Properties

Label 30.0.182...875.1
Degree $30$
Signature $[0, 15]$
Discriminant $-1.820\times 10^{43}$
Root discriminant \(27.67\)
Ramified primes $3,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{30}$ (as 30T14)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 - 10*x^27 - 54*x^25 + 90*x^24 + 315*x^23 + 15*x^22 - 240*x^21 + 504*x^20 - 4740*x^19 + 8375*x^18 - 14580*x^17 + 25140*x^16 - 34179*x^15 + 51465*x^14 - 61710*x^13 + 70215*x^12 - 67800*x^11 + 45276*x^10 - 22840*x^9 - 3240*x^8 + 16350*x^7 - 10730*x^6 + 4956*x^5 + 2280*x^4 - 4065*x^3 - 420*x^2 + 780*x + 169)
 
gp: K = bnfinit(y^30 - 10*y^27 - 54*y^25 + 90*y^24 + 315*y^23 + 15*y^22 - 240*y^21 + 504*y^20 - 4740*y^19 + 8375*y^18 - 14580*y^17 + 25140*y^16 - 34179*y^15 + 51465*y^14 - 61710*y^13 + 70215*y^12 - 67800*y^11 + 45276*y^10 - 22840*y^9 - 3240*y^8 + 16350*y^7 - 10730*y^6 + 4956*y^5 + 2280*y^4 - 4065*y^3 - 420*y^2 + 780*y + 169, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^30 - 10*x^27 - 54*x^25 + 90*x^24 + 315*x^23 + 15*x^22 - 240*x^21 + 504*x^20 - 4740*x^19 + 8375*x^18 - 14580*x^17 + 25140*x^16 - 34179*x^15 + 51465*x^14 - 61710*x^13 + 70215*x^12 - 67800*x^11 + 45276*x^10 - 22840*x^9 - 3240*x^8 + 16350*x^7 - 10730*x^6 + 4956*x^5 + 2280*x^4 - 4065*x^3 - 420*x^2 + 780*x + 169);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - 10*x^27 - 54*x^25 + 90*x^24 + 315*x^23 + 15*x^22 - 240*x^21 + 504*x^20 - 4740*x^19 + 8375*x^18 - 14580*x^17 + 25140*x^16 - 34179*x^15 + 51465*x^14 - 61710*x^13 + 70215*x^12 - 67800*x^11 + 45276*x^10 - 22840*x^9 - 3240*x^8 + 16350*x^7 - 10730*x^6 + 4956*x^5 + 2280*x^4 - 4065*x^3 - 420*x^2 + 780*x + 169)
 

\( x^{30} - 10 x^{27} - 54 x^{25} + 90 x^{24} + 315 x^{23} + 15 x^{22} - 240 x^{21} + 504 x^{20} + \cdots + 169 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 15]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-18201370075621419164235703647136688232421875\) \(\medspace = -\,3^{35}\cdot 5^{38}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(27.67\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{7/6}5^{13/10}\approx 29.194595979271636$
