{20\!\cdots\!59}{14\!\cdots\!52}a^{25}+\frac{92\!\cdots\!73}{73\!\cdots\!76}a^{24}-\frac{25\!\cdots\!75}{14\!\cdots\!52}a^{23}-\frac{21\!\cdots\!19}{12\!\cdots\!96}a^{22}-\frac{11\!\cdots\!97}{48\!\cdots\!84}a^{21}+\frac{27\!\cdots\!91}{24\!\cdots\!92}a^{20}-\frac{30\!\cdots\!87}{24\!\cdots\!92}a^{19}+\frac{28\!\cdots\!39}{93\!\cdots\!72}a^{18}-\frac{78\!\cdots\!31}{24\!\cdots\!92}a^{17}+\frac{10\!\cdots\!23}{24\!\cdots\!92}a^{16}+\frac{11\!\cdots\!21}{12\!\cdots\!96}a^{15}-\frac{80\!\cdots\!69}{24\!\cdots\!92}a^{14}-\frac{14\!\cdots\!15}{40\!\cdots\!32}a^{13}+\frac{17\!\cdots\!23}{81\!\cdots\!64}a^{12}-\frac{22\!\cdots\!35}{16\!\cdots\!28}a^{11}+\frac{14\!\cdots\!95}{14\!\cdots\!08}a^{10}-\frac{90\!\cdots\!75}{16\!\cdots\!28}a^{9}-\frac{51\!\cdots\!53}{13\!\cdots\!44}a^{8}-\frac{85\!\cdots\!57}{16\!\cdots\!28}a^{7}+\frac{10\!\cdots\!69}{81\!\cdots\!64}a^{6}-\frac{54\!\cdots\!01}{16\!\cdots\!28}a^{5}+\frac{34\!\cdots\!83}{67\!\cdots\!22}a^{4}-\frac{15\!\cdots\!17}{27\!\cdots\!88}a^{3}+\frac{32\!\cdots\!07}{67\!\cdots\!22}a^{2}-\frac{65\!\cdots\!21}{27\!\cdots\!88}a-\frac{58\!\cdots\!45}{33\!\cdots\!61}$, $\frac{23\!\cdots\!67}{14\!\cdots\!52}a^{27}+\frac{34\!\cdots\!85}{81\!\cdots\!64}a^{26}+\frac{42\!\cdots\!79}{73\!\cdots\!76}a^{25}-\frac{77\!\cdots\!59}{73\!\cdots\!76}a^{24}-\frac{20\!\cdots\!49}{48\!\cdots\!84}a^{23}-\frac{11\!\cdots\!79}{24\!\cdots\!92}a^{22}+\frac{11\!\cdots\!75}{30\!\cdots\!49}a^{21}-\frac{74\!\cdots\!81}{40\!\cdots\!32}a^{20}-\frac{17\!\cdots\!25}{24\!\cdots\!92}a^{19}-\frac{17\!\cdots\!75}{84\!\cdots\!48}a^{18}+\frac{14\!\cdots\!41}{81\!\cdots\!64}a^{17}+\frac{69\!\cdots\!17}{81\!\cdots\!64}a^{16}+\frac{18\!\cdots\!73}{30\!\cdots\!49}a^{15}-\frac{53\!\cdots\!17}{27\!\cdots\!88}a^{14}-\frac{70\!\cdots\!89}{27\!\cdots\!88}a^{13}-\frac{16\!\cdots\!19}{27\!\cdots\!88}a^{12}+\frac{28\!\cdots\!05}{54\!\cdots\!76}a^{11}+\frac{16\!\cdots\!12}{35\!\cdots\!27}a^{10}-\frac{21\!\cdots\!41}{13\!\cdots\!44}a^{9}-\frac{35\!\cdots\!87}{67\!\cdots\!22}a^{8}+\frac{62\!\cdots\!39}{16\!\cdots\!28}a^{7}-\frac{18\!\cdots\!51}{20\!\cdots\!66}a^{6}-\frac{25\!\cdots\!79}{27\!\cdots\!88}a^{5}-\frac{52\!\cdots\!43}{27\!\cdots\!88}a^{4}-\frac{17\!\cdots\!21}{27\!\cdots\!88}a^{3}+\frac{62\!\cdots\!99}{33\!\cdots\!61}a^{2}-\frac{22\!\cdots\!25}{13\!\cdots\!44}a-\frac{13\!\cdots\!65}{13\!