Properties

Label 30.0.131...536.1
Degree $30$
Signature $[0, 15]$
Discriminant $-1.310\times 10^{39}$
Root discriminant \(20.13\)
Ramified primes $2,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_3\times C_{10}$ (as 30T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 + 6*x^28 + 25*x^26 + 45*x^24 - 44*x^22 - 197*x^20 - 20*x^18 + 411*x^16 + 283*x^14 - 424*x^12 - 397*x^10 + 348*x^8 + 358*x^6 + 8*x^4 - 7*x^2 + 1)
 
gp: K = bnfinit(y^30 + 6*y^28 + 25*y^26 + 45*y^24 - 44*y^22 - 197*y^20 - 20*y^18 + 411*y^16 + 283*y^14 - 424*y^12 - 397*y^10 + 348*y^8 + 358*y^6 + 8*y^4 - 7*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^30 + 6*x^28 + 25*x^26 + 45*x^24 - 44*x^22 - 197*x^20 - 20*x^18 + 411*x^16 + 283*x^14 - 424*x^12 - 397*x^10 + 348*x^8 + 358*x^6 + 8*x^4 - 7*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 + 6*x^28 + 25*x^26 + 45*x^24 - 44*x^22 - 197*x^20 - 20*x^18 + 411*x^16 + 283*x^14 - 424*x^12 - 397*x^10 + 348*x^8 + 358*x^6 + 8*x^4 - 7*x^2 + 1)
 

\( x^{30} + 6 x^{28} + 25 x^{26} + 45 x^{24} - 44 x^{22} - 197 x^{20} - 20 x^{18} + 411 x^{16} + 283 x^{14} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 15]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-1310417368511817590988945406032175169536\) \(\medspace = -\,2^{40}\cdot 11^{26}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(20.13\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{4/3}11^{9/10}\approx 21.808547634345086$
Ramified primes:   \(2\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Aut(K/\Q) }$:  $10$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{14}-\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{20}-\frac{1}{2}a^{12}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{21}-\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{22}-\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{23}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{24}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{25}-\frac{1}{2}a^{14}-\frac{1}{2}a^{8}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{26}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{27}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{80\!\cdots\!46}a^{28}-\frac{85\!\cdots\!05}{40\!\cdots\!23}a^{26}-\frac{16\!\cdots\!37}{80\!\cdots\!46}a^{24}-\frac{87\!\cdots\!57}{40\!\cdots\!23}a^{22}+\frac{14\!\cdots\!73}{80\!\cdots\!46}a^{20}-\frac{49\!\cdots\!93}{40\!\cdots\!23}a^{18}-\frac{87\!\cdots\!42}{40\!\cdots\!23}a^{16}-\frac{16\!\cdots\!11}{40\!\cdots\!23}a^{14}+\frac{11\!\cdots\!44}{40\!\cdots\!23}a^{12}-\frac{18\!\cdots\!93}{40\!\cdots\!23}a^{10}+\frac{18\!\cdots\!66}{40\!\cdots\!23}a^{8}+\frac{97\!\cdots\!40}{40\!\cdots\!23}a^{6}-\frac{15\!\cdots\!13}{80\!\cdots\!46}a^{4}+\frac{54\!\cdots\!55}{40\!\cdots\!23}a^{2}-\frac{20\!\cdots\!27}{40\!