Ramified primes:   \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{5}a^{20}-\frac{1}{5}a^{15}+\frac{2}{5}a^{10}+\frac{1}{5}a^{5}+\frac{1}{5}$, $\frac{1}{5}a^{21}-\frac{1}{5}a^{16}+\frac{2}{5}a^{11}+\frac{1}{5}a^{6}+\frac{1}{5}a$, $\frac{1}{35}a^{22}+\frac{3}{35}a^{21}+\frac{2}{35}a^{20}-\frac{2}{7}a^{19}-\frac{16}{35}a^{17}+\frac{1}{5}a^{16}+\frac{3}{35}a^{15}-\frac{1}{7}a^{14}+\frac{2}{7}a^{13}-\frac{3}{35}a^{12}+\frac{11}{35}a^{11}+\frac{9}{35}a^{10}+\frac{1}{7}a^{9}-\frac{3}{7}a^{8}-\frac{4}{35}a^{7}-\frac{12}{35}a^{6}+\frac{12}{35}a^{5}-\frac{3}{7}a^{4}-\frac{2}{5}a^{2}-\frac{1}{5}a+\frac{17}{35}$, $\frac{1}{35}a^{23}-\frac{2}{35}a^{20}-\frac{1}{7}a^{19}-\frac{16}{35}a^{18}-\frac{3}{7}a^{17}+\frac{2}{7}a^{16}+\frac{1}{5}a^{15}-\frac{2}{7}a^{14}+\frac{2}{35}a^{13}-\frac{3}{7}a^{12}-\frac{2}{7}a^{11}+\frac{6}{35}a^{10}+\frac{1}{7}a^{9}+\frac{6}{35}a^{8}-\frac{3}{7}a^{6}-\frac{2}{35}a^{5}+\frac{2}{7}a^{4}-\frac{2}{5}a^{3}+\frac{2}{7}a-\frac{2}{35}$, $\frac{1}{35}a^{24}-\frac{2}{35}a^{21}+\frac{2}{35}a^{20}-\frac{16}{35}a^{19}-\frac{3}{7}a^{18}+\frac{2}{7}a^{17}+\frac{1}{5}a^{16}-\frac{17}{35}a^{15}+\frac{2}{35}a^{14}-\frac{3}{7}a^{13}-\frac{2}{7}a^{12}+\frac{6}{35}a^{11}-\frac{16}{35}a^{10}+\frac{6}{35}a^{9}-\frac{3}{7}a^{7}-\frac{2}{35}a^{6}+\frac{17}{35}a^{5}-\frac{2}{5}a^{4}+\frac{2}{7}a^{2}-\frac{2}{35}a+\frac{1}{5}$, $\frac{1}{455}a^{25}+\frac{6}{455}a^{24}+\frac{1}{91}a^{22}+\frac{4}{455}a^{21}-\frac{11}{455}a^{20}+\frac{99}{455}a^{19}+\frac{40}{91}a^{18}+\frac{40}{91}a^{17}+\frac{116}{455}a^{16}+\frac{187}{455}a^{15}+\frac{172}{455}a^{14}-\frac{34}{91}a^{13}-\frac{36}{91}a^{12}+\frac{153}{455}a^{11}-\frac{139}{455}a^{10}+\frac{106}{455}a^{9}-\frac{38}{91}a^{8}-\frac{3}{91}a^{7}+\frac{194}{455}a^{6}-\frac{59}{455}a^{5}+\frac{1}{5}a^{4}-\frac{40}{91}a^{3}-\frac{1}{91}a^{2}+\frac{149}{455}a$, $\frac{1}{1365}a^{26}+\frac{1}{1365}a^{25}-\frac{17}{1365}a^{24}-\frac{8}{1365}a^{23}-\frac{8}{1365}a^{22}+\frac{73}{1365}a^{21}-\frac{41}{1365}a^{20}-\frac{113}{1365}a^{19}-\frac{332}{1365}a^{18}+\frac{46}{105}a^{17}+\frac{478}{1365}a^{16}-\frac{44}{195}a^{15}+\frac{142}{455}a^{14}+\frac{193}{455}a^{13}+\frac{16}{35}a^{12}+\frac{77}{195}a^{11}+\frac{86}{1365}a^{10}-\frac{187}{1365}a^{9}-\frac{248}{1365}a^{8}+\frac{22}{1365}a^{7}-\frac{94}{273}a^{6}-\frac{394}{1365}a^{5}+\frac{29}{195}a^{4}-\frac{643}{1365}a^{3}+\frac{577}{1365}a^{2}-\frac{446}{1365}a+\frac{8}{21}$, $\frac{1}{1365}a^{27}+\frac{1}{91}a^{22}-\frac{1}{455}a^{21}+\frac{1}{455}a^{20}-\frac{31}{91}a^{19}-\frac{36}{91}a^{18}-\frac{218}{455}a^{17}+\frac{23}{65}a^{16}-\frac{94}{195}a^{15}-\frac{20}{91}a^{14}-\frac{6}{91}a^{13}-\frac{46}{195}a^{12}+\frac{11}{35}a^{11}-\frac{223}{455}a^{10}