\cdots\!44}$, $\frac{91\!\cdots\!29}{14\!\cdots\!52}a^{27}+\frac{12\!\cdots\!31}{14\!\cdots\!52}a^{26}-\frac{33\!\cdots\!01}{16\!\cdots\!28}a^{25}-\frac{18\!\cdots\!93}{14\!\cdots\!52}a^{24}+\frac{53\!\cdots\!11}{14\!\cdots\!52}a^{23}+\frac{17\!\cdots\!99}{16\!\cdots\!28}a^{22}+\frac{44\!\cdots\!69}{16\!\cdots\!28}a^{21}-\frac{27\!\cdots\!01}{16\!\cdots\!28}a^{20}+\frac{41\!\cdots\!19}{40\!\cdots\!32}a^{19}+\frac{26\!\cdots\!05}{21\!\cdots\!62}a^{18}+\frac{27\!\cdots\!29}{40\!\cdots\!32}a^{17}-\frac{74\!\cdots\!69}{12\!\cdots\!96}a^{16}-\frac{62\!\cdots\!13}{24\!\cdots\!92}a^{15}-\frac{29\!\cdots\!83}{24\!\cdots\!92}a^{14}+\frac{48\!\cdots\!87}{81\!\cdots\!64}a^{13}+\frac{31\!\cdots\!35}{81\!\cdots\!64}a^{12}+\frac{30\!\cdots\!45}{54\!\cdots\!76}a^{11}-\frac{90\!\cdots\!97}{56\!\cdots\!32}a^{10}-\frac{80\!\cdots\!49}{16\!\cdots\!28}a^{9}-\frac{36\!\cdots\!33}{16\!\cdots\!28}a^{8}+\frac{63\!\cdots\!87}{16\!\cdots\!28}a^{7}-\frac{20\!\cdots\!37}{16\!\cdots\!28}a^{6}+\frac{78\!\cdots\!97}{16\!\cdots\!28}a^{5}-\frac{14\!\cdots\!67}{54\!\cdots\!76}a^{4}+\frac{25\!\cdots\!55}{27\!\cdots\!88}a^{3}-\frac{89\!\cdots\!19}{27\!\cdots\!88}a^{2}+\frac{72\!\cdots\!03}{27\!\cdots\!88}a+\frac{60\!\cdots\!23}{27\!\cdots\!88}$, $\frac{12\!\cdots\!49}{24\!\cdots\!92}a^{27}+\frac{10\!\cdots\!39}{48\!\cdots\!84}a^{26}+\frac{11\!\cdots\!13}{14\!\cdots\!52}a^{25}-\frac{83\!\cdots\!05}{14\!\cdots\!52}a^{24}-\frac{55\!\cdots\!57}{73\!\cdots\!76}a^{23}-\frac{26\!\cdots\!53}{16\!\cdots\!28}a^{22}+\frac{68\!\cdots\!85}{48\!\cdots\!84}a^{21}-\frac{80\!\cdots\!15}{48\!\cdots\!84}a^{20}-\frac{23\!\cdots\!67}{12\!\cdots\!96}a^{19}-\frac{31\!\cdots\!92}{10\!\cdots\!81}a^{18}+\frac{33\!\cdots\!82}{30\!\cdots\!49}a^{17}+\frac{25\!\cdots\!49}{12\!\cdots\!96}a^{16}-\frac{17\!\cdots\!63}{12\!\cdots\!96}a^{15}-\frac{16\!\cdots\!97}{24\!\cdots\!92}a^{14}+\frac{15\!\cdots\!89}{81\!\cdots\!64}a^{13}+\frac{25\!\cdots\!47}{81\!\cdots\!64}a^{12}+\frac{13\!\cdots\!07}{81\!\cdots\!64}a^{11}-\frac{84\!\cdots\!31}{19\!\cdots\!08}a^{10}-\frac{19\!\cdots\!47}{16\!\cdots\!28}a^{9}-\frac{73\!\cdots\!25}{16\!\cdots\!28}a^{8}+\frac{32\!\cdots\!69}{27\!\cdots\!88}a^{7}-\frac{61\!\cdots\!81}{16\!\cdots\!28}a^{6}+\frac{46\!\cdots\!15}{16\!\cdots\!28}a^{5}-\frac{29\!\cdots\!83}{54\!\cdots\!76}a^{4}+\frac{60\!\cdots\!57}{13\!\cdots\!44}a^{3}+\frac{56\!