Properties

Label 29.1.227...752.1
Degree $29$
Signature $[1, 14]$
Discriminant $2.275\times 10^{54}$
Root discriminant \(74.88\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{29}$ (as 29T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^29 + 3*x - 2)
 
gp: K = bnfinit(y^29 + 3*y - 2, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^29 + 3*x - 2);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 + 3*x - 2)
 

\( x^{29} + 3x - 2 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $29$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2275479017222419439026339091644104204888156487918026752\) \(\medspace = 2^{28}\cdot 8447\cdot 10\!\cdots\!11\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(74.88\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(8447\), \(10035\!\cdots\!53811\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{84768\!\cdots\!41517}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{28}+a^{25}+2a^{24}+2a^{23}+a^{22}+a^{19}+2a^{18}+2a^{17}+a^{16}+a^{13}+2a^{12}+2a^{11}+a^{10}+a^{7}+2a^{6}+2a^{5}+a^{4}+a+5$, $3a^{28}+2a^{27}+2a^{26}+2a^{25}+a^{24}+2a^{23}+2a^{21}-a^{20}+2a^{19}-2a^{18}+2a^{17}-3a^{16}+3a^{15}-4a^{14}+4a^{13}-5a^{12}+5a^{11}-7a^{10}+6a^{9}-8a^{8}+6a^{7}-9a^{6}+6a^{5}-9a^{4}+4a^{3}-8a^{2}+2a+3$, $a^{27}-a^{26}-2a^{24}+2a^{21}+a^{20}+a^{19}-2a^{18}-a^{17}-2a^{16}+a^{15}+4a^{13}-a^{12}+a^{11}-3a^{10}-3a^{8}+2a^{7}+2a^{6}+a^{5}+a^{4}-2a^{3}+a^{2}-5a+3$, $2a^{28}+a^{27}+a^{26}-a^{21}+a^{17}+a^{15}+a^{14}+a^{13}+2a^{11}+a^{10}+a^{9}+2a^{8}+2a^{6}+a^{5}+a^{4}+3a^{2}+7$, $2a^{27}+a^{26}-3a^{24}-2a^{23}+3a^{22}+a^{21}-2a^{20}-3a^{19}-3a^{18}+2a^{17}+2a^{16}-2a^{15}-4a^{14}-4a^{13}+3a^{12}+3a^{11}-4a^{10}-3a^{9}-3a^{8}+a^{7}+6a^{6}-3a^{5}-6a^{4}-a^{3}+3a^{2}+6a-3$, $a^{27}-a^{26}-a^{23}+a^{20}-2a^{19}+a^{17}+a^{16}-a^{15}+a^{13}+2a^{9}-3a^{8}+a^{7}+a^{5}-3a^{4}-a^{3}+4a^{2}-3a+1$, $2a^{28}-a^{27}-7a^{26}-3a^{25}+4a^{24}+2a^{23}+4a^{22}+7a^{21}-2a^{20}-9a^{19}-3a^{18}-2a^{17}-3a^{16}+8a^{15}+11a^{14}-2a^{13}-3a^{12}-a^{11}-11a^{10}-7a^{9}+10a^{8}+8a^{7}+9a^{5}-a^{4}-18a^{3}-5a^{2}+7a+3$, $14a^{28}+8a^{27}+6a^{26}+5a^{25}+2a^{24}+3a^{22}+4a^{21}-3a^{20}-3a^{19}+6a^{18}+3a^{17}-6a^{16}-3a^{15}+7a^{14}+4a^{13}-9a^{12}-3a^{11}+10a^{10}+a^{9}-9a^{8}-a^{7}+8a^{6}+a^{5}-9a^{4}+a^{3}+7a^{2}-4a+39$, $12a^{28}-9a^{27}+3a^{26}+3a^{25}-9a^{24}+15a^{23}-19a^{22}+23a^{21}-24a^{20}+23a^{19}-18a^{18}+10a^{17}-11a^{15}+21a^{14}-29a^{13}+37a^{12}-40a^{11}+41a^{10}-35a^{9}+24a^{8}-8a^{7}-10a^{6}+28a^{5}-44a^{4}+57a^{3}-66a^{2}+71a-29$, $2a^{28}+a^{27}+3a^{26}+4a^{25}-a^{23}+5a^{22}+3a^{21}-7a^{20}-a^{19}+3a^{18}-3a^{17}-7a^{16}-a^{14}-2a^{13}+3a^{12}-3a^{11}-a^{10}+8a^{9}+7a^{8}-9a^{7}+3a^{6}+13a^{5}-3a^{4}-8a^{3}+3a^{2}+4a-3$, $13a^{28}+9a^{27}+4a^{26}-2a^{25}-8a^{24}-12a^{23}-15a^{22}-16a^{21}-15a^{20}-12a^{19}-7a^{18}-a^{17}+5a^{16}+11a^{15}+15a^{14}+18a^{13}+19a^{12}+17a^{11}+13a^{10}+7a^{9}-6a^{7}-13a^{6}-18a^{5}-21a^{4}-22a^{3}-19a^{2}-14a+31$, $a^{28}-3a^{27}-4a^{26}-a^{25}-2a^{24}-a^{23