+\frac{73}{273}a^{9}+\frac{37}{91}a^{8}+\frac{12}{65}a^{7}+\frac{487}{1365}a^{6}+\frac{28}{65}a^{5}+\frac{45}{91}a^{4}+\frac{10}{39}a^{3}-\frac{33}{455}a^{2}-\frac{71}{455}a-\frac{34}{105}$, $\frac{1}{2895165}a^{28}+\frac{698}{2895165}a^{27}-\frac{76}{965055}a^{26}+\frac{19}{27573}a^{25}+\frac{3359}{965055}a^{24}-\frac{122}{9555}a^{23}+\frac{992}{137865}a^{22}+\frac{65879}{965055}a^{21}+\frac{2437}{965055}a^{20}+\frac{36958}{137865}a^{19}-\frac{451886}{965055}a^{18}-\frac{51838}{965055}a^{17}+\frac{125659}{579033}a^{16}-\frac{926936}{2895165}a^{15}-\frac{18419}{74235}a^{14}+\frac{6014}{59085}a^{13}+\frac{1263523}{2895165}a^{12}-\frac{10775}{193011}a^{11}-\frac{170089}{413595}a^{10}-\frac{671618}{2895165}a^{9}+\frac{62289}{321685}a^{8}+\frac{252643}{2895165}a^{7}+\frac{297056}{2895165}a^{6}+\frac{312967}{965055}a^{5}+\frac{743807}{2895165}a^{4}-\frac{7933}{82719}a^{3}+\frac{49487}{193011}a^{2}+\frac{330989}{2895165}a+\frac{35167}{222705}$, $\frac{1}{53\!\cdots\!65}a^{29}+\frac{21\!\cdots\!51}{53\!\cdots\!65}a^{28}-\frac{22\!\cdots\!64}{17\!\cdots\!55}a^{27}-\frac{30\!\cdots\!68}{17\!\cdots\!55}a^{26}-\frac{99\!\cdots\!51}{17\!\cdots\!55}a^{25}+\frac{93\!\cdots\!32}{17\!\cdots\!55}a^{24}+\frac{32\!\cdots\!99}{17\!\cdots\!55}a^{23}+\frac{22\!\cdots\!67}{17\!\cdots\!55}a^{22}-\frac{15\!\cdots\!21}{17\!\cdots\!55}a^{21}-\frac{66\!\cdots\!06}{17\!\cdots\!55}a^{20}-\frac{94\!\cdots\!05}{35\!\cdots\!31}a^{19}-\frac{51\!\cdots\!77}{17\!\cdots\!55}a^{18}+\frac{16\!\cdots\!17}{53\!\cdots\!65}a^{17}-\frac{43\!\cdots\!43}{76\!\cdots\!95}a^{16}-\frac{43\!\cdots\!10}{35\!\cdots\!31}a^{15}+\frac{14\!\cdots\!95}{82\!\cdots\!61}a^{14}-\frac{52\!\cdots\!83}{53\!\cdots\!65}a^{13}-\frac{36\!\cdots\!32}{17\!\cdots\!95}a^{12}-\frac{19\!\cdots\!83}{48\!\cdots\!15}a^{11}+\frac{47\!\cdots\!13}{10\!\cdots\!93}a^{10}+\frac{25\!\cdots\!06}{17\!\cdots\!55}a^{9}+\frac{14\!\cdots\!44}{53\!\cdots\!65}a^{8}+\frac{16\!\cdots\!82}{53\!\cdots\!65}a^{7}+\frac{63\!\cdots\!76}{59\!\cdots\!85}a^{6}-\frac{23\!\cdots\!94}{53\!\cdots\!65}a^{5}-\frac{20\!\cdots\!13}{48\!\cdots\!15}a^{4}+\frac{67\!\cdots\!06}{17\!\cdots\!55}a^{3}+\frac{21\!\cdots\!54}{53\!\cdots\!65}a^{2}+\frac{21\!\cdots\!68}{48\!\cdots\!15}a-\frac{61\!\cdots\!69}{13\!