\cdots\!93}{27\!\cdots\!88}a^{2}-\frac{16\!\cdots\!87}{27\!\cdots\!88}a+\frac{76\!\cdots\!59}{27\!\cdots\!88}$, $\frac{45\!\cdots\!49}{14\!\cdots\!52}a^{27}-\frac{27\!\cdots\!01}{14\!\cdots\!52}a^{26}+\frac{55\!\cdots\!39}{18\!\cdots\!94}a^{25}+\frac{11\!\cdots\!17}{81\!\cdots\!64}a^{24}-\frac{24\!\cdots\!37}{14\!\cdots\!52}a^{23}-\frac{35\!\cdots\!07}{48\!\cdots\!84}a^{22}-\frac{44\!\cdots\!41}{60\!\cdots\!98}a^{21}+\frac{84\!\cdots\!76}{30\!\cdots\!49}a^{20}-\frac{87\!\cdots\!01}{40\!\cdots\!32}a^{19}+\frac{47\!\cdots\!79}{42\!\cdots\!24}a^{18}-\frac{13\!\cdots\!79}{12\!\cdots\!96}a^{17}+\frac{30\!\cdots\!06}{33\!\cdots\!61}a^{16}+\frac{17\!\cdots\!17}{81\!\cdots\!64}a^{15}+\frac{32\!\cdots\!25}{24\!\cdots\!92}a^{14}-\frac{38\!\cdots\!53}{40\!\cdots\!32}a^{13}+\frac{41\!\cdots\!51}{20\!\cdots\!66}a^{12}-\frac{70\!\cdots\!63}{16\!\cdots\!28}a^{11}+\frac{48\!\cdots\!49}{18\!\cdots\!44}a^{10}-\frac{14\!\cdots\!29}{13\!\cdots\!44}a^{9}-\frac{15\!\cdots\!91}{27\!\cdots\!88}a^{8}-\frac{24\!\cdots\!17}{16\!\cdots\!28}a^{7}+\frac{29\!\cdots\!89}{54\!\cdots\!76}a^{6}-\frac{23\!\cdots\!19}{40\!\cdots\!32}a^{5}+\frac{67\!\cdots\!65}{67\!\cdots\!22}a^{4}-\frac{28\!\cdots\!79}{27\!\cdots\!88}a^{3}+\frac{14\!\cdots\!91}{27\!\cdots\!88}a^{2}-\frac{65\!\cdots\!69}{33\!\cdots\!61}a-\frac{11\!\cdots\!93}{33\!\cdots\!61}$, $\frac{19\!\cdots\!83}{14\!\cdots\!52}a^{27}+\frac{39\!\cdots\!19}{73\!\cdots\!76}a^{26}-\frac{30\!\cdots\!83}{60\!\cdots\!98}a^{25}-\frac{10\!\cdots\!89}{73\!\cdots\!76}a^{24}-\frac{93\!\cdots\!07}{48\!\cdots\!84}a^{23}+\frac{35\!\cdots\!35}{40\!\cdots\!32}a^{22}+\frac{89\!\cdots\!51}{24\!\cdots\!92}a^{21}-\frac{31\!\cdots\!83}{67\!\cdots\!22}a^{20}-\frac{97\!\cdots\!79}{20\!\cdots\!66}a^{19}-\frac{31\!\cdots\!79}{42\!\cdots\!24}a^{18}+\frac{42\!\cdots\!63}{13\!\cdots\!44}a^{17}+\frac{64\!\cdots\!67}{12\!\cdots\!96}a^{16}-\frac{12\!\cdots\!79}{24\!\cdots\!92}a^{15}-\frac{76\!\cdots\!97}{40\!\cdots\!32}a^{14}+\frac{30\!\cdots\!71}{33\!\cdots\!61}a^{13}+\frac{55\!\cdots\!09}{40\!\cdots\!32}a^{12}+\frac{80\!\cdots\!13}{16\!\cdots\!28}a^{11}-\frac{18\!\cdots\!27}{93\!\cdots\!72}a^{10}-\frac{30\!\cdots\!09}{67\!\cdots\!22}a^{9}-\frac{30\!\cdots\!41}{81\!\cdots\!64}a^{8}+\frac{15\!\cdots\!95}{16\!\cdots\!28}a^{7}-\frac{15\!\cdots\!65}{20\!\cdots\!66}a^{6}+\frac{35\!\cdots\!93}{27\!