}+3a^{22}+2a^{21}-a^{20}-2a^{19}-2a^{18}-2a^{17}-3a^{16}-a^{15}+a^{14}-2a^{13}+a^{12}+5a^{11}-3a^{10}-2a^{9}+7a^{8}-a^{7}-3a^{6}+6a^{5}-5a^{4}-8a^{3}+9a^{2}+3a-1$, $2a^{28}+a^{27}-4a^{26}+3a^{25}+2a^{24}-2a^{23}+6a^{22}+a^{21}-4a^{20}+6a^{19}-5a^{17}+4a^{16}-5a^{15}-7a^{14}+6a^{13}-5a^{12}-7a^{11}+7a^{10}-5a^{9}-2a^{8}+13a^{7}-7a^{6}-2a^{5}+14a^{4}-7a^{3}+a^{2}+12a-9$, $2a^{28}+2a^{27}-2a^{25}-3a^{24}-5a^{23}-2a^{22}+a^{21}+2a^{20}+2a^{19}-a^{18}-2a^{17}-5a^{16}-5a^{15}-a^{14}+2a^{13}+4a^{12}+a^{11}+a^{10}-3a^{9}-7a^{8}-2a^{7}+5a^{5}+5a^{4}+3a^{3}+2a^{2}-6a+1$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 23857799922719012 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{14}\cdot 23857799922719012 \cdot 1}{2\cdot\sqrt{2275479017222419439026339091644104204888156487918026752}}\cr\approx \mathstrut & 2.36380763799251 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^29 + 3*x - 2)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^29 + 3*x - 2, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^29 + 3*x - 2);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 + 3*x - 2);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{29}$ (as 29T8):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 8841761993739701954543616000000
The 4565 conjugacy class representatives for $S_{29}$
Character table for $S_{29}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $28{,}\,{\href{/padicField/3.1.0.1}{1} }$ $28{,}\,{\href{/padicField/5.1.0.1}{1} }$ $21{,}\,{\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ $15{,}\,{\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ $26{,}\,{\href{/padicField/13.3.0.1}{3} }$ ${\href{/padicField/17.14.0.1}{14} }{,}\,{\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ $17{,}\,{\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ $28{,}\,{\href{/padicField/29.1.0.1}{1} }$ $29$ $20{,}\,{\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ $15{,}\,{\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.13.0.1}{13} }{,}\,{\href{/padicField/43.7.0.1}{7} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.14.0.1}{14} }{,}\,{\href{/padicField/47.11.0.1}{11} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ $16{,}\,{\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ $23{,}\,{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.4.4.5$x^{4} + 2 x + 2$$4$$1$$4$$S_4$$[4/3, 4/3]_{3}^{2}$
2.12.12.32$x^{12} - 4 x^{10} - 4 x^{9} + 26 x^{8} + 40 x^{7} - 4 x^{6} - 40 x^{5} + 28 x^{4} + 72 x^{3} + 24 x^{2} - 16 x + 8$$4$$3$$12$12T129$[4/3, 4/3, 4/3, 4/3]_{3}^{6}$
2.12.12.31$x^{12} + 2 x^{10} + 2 x^{9} + 6 x^{8} + 12 x^{7} + 32 x^{6} + 48 x^{5} + 76 x^{4} + 48 x^{3} + 40 x^{2} + 8 x + 8$$4$$3$$12$12T205$[4/3, 4/3, 4/3, 4/3, 4/3, 4/3]_{3}^{6}$
\(8447\) Copy content Toggle raw display $\Q_{8447}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $22$$1$$22$$0$22T1$[\ ]^{22}$
\(100\!\cdots\!811\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
Deg $17$$1$$17$$0$$C_{17}$$[\ ]^{17}$