\cdots\!23}$, $\frac{1}{80\!\cdots\!46}a^{29}-\frac{85\!\cdots\!05}{40\!\cdots\!23}a^{27}-\frac{16\!\cdots\!37}{80\!\cdots\!46}a^{25}-\frac{87\!\cdots\!57}{40\!\cdots\!23}a^{23}+\frac{14\!\cdots\!73}{80\!\cdots\!46}a^{21}-\frac{49\!\cdots\!93}{40\!\cdots\!23}a^{19}-\frac{87\!\cdots\!42}{40\!\cdots\!23}a^{17}+\frac{81\!\cdots\!01}{80\!\cdots\!46}a^{15}-\frac{17\!\cdots\!35}{80\!\cdots\!46}a^{13}-\frac{1}{2}a^{12}-\frac{18\!\cdots\!93}{40\!\cdots\!23}a^{11}-\frac{1}{2}a^{10}+\frac{18\!\cdots\!66}{40\!\cdots\!23}a^{9}-\frac{1}{2}a^{8}-\frac{20\!\cdots\!43}{80\!\cdots\!46}a^{7}+\frac{12\!\cdots\!55}{40\!\cdots\!23}a^{5}+\frac{54\!\cdots\!55}{40\!\cdots\!23}a^{3}+\frac{58696604320469}{80\!\cdots\!46}a-\frac{1}{2}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{90395440773}{291211635746} a^{29} - \frac{277418055635}{145605817873} a^{27} - \frac{1164367872014}{145605817873} a^{25} - \frac{2176299246142}{145605817873} a^{23} + \frac{1760559259543}{145605817873} a^{21} + \frac{9223935112516}{145605817873} a^{19} + \frac{3783920726191}{291211635746} a^{17} - \frac{18737732908828}{145605817873} a^{15} - \frac{14874663307821}{145605817873} a^{13} + \frac{18141256073509}{145605817873} a^{11} + \frac{20163995858949}{145605817873} a^{9} - \frac{14393368446386}{145605817873} a^{7} - \frac{35782616547667}{291211635746} a^{5} - \frac{1743953091134}{145605817873} a^{3} - \frac{7625965931}{291211635746} a \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{13\!\cdots\!33}{18\!\cdots\!22}a^{28}+\frac{83\!\cdots\!57}{18\!\cdots\!22}a^{26}+\frac{35\!\cdots\!15}{18\!\cdots\!22}a^{24}+\frac{34\!\cdots\!11}{93\!\cdots\!61}a^{22}-\frac{41\!\cdots\!53}{18\!\cdots\!22}a^{20}-\frac{27\!\cdots\!69}{18\!\cdots\!22}a^{18}-\frac{48\!\cdots\!33}{93\!\cdots\!61}a^{16}+\frac{52\!\cdots\!25}{18\!\cdots\!22}a^{14}+\frac{25\!\cdots\!51}{93\!\cdots\!61}a^{12}-\frac{44\!\cdots\!43}{18\!\cdots\!22}a^{10}-\frac{33\!\cdots\!76}{93\!\cdots\!61}a^{8}+\frac{30\!\cdots\!47}{18\!\cdots\!22}a^{6}+\frac{58\!\cdots\!03}{18\!\cdots\!22}a^{4}+\frac{79\!\cdots\!71}{93\!\cdots\!61}a^{2}+\frac{331179604370172}{93\!\cdots\!61}$, $\frac{62\!\cdots\!02}{40\!\cdots\!23}a^{28}+\frac{75\!\cdots\!47}{80\!\cdots\!46}a^{26}+\frac{15\!\cdots\!05}{40\!\cdots\!23}a^{24}+\frac{28\!\cdots\!13}{40\!\cdots\!23}a^{22}-\frac{26\!\cdots\!64}{40\!\cdots\!23}a^{20}-\frac{24\!\cdots\!13}{80\!\cdots\!46}a^{18}-\frac{15\!\cdots\!96}{40\!\cdots\!23}a^{16}+\frac{51\!\cdots\!81}{80\!\cdots\!46}a^{14}+\frac{18\!\cdots\!12}{40\!\cdots\!23}a^{12}-\frac{51\!\cdots\!39}{80\!\cdots\!46}a^{10}-\frac{25\!\cdots\!71}{40\!\cdots\!23}a^{8}+\frac{42\!\cdots\!53}{80\!\cdots\!46}a^{6}+\frac{22\!\cdots\!88}{40\!\cdots\!23}a^{4}+\frac{16\!\cdots\!07}{40\!\cdots\!23}a^{2}-\frac{67\!\cdots\!50}{40\!