\cdots\!88}a^{5}-\frac{21\!\cdots\!15}{13\!\cdots\!44}a^{4}+\frac{27\!\cdots\!23}{27\!\cdots\!88}a^{3}+\frac{13\!\cdots\!43}{67\!\cdots\!22}a^{2}-\frac{35\!\cdots\!55}{13\!\cdots\!44}a+\frac{49\!\cdots\!95}{67\!\cdots\!22}$, $\frac{23\!\cdots\!15}{14\!\cdots\!52}a^{27}+\frac{49\!\cdots\!75}{73\!\cdots\!76}a^{26}-\frac{42\!\cdots\!67}{18\!\cdots\!94}a^{25}-\frac{19\!\cdots\!63}{14\!\cdots\!52}a^{24}-\frac{31\!\cdots\!37}{14\!\cdots\!52}a^{23}-\frac{11\!\cdots\!35}{81\!\cdots\!64}a^{22}+\frac{51\!\cdots\!51}{12\!\cdots\!96}a^{21}-\frac{28\!\cdots\!29}{48\!\cdots\!84}a^{20}-\frac{49\!\cdots\!67}{30\!\cdots\!49}a^{19}-\frac{54\!\cdots\!49}{42\!\cdots\!24}a^{18}+\frac{19\!\cdots\!61}{60\!\cdots\!98}a^{17}+\frac{21\!\cdots\!03}{40\!\cdots\!32}a^{16}-\frac{56\!\cdots\!87}{24\!\cdots\!92}a^{15}-\frac{10\!\cdots\!85}{60\!\cdots\!98}a^{14}-\frac{13\!\cdots\!09}{40\!\cdots\!32}a^{13}-\frac{10\!\cdots\!61}{81\!\cdots\!64}a^{12}+\frac{85\!\cdots\!93}{16\!\cdots\!28}a^{11}+\frac{15\!\cdots\!89}{28\!\cdots\!16}a^{10}+\frac{12\!\cdots\!77}{40\!\cdots\!32}a^{9}-\frac{49\!\cdots\!85}{54\!\cdots\!76}a^{8}-\frac{55\!\cdots\!73}{16\!\cdots\!28}a^{7}-\frac{15\!\cdots\!33}{81\!\cdots\!64}a^{6}+\frac{30\!\cdots\!39}{20\!\cdots\!66}a^{5}-\frac{13\!\cdots\!85}{54\!\cdots\!76}a^{4}+\frac{87\!\cdots\!61}{27\!\cdots\!88}a^{3}-\frac{24\!\cdots\!23}{13\!\cdots\!44}a^{2}-\frac{92\!\cdots\!17}{13\!\cdots\!44}a+\frac{14\!\cdots\!57}{27\!\cdots\!88}$, $\frac{30\!\cdots\!11}{91\!\cdots\!47}a^{27}-\frac{15\!\cdots\!49}{14\!\cdots\!52}a^{26}-\frac{26\!\cdots\!42}{33\!\cdots\!61}a^{25}+\frac{42\!\cdots\!77}{14\!\cdots\!52}a^{24}+\frac{63\!\cdots\!57}{10\!\cdots\!83}a^{23}+\frac{10\!\cdots\!95}{16\!\cdots\!28}a^{22}-\frac{96\!\cdots\!21}{12\!\cdots\!96}a^{21}+\frac{21\!\cdots\!85}{48\!\cdots\!84}a^{20}+\frac{33\!\cdots\!93}{24\!\cdots\!92}a^{19}+\frac{22\!\cdots\!43}{84\!\cdots\!48}a^{18}-\frac{90\!\cdots\!11}{24\!\cdots\!92}a^{17}-\frac{36\!\cdots\!45}{24\!\cdots\!92}a^{16}-\frac{92\!\cdots\!79}{24\!\cdots\!92}a^{15}+\frac{46\!\cdots\!17}{13\!\cdots\!44}a^{14}+\frac{69\!\cdots\!27}{27\!\cdots\!88}a^{13}+\frac{55\!\cdots\!68}{33\!\cdots\!61}a^{12}-\frac{60\!\cdots\!53}{81\!\cdots\!64}a^{11}-\frac{32\!\cdots\!27}{56\!\cdots\!32}a^{10}+\frac{85\!\cdots\!69}{81\!\cdots\!64}a^{9}+\frac{12\!\cdots\!01}{54\!\cdots\!76}a^{8}-\frac{13\!\cdots\!31}{81\!