\cdots\!35}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{28462002722786499284753032816814653700}{30317591421286120523162940091320603597} a^{29} + \frac{3619278397947896576200338827762898925}{10105863807095373507720980030440201199} a^{28} - \frac{1312298602345125295358981719662366075}{10105863807095373507720980030440201199} a^{27} + \frac{95405291063157126503097438468412958850}{10105863807095373507720980030440201199} a^{26} - \frac{36367531137290110774953308414864845037}{10105863807095373507720980030440201199} a^{25} + \frac{525527446311583792284086570769780616900}{10105863807095373507720980030440201199} a^{24} - \frac{1054635870958817756398204122562794807675}{10105863807095373507720980030440201199} a^{23} - \frac{2590143704661338513635887425110164341550}{10105863807095373507720980030440201199} a^{22} + \frac{850048619271101942131553191269164084275}{10105863807095373507720980030440201199} a^{21} + \frac{1975347934877957111038159693227220526040}{10105863807095373507720980030440201199} a^{20} - \frac{5523059093159433402198589864005018884750}{10105863807095373507720980030440201199} a^{19} + \frac{47070729815537056389278468858176099100750}{10105863807095373507720980030440201199} a^{18} - \frac{292134514893133712754268808069785634378575}{30317591421286120523162940091320603597} a^{17} + \frac{175165268244565669536665949744854008124725}{10105863807095373507720980030440201199} a^{16} - \frac{304896124545251530841200580017870270208315}{10105863807095373507720980030440201199} a^{15} + \frac{1319167661237719113450559475594377019183525}{30317591421286120523162940091320603597} a^{14} - \frac{654608145651314508466409569523125056233650}{10105863807095373507720980030440201199} a^{13} + \frac{64102155808919135990454711106791809841050}{777374139007336423670844617726169323} a^{12} - \frac{20582977701429532501585305462275082669800}{212011128820182661001139441198046179} a^{11} + \frac{1014306039119988302979095465236704918406070}{10105863807095373507720980030440201199} a^{10} - \frac{812612296543988678078742512747163667200500}{10105863807095373507720980030440201199} a^{9} + \frac{1569753066023245948014259975297822047518950}{30317591421286120523162940091320603597} a^{8} - \frac{166634965900769550112161104050885224034500}{10105863807095373507720980030440201199} a^{7} - \frac{92691151981952739613339147678644131865575}{10105863807095373507720980030440201199} a^{6} + \frac{410366956472347224214019824069103099378045}{30317591421286120523162940091320603597} a^{5} - \frac{8948261474047600771643735627409097112600}{918714891554124864338270911858200109} a^{4} + \frac{15419509118447175639631781418175953334125}{10105863807095373507720980030440201199} a^{3} + \frac{7607553036377624804569245063026768537150}{2332122417022009271012533853178507969} a^{2} - \frac{58803895853992073636283501160661010350}{70670376273394220333713147066015393} a - \frac{332626935564749037683632574285524203870}{777374139007336423670844617726169323} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{63\!\cdots\!32}{61\!\cdots\!45}a^{29}-\frac{17\!\cdots\!99}{47\!\cdots\!65}a^{28}+\frac{26\!\cdots\!07}{20\!\cdots\!15}a^{27}-\frac{21\!\cdots\!23}{20\!\cdots\!15}a^{26}+\frac{74\!\cdots\!52}{20\!\cdots\!15}a^{25}-\frac{23\!\cdots\!06}{41\!\cdots\!83}a^{24}+\frac{23\!\cdots\!57}{20\!\cdots\!15}a^{23}+\frac{58\!\cdots\!66}{20\!\cdots\!15}a^{22}-\frac{11\!\cdots\!37}{13\!\cdots\!61}a^{21}-\frac{14\!\cdots\!14}{68\!\cdots\!05}a^{20}+\frac{40\!\cdots\!38}{68\!\cdots\!05}a^{19}-\frac{10\!\cdots\!01}{20\!\cdots\!15}a^{18}+\frac{63\!\cdots\!98}{61\!\cdots\!45}a^{17}-\frac{16\!\cdots\!72}{88\!\cdots\!35}a^{16}+\frac{22\!\cdots\!18}{68\!\cdots\!05}a^{15}-\frac{28\!\cdots\!09}{61\!\cdots\!45}a^{14}+\frac{42\!\cdots\!76}{61\!\cdots\!45}a^{13}-\frac{19\!\cdots\!57}{22\!\cdots\!65}a^{12}+\frac{63\!\cdots\!28}{61\!\cdots\!45}a^{11}-\frac{65\!\cdots\!04}{61\!\cdots\!45}a^{10}+\frac{17\!\cdots\!38}{20\!\cdots\!15}a^{9}-\frac{32\!\cdots\!58}{61\!\cdots\!45}a^{8}+\frac{19\!\cdots\!46}{12\!\cdots\!49}a^{7}+\frac{77\!\cdots\!58}{68\!\cdots\!05}a^{6}-\frac{92\!\cdots\!84}{61\!\cdots\!45}a^{5}+\frac{64\!\cdots\!77}{61\!\cdots\!45}a^{4}-\frac{27\!\cdots\!27}{20\!\cdots\!15}a^{3}-\frac{22\!\cdots\!56}{61\!\cdots\!45}a^{2}+\frac{53\!\cdots\!61}{61\!\cdots\!45}a+\frac{15\!\cdots\!91}{31\!\cdots\!91}$, $\frac{58\!\cdots\!14}{68\!\cdots\!95}a^{29}-\frac{27\!\cdots\!93}{13\!\cdots\!39}a^{28}+\frac{63\!\cdots\!89}{68\!\cdots\!95}a^{27}-\frac{19\!\cdots\!66}{22\!\cdots\!65}a^{26}+\frac{46\!\cdots\!06}{22\!\cdots\!65}a^{25}-\frac{10\!\cdots\!78}{22\!\cdots\!65}a^{24}+\frac{19\!\cdots\!22}{22\!\cdots\!65}a^{23}+\frac{55\!\cdots\!53}{22\!\cdots\!65}a^{22}-\frac{75\!\cdots\!13}{17\!\cdots\!05}a^{21}-\frac{40\!\cdots\!03}{22\!\cdots\!65}a^{20}+\frac{11\!\cdots\!26}{22\!\cdots\!65}a^{19}-\frac{31\!\cdots\!09}{75\!\cdots\!55}a^{18}+\frac{11\!\cdots\!83}{13\!\cdots\!39}a^{17}-\frac{14\!\cdots\!63}{97\!\cdots\!85}a^{16}+\frac{17\!\cdots\!37}{68\!