\cdots\!23}$, $\frac{30\!\cdots\!25}{80\!\cdots\!46}a^{28}+\frac{10\!\cdots\!14}{40\!\cdots\!23}a^{26}+\frac{89\!\cdots\!95}{80\!\cdots\!46}a^{24}+\frac{94\!\cdots\!66}{40\!\cdots\!23}a^{22}-\frac{41\!\cdots\!53}{40\!\cdots\!23}a^{20}-\frac{41\!\cdots\!63}{40\!\cdots\!23}a^{18}-\frac{18\!\cdots\!69}{40\!\cdots\!23}a^{16}+\frac{82\!\cdots\!08}{40\!\cdots\!23}a^{14}+\frac{16\!\cdots\!75}{80\!\cdots\!46}a^{12}-\frac{76\!\cdots\!59}{40\!\cdots\!23}a^{10}-\frac{23\!\cdots\!29}{80\!\cdots\!46}a^{8}+\frac{63\!\cdots\!57}{40\!\cdots\!23}a^{6}+\frac{94\!\cdots\!11}{40\!\cdots\!23}a^{4}-\frac{21\!\cdots\!68}{40\!\cdots\!23}a^{2}-\frac{29\!\cdots\!13}{80\!\cdots\!46}$, $\frac{59\!\cdots\!93}{80\!\cdots\!46}a^{28}+\frac{18\!\cdots\!13}{40\!\cdots\!23}a^{26}+\frac{75\!\cdots\!79}{40\!\cdots\!23}a^{24}+\frac{13\!\cdots\!18}{40\!\cdots\!23}a^{22}-\frac{12\!\cdots\!77}{40\!\cdots\!23}a^{20}-\frac{60\!\cdots\!26}{40\!\cdots\!23}a^{18}-\frac{17\!\cdots\!31}{80\!\cdots\!46}a^{16}+\frac{12\!\cdots\!87}{40\!\cdots\!23}a^{14}+\frac{90\!\cdots\!09}{40\!\cdots\!23}a^{12}-\frac{12\!\cdots\!78}{40\!\cdots\!23}a^{10}-\frac{12\!\cdots\!49}{40\!\cdots\!23}a^{8}+\frac{10\!\cdots\!30}{40\!\cdots\!23}a^{6}+\frac{23\!\cdots\!99}{80\!\cdots\!46}a^{4}-\frac{26\!\cdots\!77}{40\!\cdots\!23}a^{2}-\frac{42\!\cdots\!97}{80\!\cdots\!46}$, $\frac{36\!\cdots\!26}{40\!\cdots\!23}a^{28}+\frac{32\!\cdots\!73}{40\!\cdots\!23}a^{26}+\frac{14\!\cdots\!66}{40\!\cdots\!23}a^{24}+\frac{77\!\cdots\!47}{80\!\cdots\!46}a^{22}+\frac{30\!\cdots\!13}{80\!\cdots\!46}a^{20}-\frac{14\!\cdots\!08}{40\!\cdots\!23}a^{18}-\frac{17\!\cdots\!07}{40\!\cdots\!23}a^{16}+\frac{47\!\cdots\!81}{80\!\cdots\!46}a^{14}+\frac{96\!\cdots\!91}{80\!\cdots\!46}a^{12}-\frac{22\!\cdots\!03}{80\!\cdots\!46}a^{10}-\frac{12\!\cdots\!71}{80\!\cdots\!46}a^{8}+\frac{29\!\cdots\!05}{80\!\cdots\!46}a^{6}+\frac{11\!\cdots\!21}{80\!\cdots\!46}a^{4}+\frac{16\!\cdots\!15}{80\!\cdots\!46}a^{2}-\frac{77\!\cdots\!79}{80\!\cdots\!46}$, $\frac{13\!\cdots\!35}{80\!\cdots\!46}a^{28}+\frac{39\!\cdots\!81}{40\!\cdots\!23}a^{26}+\frac{16\!\cdots\!75}{40\!\cdots\!23}a^{24}+\frac{29\!\cdots\!50}{40\!\cdots\!23}a^{22}-\frac{57\!\cdots\!45}{80\!\cdots\!46}a^{20}-\frac{12\!\cdots\!50}{40\!\cdots\!23}a^{18}-\frac{25\!\cdots\!65}{80\!\cdots\!46}a^{16}+\frac{26\!\cdots\!37}{40\!\cdots\!23}a^{14}+\frac{36\!\cdots\!31}{80\!\cdots\!46}a^{12}-\frac{27\!\cdots\!59}{40\!\cdots\!23}a^{10}-\frac{50\!\cdots\!83}{80\!\cdots\!46}a^{8}+\frac{22\!\cdots\!13}{40\!\cdots\!23}a^{6}+\frac{22\!\cdots\!36}{40\!\cdots\!23}a^{4}+\frac{14\!\cdots\!69}{40\!\cdots\!23}a^{2}-\frac{30\!\cdots\!29}{40\!\cdots\!23}$, $\frac{95\!\cdots\!31}{80\!\cdots\!46}a^{28}+\frac{25\!\cdots\!28}{40\!\cdots\!23}a^{26}+\frac{10\!\cdots\!26}{40\!\cdots\!23}a^{24}+\frac{15\!