\cdots\!64}a^{7}+\frac{31\!\cdots\!77}{16\!\cdots\!28}a^{6}-\frac{17\!\cdots\!01}{27\!\cdots\!88}a^{5}+\frac{17\!\cdots\!79}{54\!\cdots\!76}a^{4}+\frac{18\!\cdots\!59}{13\!\cdots\!44}a^{3}-\frac{40\!\cdots\!67}{27\!\cdots\!88}a^{2}+\frac{14\!\cdots\!01}{67\!\cdots\!22}a+\frac{10\!\cdots\!01}{27\!\cdots\!88}$, $\frac{62\!\cdots\!49}{14\!\cdots\!52}a^{27}+\frac{43\!\cdots\!95}{24\!\cdots\!92}a^{26}-\frac{40\!\cdots\!63}{14\!\cdots\!52}a^{25}-\frac{92\!\cdots\!01}{14\!\cdots\!52}a^{24}-\frac{77\!\cdots\!57}{14\!\cdots\!52}a^{23}+\frac{32\!\cdots\!45}{60\!\cdots\!98}a^{22}+\frac{59\!\cdots\!39}{48\!\cdots\!84}a^{21}-\frac{26\!\cdots\!59}{16\!\cdots\!28}a^{20}-\frac{71\!\cdots\!92}{30\!\cdots\!49}a^{19}-\frac{42\!\cdots\!77}{42\!\cdots\!24}a^{18}+\frac{77\!\cdots\!55}{67\!\cdots\!22}a^{17}+\frac{54\!\cdots\!57}{30\!\cdots\!49}a^{16}-\frac{58\!\cdots\!99}{24\!\cdots\!92}a^{15}-\frac{45\!\cdots\!73}{60\!\cdots\!98}a^{14}+\frac{38\!\cdots\!79}{27\!\cdots\!88}a^{13}+\frac{68\!\cdots\!49}{81\!\cdots\!64}a^{12}+\frac{92\!\cdots\!45}{54\!\cdots\!76}a^{11}-\frac{45\!\cdots\!87}{93\!\cdots\!72}a^{10}-\frac{42\!\cdots\!27}{16\!\cdots\!28}a^{9}-\frac{58\!\cdots\!35}{54\!\cdots\!76}a^{8}+\frac{69\!\cdots\!13}{54\!\cdots\!76}a^{7}-\frac{18\!\cdots\!39}{10\!\cdots\!83}a^{6}+\frac{65\!\cdots\!61}{16\!\cdots\!28}a^{5}-\frac{10\!\cdots\!89}{54\!\cdots\!76}a^{4}+\frac{65\!\cdots\!45}{27\!\cdots\!88}a^{3}+\frac{90\!\cdots\!75}{13\!\cdots\!44}a^{2}-\frac{19\!\cdots\!01}{27\!\cdots\!88}a-\frac{80\!\cdots\!35}{27\!\cdots\!88}$, $\frac{50\!\cdots\!59}{48\!\cdots\!84}a^{27}-\frac{55\!\cdots\!99}{16\!\cdots\!28}a^{26}-\frac{66\!\cdots\!76}{30\!\cdots\!49}a^{25}+\frac{74\!\cdots\!97}{73\!\cdots\!76}a^{24}+\frac{27\!\cdots\!73}{14\!\cdots\!52}a^{23}+\frac{25\!\cdots\!79}{16\!\cdots\!28}a^{22}-\frac{52\!\cdots\!87}{20\!\cdots\!66}a^{21}+\frac{10\!\cdots\!65}{60\!\cdots\!98}a^{20}+\frac{15\!\cdots\!72}{33\!\cdots\!61}a^{19}+\frac{27\!\cdots\!86}{36\!\cdots\!89}a^{18}-\frac{17\!\cdots\!91}{12\!\cdots\!96}a^{17}-\frac{47\!\cdots\!04}{10\!\cdots\!83}a^{16}-\frac{35\!\cdots\!85}{24\!\cdots\!92}a^{15}+\frac{29\!\cdots\!75}{24\!\cdots\!92}a^{14}+\frac{42\!\cdots\!11}{67\!\cdots\!22}a^{13}+\frac{31\!\cdots\!33}{40\!\cdots\!32}a^{12}-\frac{41\!\cdots\!83}{16\!\cdots\!28}a^{11}-\frac{21\!\cdots\!25}{18\!\cdots\!44}a^{10}+\frac{18\!