\cdots\!95}a^{15}-\frac{24\!\cdots\!16}{68\!\cdots\!95}a^{14}+\frac{36\!\cdots\!72}{68\!\cdots\!95}a^{13}-\frac{12\!\cdots\!69}{19\!\cdots\!77}a^{12}+\frac{47\!\cdots\!92}{61\!\cdots\!45}a^{11}-\frac{52\!\cdots\!54}{68\!\cdots\!95}a^{10}+\frac{39\!\cdots\!14}{68\!\cdots\!95}a^{9}-\frac{23\!\cdots\!99}{68\!\cdots\!95}a^{8}+\frac{38\!\cdots\!47}{68\!\cdots\!95}a^{7}+\frac{87\!\cdots\!87}{68\!\cdots\!95}a^{6}-\frac{69\!\cdots\!06}{52\!\cdots\!15}a^{5}+\frac{10\!\cdots\!52}{12\!\cdots\!49}a^{4}-\frac{22\!\cdots\!94}{68\!\cdots\!95}a^{3}-\frac{22\!\cdots\!07}{68\!\cdots\!95}a^{2}+\frac{78\!\cdots\!18}{12\!\cdots\!49}a+\frac{21\!\cdots\!03}{52\!\cdots\!15}$, $\frac{25\!\cdots\!43}{17\!\cdots\!55}a^{29}-\frac{35\!\cdots\!31}{59\!\cdots\!85}a^{28}+\frac{12\!\cdots\!41}{59\!\cdots\!85}a^{27}-\frac{16\!\cdots\!75}{11\!\cdots\!77}a^{26}+\frac{35\!\cdots\!27}{59\!\cdots\!85}a^{25}-\frac{46\!\cdots\!07}{59\!\cdots\!85}a^{24}+\frac{19\!\cdots\!72}{11\!\cdots\!77}a^{23}+\frac{22\!\cdots\!47}{59\!\cdots\!85}a^{22}-\frac{83\!\cdots\!11}{59\!\cdots\!85}a^{21}-\frac{13\!\cdots\!72}{45\!\cdots\!45}a^{20}+\frac{49\!\cdots\!63}{59\!\cdots\!85}a^{19}-\frac{41\!\cdots\!66}{59\!\cdots\!85}a^{18}+\frac{26\!\cdots\!57}{17\!\cdots\!55}a^{17}-\frac{17\!\cdots\!14}{65\!\cdots\!35}a^{16}+\frac{27\!\cdots\!68}{59\!\cdots\!85}a^{15}-\frac{11\!\cdots\!28}{17\!\cdots\!55}a^{14}+\frac{59\!\cdots\!87}{59\!\cdots\!85}a^{13}-\frac{10\!\cdots\!79}{85\!\cdots\!55}a^{12}+\frac{24\!\cdots\!04}{16\!\cdots\!05}a^{11}-\frac{93\!\cdots\!01}{59\!\cdots\!85}a^{10}+\frac{15\!\cdots\!40}{11\!\cdots\!77}a^{9}-\frac{14\!\cdots\!61}{17\!\cdots\!55}a^{8}+\frac{16\!\cdots\!19}{59\!\cdots\!85}a^{7}+\frac{73\!\cdots\!84}{59\!\cdots\!85}a^{6}-\frac{36\!\cdots\!41}{17\!\cdots\!55}a^{5}+\frac{82\!\cdots\!89}{54\!\cdots\!35}a^{4}-\frac{17\!\cdots\!16}{59\!\cdots\!85}a^{3}-\frac{83\!\cdots\!46}{17\!\cdots\!55}a^{2}+\frac{70\!\cdots\!04}{54\!\cdots\!35}a+\frac{26\!\cdots\!32}{45\!\cdots\!45}$, $\frac{21\!\cdots\!14}{25\!\cdots\!65}a^{29}-\frac{27\!\cdots\!87}{85\!\cdots\!55}a^{28}+\frac{19\!\cdots\!70}{17\!\cdots\!11}a^{27}-\frac{73\!\cdots\!49}{85\!\cdots\!55}a^{26}+\frac{27\!\cdots\!27}{85\!\cdots\!55}a^{25}-\frac{40\!\cdots\!77}{85\!\cdots\!55}a^{24}+\frac{80\!\cdots\!83}{85\!\cdots\!55}a^{23}+\frac{40\!\cdots\!33}{17\!\cdots\!11}a^{22}-\frac{63\!\cdots\!98}{85\!\cdots\!55}a^{21}-\frac{15\!\cdots\!93}{85\!\cdots\!55}a^{20}+\frac{84\!