\cdots\!64}{40\!\cdots\!23}a^{22}-\frac{59\!\cdots\!51}{80\!\cdots\!46}a^{20}-\frac{78\!\cdots\!82}{40\!\cdots\!23}a^{18}+\frac{60\!\cdots\!19}{80\!\cdots\!46}a^{16}+\frac{18\!\cdots\!04}{40\!\cdots\!23}a^{14}+\frac{91\!\cdots\!97}{80\!\cdots\!46}a^{12}-\frac{22\!\cdots\!42}{40\!\cdots\!23}a^{10}-\frac{16\!\cdots\!85}{80\!\cdots\!46}a^{8}+\frac{20\!\cdots\!31}{40\!\cdots\!23}a^{6}+\frac{81\!\cdots\!42}{40\!\cdots\!23}a^{4}-\frac{37\!\cdots\!87}{40\!\cdots\!23}a^{2}-\frac{28\!\cdots\!30}{40\!\cdots\!23}$, $\frac{56\!\cdots\!55}{40\!\cdots\!23}a^{28}+\frac{36\!\cdots\!19}{40\!\cdots\!23}a^{26}+\frac{15\!\cdots\!29}{40\!\cdots\!23}a^{24}+\frac{62\!\cdots\!83}{80\!\cdots\!46}a^{22}-\frac{17\!\cdots\!62}{40\!\cdots\!23}a^{20}-\frac{12\!\cdots\!31}{40\!\cdots\!23}a^{18}-\frac{48\!\cdots\!74}{40\!\cdots\!23}a^{16}+\frac{50\!\cdots\!55}{80\!\cdots\!46}a^{14}+\frac{24\!\cdots\!35}{40\!\cdots\!23}a^{12}-\frac{45\!\cdots\!61}{80\!\cdots\!46}a^{10}-\frac{33\!\cdots\!09}{40\!\cdots\!23}a^{8}+\frac{34\!\cdots\!53}{80\!\cdots\!46}a^{6}+\frac{28\!\cdots\!84}{40\!\cdots\!23}a^{4}+\frac{70\!\cdots\!93}{80\!\cdots\!46}a^{2}-\frac{52\!\cdots\!46}{40\!\cdots\!23}$, $\frac{35\!\cdots\!93}{40\!\cdots\!23}a^{28}+\frac{23\!\cdots\!37}{40\!\cdots\!23}a^{26}+\frac{20\!\cdots\!63}{80\!\cdots\!46}a^{24}+\frac{21\!\cdots\!15}{40\!\cdots\!23}a^{22}-\frac{78\!\cdots\!43}{40\!\cdots\!23}a^{20}-\frac{83\!\cdots\!44}{40\!\cdots\!23}a^{18}-\frac{88\!\cdots\!71}{80\!\cdots\!46}a^{16}+\frac{15\!\cdots\!58}{40\!\cdots\!23}a^{14}+\frac{36\!\cdots\!69}{80\!\cdots\!46}a^{12}-\frac{12\!\cdots\!53}{40\!\cdots\!23}a^{10}-\frac{47\!\cdots\!51}{80\!\cdots\!46}a^{8}+\frac{77\!\cdots\!69}{40\!\cdots\!23}a^{6}+\frac{41\!\cdots\!73}{80\!\cdots\!46}a^{4}+\frac{50\!\cdots\!85}{40\!\cdots\!23}a^{2}-\frac{23\!\cdots\!38}{40\!\cdots\!23}$, $\frac{39\!\cdots\!73}{80\!\cdots\!46}a^{29}+\frac{994860012356039}{93\!\cdots\!61}a^{28}+\frac{13\!\cdots\!55}{40\!\cdots\!23}a^{27}+\frac{12\!\cdots\!79}{18\!\cdots\!22}a^{26}+\frac{11\!\cdots\!19}{80\!\cdots\!46}a^{25}+\frac{25\!\cdots\!08}{93\!\cdots\!61}a^{24}+\frac{12\!\cdots\!36}{40\!\cdots\!23}a^{23}+\frac{46\!\cdots\!64}{93\!\cdots\!61}a^{22}-\frac{27\!\cdots\!92}{40\!\cdots\!23}a^{21}-\frac{80\!\cdots\!93}{18\!\cdots\!22}a^{20}-\frac{44\!\cdots\!25}{40\!\cdots\!23}a^{19}-\frac{19\!\cdots\!01}{93\!\cdots\!61}a^{18}-\frac{57\!\cdots\!67}{80\!\cdots\!46}a^{17}-\frac{34\!\cdots\!12}{93\!\cdots\!61}a^{16}+\frac{15\!\cdots\!59}{80\!\cdots\!46}a^{15}+\frac{81\!\cdots\!05}{18\!\cdots\!22}a^{14}+\frac{10\!\cdots\!27}{40\!\cdots\!23}a^{13}+\frac{61\!\cdots\!01}{18\!\cdots\!22}a^{12}-\frac{46\!\cdots\!71}{40\!\cdots\!23}a^{11}-\frac{39\!\cdots\!05}{93\!\cdots\!61}a^{10}-\frac{25\!\cdots\!21}{80\!\cdots\!46}a^{9}-\frac{42\!\cdots\!43}{93\!