\cdots\!91}{13\!\cdots\!44}a^{9}+\frac{36\!\cdots\!55}{81\!\cdots\!64}a^{8}-\frac{97\!\cdots\!37}{54\!\cdots\!76}a^{7}+\frac{10\!\cdots\!71}{16\!\cdots\!28}a^{6}-\frac{47\!\cdots\!07}{20\!\cdots\!66}a^{5}+\frac{14\!\cdots\!73}{13\!\cdots\!44}a^{4}+\frac{86\!\cdots\!71}{27\!\cdots\!88}a^{3}-\frac{22\!\cdots\!29}{27\!\cdots\!88}a^{2}+\frac{51\!\cdots\!63}{67\!\cdots\!22}a+\frac{17\!\cdots\!03}{67\!\cdots\!22}$, $\frac{26\!\cdots\!53}{36\!\cdots\!88}a^{27}-\frac{10\!\cdots\!85}{73\!\cdots\!76}a^{26}-\frac{42\!\cdots\!33}{73\!\cdots\!76}a^{25}+\frac{13\!\cdots\!63}{16\!\cdots\!28}a^{24}+\frac{31\!\cdots\!43}{12\!\cdots\!96}a^{23}+\frac{74\!\cdots\!15}{30\!\cdots\!49}a^{22}-\frac{48\!\cdots\!85}{24\!\cdots\!92}a^{21}-\frac{83\!\cdots\!21}{48\!\cdots\!84}a^{20}+\frac{19\!\cdots\!51}{24\!\cdots\!92}a^{19}+\frac{80\!\cdots\!69}{84\!\cdots\!48}a^{18}-\frac{15\!\cdots\!19}{24\!\cdots\!92}a^{17}-\frac{16\!\cdots\!47}{24\!\cdots\!92}a^{16}-\frac{28\!\cdots\!67}{81\!\cdots\!64}a^{15}+\frac{12\!\cdots\!59}{81\!\cdots\!64}a^{14}+\frac{18\!\cdots\!57}{81\!\cdots\!64}a^{13}-\frac{14\!\cdots\!61}{33\!\cdots\!61}a^{12}-\frac{33\!\cdots\!39}{81\!\cdots\!64}a^{11}-\frac{20\!\cdots\!39}{35\!\cdots\!27}a^{10}+\frac{25\!\cdots\!07}{67\!\cdots\!22}a^{9}+\frac{27\!\cdots\!75}{54\!\cdots\!76}a^{8}+\frac{72\!\cdots\!83}{27\!\cdots\!88}a^{7}+\frac{11\!\cdots\!59}{27\!\cdots\!88}a^{6}+\frac{27\!\cdots\!65}{13\!\cdots\!44}a^{5}-\frac{51\!\cdots\!31}{54\!\cdots\!76}a^{4}+\frac{50\!\cdots\!20}{33\!\cdots\!61}a^{3}-\frac{27\!\cdots\!77}{13\!\cdots\!44}a^{2}-\frac{18\!\cdots\!01}{13\!\cdots\!44}a+\frac{74\!\cdots\!51}{27\!\cdots\!88}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1653920951549.6929 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{12}\cdot 1653920951549.6929 \cdot 1}{2\cdot\sqrt{669664670655915014046767999753728790410297344}}\cr\approx \mathstrut & 1.93568400900549 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 4*x^27 + 12*x^25 + 12*x^24 - 264*x^22 + 336*x^21 + 387*x^20 + 396*x^19 - 2016*x^18 - 3780*x^17 + 3330*x^16 + 13104*x^15 - 1728*x^14 - 6192*x^13 - 28233*x^12 + 3780*x^11 + 27216*x^10 + 3348*x^9 - 17496*x^8 + 68688*x^7 - 71064*x^6 + 95904*x^5 - 36315*x^4 - 118476*x^3 + 123120*x^2 - 14364*x - 41526)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 4*x^27 + 12*x^25 + 12*x^24 - 264*x^22 + 336*x^21 + 387*x^20 + 396*x^19 - 2016*x^18 - 3780*x^17 + 3330*x^16 + 13104*x^15 - 1728*x^14 - 6192*x^13 - 28233*x^12 + 3780*x^11 + 27216*x^10 + 3348*x^9 - 17496*x^8 + 68688*x^7 - 71064*x^6 + 95904*x^5 - 36315*x^4 - 118476*x^3 + 123120*x^2 - 14364*x - 41526, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 4*x^27 + 12*x^25 + 12*x^24 - 264*x^22 + 336*x^21 + 387*x^20 + 396*x^19 - 2016*x^18 - 3780*x^17 + 3330*x^16 + 13104*x^15 - 1728*x^14 - 6192*x^13 - 28233*x^12 + 3780*x^11 + 27216*x^10 + 3348*x^9 - 17496*x^8 + 68688*x^7 - 71064*x^6 + 95904*x^5 - 36315*x^4 - 118476*x^3 + 123120*x^2 - 14364*x - 41526);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 4*x^27 + 12*x^25 + 12*x^24 - 264*x^22 + 336*x^21 + 387*x^20 + 396*x^19 - 2016*x^18 - 3780*x^17 + 3330*x^16 + 13104*x^15 - 1728*x^14 - 6192*x^13 - 28233*x^12 + 3780*x^11 + 27216*x^10 + 3348*x^9 - 17496*x^8 + 68688*x^7 - 71064*x^6 + 95904*x^5 - 36315*x^4 - 118476*x^3 + 123120*x^2 - 14364*x - 41526);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$G(2,2)$ (as 28T393):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 12096
The 16 conjugacy class representatives for $G(2,2)$
Character table for $G(2,2)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.7.0.1}{7} }^{4}$ ${\href{/padicField/7.8.0.1}{8} }^{3}{,}\,{\href{/padicField/7.4.0.1}{4} }$ ${\href{/padicField/11.12.0.1}{12} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.7.0.1}{7} }^{4}$ ${\href{/padicField/17.7.0.1}{7} }^{4}$ ${\href{/padicField/19.6.0.1}{6} }^{4}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.6.0.1}{6} }^{4}{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.3.0.1}{3} }^{9}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.12.0.1}{12} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.12.0.1}{12} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.3.0.1}{3} }^{9}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.8.0.1}{8} }^{3}{,}\,{\href{/padicField/43.4.0.1}{4} }$ ${\href{/padicField/47.12.0.1}{12} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.12.0.1}{12} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.2.0.1}{2} }^{12}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.8.8$x^{4} + 4 x + 2$$4$$1$$8$$S_4$$[8/3, 8/3]_{3}^{2}$
Deg $24$$24$$1$$68$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $27$$27$$1$$46$