\cdots\!57}{17\!\cdots\!11}a^{19}-\frac{10\!\cdots\!07}{24\!\cdots\!73}a^{18}+\frac{44\!\cdots\!88}{51\!\cdots\!33}a^{17}-\frac{13\!\cdots\!26}{85\!\cdots\!55}a^{16}+\frac{46\!\cdots\!18}{17\!\cdots\!11}a^{15}-\frac{20\!\cdots\!17}{51\!\cdots\!33}a^{14}+\frac{10\!\cdots\!61}{17\!\cdots\!11}a^{13}-\frac{12\!\cdots\!31}{17\!\cdots\!11}a^{12}+\frac{20\!\cdots\!46}{23\!\cdots\!15}a^{11}-\frac{15\!\cdots\!69}{17\!\cdots\!11}a^{10}+\frac{47\!\cdots\!98}{65\!\cdots\!35}a^{9}-\frac{11\!\cdots\!13}{25\!\cdots\!65}a^{8}+\frac{34\!\cdots\!67}{24\!\cdots\!73}a^{7}+\frac{81\!\cdots\!59}{93\!\cdots\!05}a^{6}-\frac{64\!\cdots\!58}{52\!\cdots\!85}a^{5}+\frac{68\!\cdots\!71}{77\!\cdots\!05}a^{4}-\frac{11\!\cdots\!19}{85\!\cdots\!55}a^{3}-\frac{11\!\cdots\!43}{39\!\cdots\!41}a^{2}+\frac{58\!\cdots\!18}{77\!\cdots\!05}a+\frac{25\!\cdots\!88}{65\!\cdots\!35}$, $\frac{32\!\cdots\!06}{17\!\cdots\!55}a^{29}-\frac{40\!\cdots\!96}{59\!\cdots\!85}a^{28}+\frac{29\!\cdots\!30}{11\!\cdots\!77}a^{27}-\frac{10\!\cdots\!76}{59\!\cdots\!85}a^{26}+\frac{82\!\cdots\!22}{11\!\cdots\!77}a^{25}-\frac{59\!\cdots\!41}{59\!\cdots\!85}a^{24}+\frac{23\!\cdots\!65}{11\!\cdots\!77}a^{23}+\frac{29\!\cdots\!11}{59\!\cdots\!85}a^{22}-\frac{95\!\cdots\!73}{59\!\cdots\!85}a^{21}-\frac{22\!\cdots\!49}{59\!\cdots\!85}a^{20}+\frac{48\!\cdots\!36}{45\!\cdots\!45}a^{19}-\frac{53\!\cdots\!41}{59\!\cdots\!85}a^{18}+\frac{33\!\cdots\!67}{17\!\cdots\!55}a^{17}-\frac{28\!\cdots\!99}{85\!\cdots\!55}a^{16}+\frac{34\!\cdots\!24}{59\!\cdots\!85}a^{15}-\frac{14\!\cdots\!38}{17\!\cdots\!55}a^{14}+\frac{57\!\cdots\!19}{45\!\cdots\!45}a^{13}-\frac{19\!\cdots\!82}{12\!\cdots\!65}a^{12}+\frac{30\!\cdots\!83}{16\!\cdots\!05}a^{11}-\frac{11\!\cdots\!83}{59\!\cdots\!85}a^{10}+\frac{92\!\cdots\!33}{59\!\cdots\!85}a^{9}-\frac{17\!\cdots\!46}{17\!\cdots\!55}a^{8}+\frac{18\!\cdots\!16}{59\!\cdots\!85}a^{7}+\frac{21\!\cdots\!27}{11\!\cdots\!77}a^{6}-\frac{46\!\cdots\!92}{17\!\cdots\!55}a^{5}+\frac{10\!\cdots\!91}{54\!\cdots\!35}a^{4}-\frac{17\!\cdots\!16}{59\!\cdots\!85}a^{3}-\frac{11\!\cdots\!87}{17\!\cdots\!55}a^{2}+\frac{86\!\cdots\!16}{54\!\cdots\!35}a+\frac{37\!\cdots\!27}{45\!\cdots\!45}$, $\frac{12\!\cdots\!84}{59\!\cdots\!85}a^{29}-\frac{47\!\cdots\!61}{59\!\cdots\!85}a^{28}+\frac{17\!\cdots\!36}{59\!\cdots\!85}a^{27}-\frac{12\!\cdots\!16}{58\!\cdots\!85}a^{26}+\frac{47\!\cdots\!86}{59\!\cdots\!85}a^{25}-\frac{70\!