\cdots\!61}a^{8}+\frac{20\!\cdots\!58}{40\!\cdots\!23}a^{7}+\frac{31\!\cdots\!01}{93\!\cdots\!61}a^{6}+\frac{21\!\cdots\!91}{80\!\cdots\!46}a^{5}+\frac{37\!\cdots\!61}{93\!\cdots\!61}a^{4}+\frac{48\!\cdots\!55}{40\!\cdots\!23}a^{3}+\frac{32\!\cdots\!27}{93\!\cdots\!61}a^{2}+\frac{17\!\cdots\!91}{80\!\cdots\!46}a-\frac{12\!\cdots\!39}{93\!\cdots\!61}$, $\frac{22\!\cdots\!36}{40\!\cdots\!23}a^{29}+\frac{18\!\cdots\!08}{40\!\cdots\!23}a^{28}+\frac{13\!\cdots\!81}{40\!\cdots\!23}a^{27}+\frac{11\!\cdots\!07}{40\!\cdots\!23}a^{26}+\frac{57\!\cdots\!82}{40\!\cdots\!23}a^{25}+\frac{50\!\cdots\!95}{40\!\cdots\!23}a^{24}+\frac{21\!\cdots\!25}{80\!\cdots\!46}a^{23}+\frac{20\!\cdots\!93}{80\!\cdots\!46}a^{22}-\frac{17\!\cdots\!59}{80\!\cdots\!46}a^{21}-\frac{98\!\cdots\!53}{80\!\cdots\!46}a^{20}-\frac{45\!\cdots\!15}{40\!\cdots\!23}a^{19}-\frac{40\!\cdots\!00}{40\!\cdots\!23}a^{18}-\frac{85\!\cdots\!38}{40\!\cdots\!23}a^{17}-\frac{18\!\cdots\!78}{40\!\cdots\!23}a^{16}+\frac{93\!\cdots\!19}{40\!\cdots\!23}a^{15}+\frac{15\!\cdots\!69}{80\!\cdots\!46}a^{14}+\frac{71\!\cdots\!04}{40\!\cdots\!23}a^{13}+\frac{83\!\cdots\!32}{40\!\cdots\!23}a^{12}-\frac{18\!\cdots\!17}{80\!\cdots\!46}a^{11}-\frac{63\!\cdots\!16}{40\!\cdots\!23}a^{10}-\frac{19\!\cdots\!57}{80\!\cdots\!46}a^{9}-\frac{10\!\cdots\!22}{40\!\cdots\!23}a^{8}+\frac{75\!\cdots\!77}{40\!\cdots\!23}a^{7}+\frac{83\!\cdots\!93}{80\!\cdots\!46}a^{6}+\frac{79\!\cdots\!70}{40\!\cdots\!23}a^{5}+\frac{18\!\cdots\!71}{80\!\cdots\!46}a^{4}+\frac{76\!\cdots\!25}{80\!\cdots\!46}a^{3}+\frac{39\!\cdots\!05}{80\!\cdots\!46}a^{2}+\frac{79\!\cdots\!04}{40\!\cdots\!23}a-\frac{41\!\cdots\!61}{40\!\cdots\!23}$, $\frac{36\!\cdots\!93}{80\!\cdots\!46}a^{29}+\frac{58\!\cdots\!44}{40\!\cdots\!23}a^{28}+\frac{21\!\cdots\!83}{80\!\cdots\!46}a^{27}+\frac{36\!\cdots\!92}{40\!\cdots\!23}a^{26}+\frac{45\!\cdots\!02}{40\!\cdots\!23}a^{25}+\frac{30\!\cdots\!83}{80\!\cdots\!46}a^{24}+\frac{82\!\cdots\!80}{40\!\cdots\!23}a^{23}+\frac{28\!\cdots\!01}{40\!\cdots\!23}a^{22}-\frac{77\!\cdots\!38}{40\!\cdots\!23}a^{21}-\frac{46\!\cdots\!81}{80\!\cdots\!46}a^{20}-\frac{71\!\cdots\!83}{80\!\cdots\!46}a^{19}-\frac{12\!\cdots\!22}{40\!\cdots\!23}a^{18}-\frac{47\!\cdots\!95}{40\!\cdots\!23}a^{17}-\frac{23\!\cdots\!29}{40\!\cdots\!23}a^{16}+\frac{73\!\cdots\!11}{40\!\cdots\!23}a^{15}+\frac{25\!\cdots\!74}{40\!\cdots\!23}a^{14}+\frac{10\!\cdots\!15}{80\!\cdots\!46}a^{13}+\frac{39\!\cdots\!13}{80\!\cdots\!46}a^{12}-\frac{73\!\cdots\!52}{40\!\cdots\!23}a^{11}-\frac{52\!\cdots\!57}{80\!\cdots\!46}a^{10}-\frac{73\!\cdots\!03}{40\!\cdots\!23}a^{9}-\frac{55\!\cdots\!53}{80\!\cdots\!46}a^{8}+\frac{57\!\cdots\!11}{40\!\cdots\!23}a^{7}+\frac{44\!\cdots\!75}{80\!\cdots\!46}a^{6}+\frac{13\!\cdots\!97}{80\!\cdots\!46}a^{5}+\frac{24\!\cdots\!24}{40\!\cdots\!23}a^{4}+\frac{11\!\cdots\!19}{80\!\cdots\!46}a^{3}-\frac{16\!\cdots\!74}{40\!\cdots\!23}a^{2}-\frac{19\!\cdots\!67}{40\!\cdots\!23}a-\frac{14\!\cdots\!43}{80\!\cdots\!46}$, $\frac{39\!\cdots\!19}{80\!\cdots\!46}a^{29}+\frac{994860012356039}{93\!\cdots\!61}a^{28}+\frac{11\!\cdots\!56}{40\!\cdots\!23}a^{27}+\frac{12\!\cdots\!79}{18\!\cdots\!22}a^{26}+\frac{99\!\cdots\!81}{80\!\cdots\!46}a^{25}+\frac{25\!\cdots\!08}{93\!\cdots\!61}a^{24}+\frac{90\!\cdots\!70}{40\!\cdots\!23}a^{23}+\frac{46\!\cdots\!64}{93\!\cdots\!61}a^{22}-\frac{16\!\cdots\!29}{80\!\cdots\!46}a^{21}-\frac{80\!\cdots\!93}{18\!\cdots\!22}a^{20}-\frac{39\!\cdots\!37}{40\!\cdots\!23}a^{19}-\frac{19\!\cdots\!01}{93\!\cdots\!61}a^{18}-\frac{10\!\cdots\!45}{80\!\cdots\!46}a^{17}-\frac{34\!\cdots\!12}{93\!\cdots\!61}a^{16}+\frac{16\!\cdots\!75}{80\!\cdots\!46}a^{15}+\frac{81\!\cdots\!05}{18\!\cdots\!22}a^{14}+\frac{11\!\cdots\!57}{80\!\cdots\!46}a^{13}+\frac{61\!\cdots\!01}{18\!\cdots\!22}a^{12}-\frac{81\!\cdots\!61}{40\!\cdots\!23}a^{11}-\frac{39\!\cdots\!05}{93\!\cdots\!61}a^{10}-\frac{80\!\cdots\!46}{40\!\cdots\!23}a^{9}-\frac{42\!\cdots\!43}{93\!\cdots\!61}a^{8}+\frac{66\!\cdots\!89}{40\!\cdots\!23}a^{7}+\frac{31\!\cdots\!01}{93\!\cdots\!61}a^{6}+\frac{71\!\cdots\!00}{40\!\cdots\!23}a^{5}+\frac{37\!\cdots\!61}{93\!\cdots\!61}a^{4}+\frac{39\!\cdots\!59}{40\!\cdots\!23}a^{3}+\frac{32\!\cdots\!27}{93\!\cdots\!61}a^{2}-\frac{37\!\cdots\!70}{40\!\cdots\!23}a-\frac{12\!\cdots\!39}{93\!\cdots\!61}$, $\frac{88\!\cdots\!27}{80\!\cdots\!46}a^{29}+\frac{11\!\cdots\!61}{80\!\cdots\!46}a^{28}+\frac{20\!\cdots\!92}{40\!\cdots\!23}a^{27}+\frac{33\!\cdots\!48}{40\!\cdots\!23}a^{26}+\frac{15\!\cdots\!19}{80\!\cdots\!46}a^{25}+\frac{13\!\cdots\!55}{40\!\cdots\!23}a^{24}+\frac{59\!\cdots\!90}{40\!\cdots\!23}a^{23}+\frac{24\!\cdots\!49}{40\!\cdots\!23}a^{22}-\frac{43\!\cdots\!41}{40\!\cdots\!23}a^{21}-\frac{52\!\cdots\!23}{80\!\cdots\!46}a^{20}-\frac{10\!\cdots\!59}{80\!\cdots\!46}a^{19}-\frac{21\!\cdots\!23}{80\!\cdots\!46}a^{18}+\frac{12\!\cdots\!90}{40\!\cdots\!23}a^{17}-\frac{55\!\cdots\!55}{40\!\cdots\!23}a^{16}+\frac{31\!\cdots\!13}{80\!\cdots\!46}a^{15}+\frac{45\!\cdots\!79}{80\!\cdots\!46}a^{14}-\frac{18\!\cdots\!15}{40\!\cdots\!23}a^{13}+\frac{14\!\cdots\!79}{40\!\cdots\!23}a^{12}-\frac{60\!\cdots\!19}{80\!\cdots\!46}a^{11}-\frac{47\!\cdots\!23}{80\!\cdots\!46}a^{10}+\frac{21\!\cdots\!25}{40\!\cdots\!23}a^{9}-\frac{20\!\cdots\!66}{40\!\cdots\!23}a^{8}+\frac{37\!\cdots\!76}{40\!\cdots\!23}a^{7}+\frac{38\!\cdots\!41}{80\!\cdots\!46}a^{6}-\frac{21\!\cdots\!22}{40\!\cdots\!23}a^{5}+\frac{18\!\cdots\!83}{40\!\cdots\!23}a^{4}-\frac{15\!\cdots\!94}{40\!\cdots\!23}a^{3}+\frac{10\!\cdots\!17}{40\!\cdots\!23}a^{2}+\frac{22\!\cdots\!67}{80\!\cdots\!46}a-\frac{63\!\cdots\!75}{80\!\cdots\!46}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 18931497.119988322 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{15}\cdot 18931497.119988322 \cdot 1}{4\cdot\sqrt{1310417368511817590988945406032175169536}}\cr\approx \mathstrut & 0.122777326819508 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^30 + 6*x^28 + 25*x^26 + 45*x^24 - 44*x^22 - 197*x^20 - 20*x^18 + 411*x^16 + 283*x^14 - 424*x^12 - 397*x^10 + 348*x^8 + 358*x^6 + 8*x^4 - 7*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^30 + 6*x^28 + 25*x^26 + 45*x^24 - 44*x^22 - 197*x^20 - 20*x^18 + 411*x^16 + 283*x^14 - 424*x^12 - 397*x^10 + 348*x^8 + 358*x^6 + 8*x^4 - 7*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^30 + 6*x^28 + 25*x^26 + 45*x^24 - 44*x^22 - 197*x^20 - 20*x^18 + 411*x^16 + 283*x^14 - 424*x^12 - 397*x^10 + 348*x^8 + 358*x^6 + 8*x^4 - 7*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 + 6*x^28 + 25*x^26 + 45*x^24 - 44*x^22 - 197*x^20 - 20*x^18 + 411*x^16 + 283*x^14 - 424*x^12 - 397*x^10 + 348*x^8 + 358*x^6 + 8*x^4 - 7*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times C_{10}$ (as 30T12):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 60
The 30 conjugacy class representatives for $S_3\times C_{10}$
Character table for $S_3\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-1}) \), 3.1.44.1, \(\Q(\zeta_{11})^+\), 6.0.30976.1, 10.0.219503494144.1, 15.5.35351257235385344.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 30 sibling: 30.10.14414591053629993500878399466353926864896.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $30$ $15^{2}$ ${\href{/padicField/7.10.0.1}{10} }^{3}$ R ${\href{/padicField/13.10.0.1}{10} }^{2}{,}\,{\href{/padicField/13.5.0.1}{5} }^{2}$ ${\href{/padicField/17.10.0.1}{10} }^{2}{,}\,{\href{/padicField/17.5.0.1}{5} }^{2}$ ${\href{/padicField/19.10.0.1}{10} }^{3}$ ${\href{/padicField/23.6.0.1}{6} }^{5}$ ${\href{/padicField/29.10.0.1}{10} }^{2}{,}\,{\href{/padicField/29.5.0.1}{5} }^{2}$ $30$ $15^{2}$ ${\href{/padicField/41.10.0.1}{10} }^{2}{,}\,{\href{/padicField/41.5.0.1}{5} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{15}$ ${\href{/padicField/47.10.0.1}{10} }^{3}$ ${\href{/padicField/53.5.0.1}{5} }^{6}$ $30$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $30$$6$$5$$40$
\(11\) Copy content Toggle raw display 11.10.8.5$x^{10} + 35 x^{9} + 500 x^{8} + 3710 x^{7} + 14985 x^{6} + 31389 x^{5} + 30355 x^{4} + 19790 x^{3} + 37110 x^{2} + 111495 x + 148840$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.20.18.1$x^{20} + 70 x^{19} + 2225 x^{18} + 42420 x^{17} + 539670 x^{16} + 4821684 x^{15} + 31004730 x^{14} + 144683280 x^{13} + 488310165 x^{12} + 1177567510 x^{11} + 1996241675 x^{10} + 2355135790 x^{9} + 1953262935 x^{8} + 1157863560 x^{7} + 500734950 x^{6} + 191763012 x^{5} + 243790230 x^{4} + 806750280 x^{3} + 2014356815 x^{2} + 2999040310 x + 2009802620$$10$$2$$18$20T3$[\ ]_{10}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
1.44.2t1.a.a$1$ $ 2^{2} \cdot 11 $ \(\Q(\sqrt{11}) \) $C_2$ (as 2T1) $1$ $1$
1.11.2t1.a.a$1$ $ 11 $ \(\Q(\sqrt{-11}) \) $C_2$ (as 2T1) $1$ $-1$
1.44.10t1.b.a$1$ $ 2^{2} \cdot 11 $ \(\Q(\zeta_{44})^+\) $C_{10}$ (as 10T1) $0$ $1$
* 1.11.5t1.a.a$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
1.11.10t1.a.a$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
* 1.44.10t1.a.a$1$ $ 2^{2} \cdot 11 $ 10.0.219503494144.1 $C_{10}$ (as 10T1) $0$ $-1$
1.11.10t1.a.b$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
1.44.10t1.b.b$1$ $ 2^{2} \cdot 11 $ \(\Q(\zeta_{44})^+\) $C_{10}$ (as 10T1) $0$ $1$
* 1.44.10t1.a.b$1$ $ 2^{2} \cdot 11 $ 10.0.219503494144.1 $C_{10}$ (as 10T1) $0$ $-1$
* 1.11.5t1.a.b$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
1.44.10t1.b.c$1$ $ 2^{2} \cdot 11 $ \(\Q(\zeta_{44})^+\) $C_{10}$ (as 10T1) $0$ $1$
* 1.11.5t1.a.c$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
1.44.10t1.b.d$1$ $ 2^{2} \cdot 11 $ \(\Q(\zeta_{44})^+\) $C_{10}$ (as 10T1) $0$ $1$
1.11.10t1.a.c$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
* 1.44.10t1.a.c$1$ $ 2^{2} \cdot 11 $ 10.0.219503494144.1 $C_{10}$ (as 10T1) $0$ $-1$
1.11.10t1.a.d$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
* 1.44.10t1.a.d$1$ $ 2^{2} \cdot 11 $ 10.0.219503494144.1 $C_{10}$ (as 10T1) $0$ $-1$
* 1.11.5t1.a.d$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
* 2.176.6t3.a.a$2$ $ 2^{4} \cdot 11 $ 6.2.340736.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.44.3t2.b.a$2$ $ 2^{2} \cdot 11 $ 3.1.44.1 $S_3$ (as 3T2) $1$ $0$
* 2.484.15t4.a.a$2$ $ 2^{2} \cdot 11^{2}$ 15.5.35351257235385344.1 $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.484.15t4.a.b$2$ $ 2^{2} \cdot 11^{2}$ 15.5.35351257235385344.1 $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.484.15t4.a.c$2$ $ 2^{2} \cdot 11^{2}$ 15.5.35351257235385344.1 $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.1936.30t12.a.a$2$ $ 2^{4} \cdot 11^{2}$ 30.0.1310417368511817590988945406032175169536.1 $S_3\times C_{10}$ (as 30T12) $0$ $0$
* 2.1936.30t12.a.b$2$ $ 2^{4} \cdot 11^{2}$ 30.0.1310417368511817590988945406032175169536.1 $S_3\times C_{10}$ (as 30T12) $0$ $0$
* 2.1936.30t12.a.c$2$ $ 2^{4} \cdot 11^{2}$ 30.0.1310417368511817590988945406032175169536.1 $S_3\times C_{10}$ (as 30T12) $0$ $0$
* 2.1936.30t12.a.d$2$ $ 2^{4} \cdot 11^{2}$ 30.0.1310417368511817590988945406032175169536.1 $S_3\times C_{10}$ (as 30T12) $0$ $0$
* 2.484.15t4.a.d$2$ $ 2^{2} \cdot 11^{2}$ 15.5.35351257235385344.1 $S_3 \times C_5$ (as 15T4) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.