\cdots\!23}{59\!\cdots\!85}a^{24}+\frac{14\!\cdots\!96}{59\!\cdots\!85}a^{23}+\frac{34\!\cdots\!92}{59\!\cdots\!85}a^{22}-\frac{11\!\cdots\!87}{59\!\cdots\!85}a^{21}-\frac{26\!\cdots\!22}{59\!\cdots\!85}a^{20}+\frac{73\!\cdots\!82}{59\!\cdots\!85}a^{19}-\frac{62\!\cdots\!92}{59\!\cdots\!85}a^{18}+\frac{12\!\cdots\!19}{59\!\cdots\!85}a^{17}-\frac{33\!\cdots\!17}{85\!\cdots\!55}a^{16}+\frac{40\!\cdots\!23}{59\!\cdots\!85}a^{15}-\frac{58\!\cdots\!39}{59\!\cdots\!85}a^{14}+\frac{87\!\cdots\!94}{59\!\cdots\!85}a^{13}-\frac{15\!\cdots\!59}{85\!\cdots\!55}a^{12}+\frac{11\!\cdots\!18}{54\!\cdots\!35}a^{11}-\frac{13\!\cdots\!91}{59\!\cdots\!85}a^{10}+\frac{21\!\cdots\!15}{11\!\cdots\!77}a^{9}-\frac{69\!\cdots\!06}{59\!\cdots\!85}a^{8}+\frac{21\!\cdots\!39}{59\!\cdots\!85}a^{7}+\frac{12\!\cdots\!06}{59\!\cdots\!85}a^{6}-\frac{36\!\cdots\!23}{11\!\cdots\!77}a^{5}+\frac{91\!\cdots\!32}{41\!\cdots\!95}a^{4}-\frac{39\!\cdots\!60}{11\!\cdots\!77}a^{3}-\frac{44\!\cdots\!87}{59\!\cdots\!85}a^{2}+\frac{10\!\cdots\!02}{54\!\cdots\!35}a+\frac{45\!\cdots\!43}{45\!\cdots\!45}$, $\frac{38\!\cdots\!91}{59\!\cdots\!85}a^{29}-\frac{12\!\cdots\!99}{53\!\cdots\!65}a^{28}+\frac{45\!\cdots\!37}{53\!\cdots\!65}a^{27}-\frac{11\!\cdots\!68}{17\!\cdots\!55}a^{26}+\frac{40\!\cdots\!64}{17\!\cdots\!55}a^{25}-\frac{64\!\cdots\!41}{17\!\cdots\!55}a^{24}+\frac{12\!\cdots\!18}{17\!\cdots\!55}a^{23}+\frac{32\!\cdots\!67}{17\!\cdots\!55}a^{22}-\frac{94\!\cdots\!03}{17\!\cdots\!55}a^{21}-\frac{16\!\cdots\!99}{11\!\cdots\!77}a^{20}+\frac{22\!\cdots\!68}{59\!\cdots\!85}a^{19}-\frac{19\!\cdots\!27}{59\!\cdots\!85}a^{18}+\frac{90\!\cdots\!69}{13\!\cdots\!35}a^{17}-\frac{18\!\cdots\!73}{15\!\cdots\!99}a^{16}+\frac{84\!\cdots\!89}{41\!\cdots\!05}a^{15}-\frac{52\!\cdots\!33}{17\!\cdots\!55}a^{14}+\frac{23\!\cdots\!11}{53\!\cdots\!65}a^{13}-\frac{42\!\cdots\!21}{76\!\cdots\!95}a^{12}+\frac{70\!\cdots\!44}{10\!\cdots\!07}a^{11}-\frac{36\!\cdots\!44}{53\!\cdots\!65}a^{10}+\frac{57\!\cdots\!68}{10\!\cdots\!93}a^{9}-\frac{60\!\cdots\!83}{17\!\cdots\!55}a^{8}+\frac{10\!\cdots\!87}{10\!\cdots\!93}a^{7}+\frac{38\!\cdots\!18}{53\!\cdots\!65}a^{6}-\frac{16\!\cdots\!72}{17\!\cdots\!55}a^{5}+\frac{32\!\cdots\!31}{48\!\cdots\!15}a^{4}-\frac{69\!\cdots\!15}{82\!\cdots\!61}a^{3}-\frac{13\!\cdots\!18}{59\!\cdots\!85}a^{2}+\frac{26\!\cdots\!72}{48\!\cdots\!15}a+\frac{12\!\cdots\!59}{41\!\cdots\!05}$, $\frac{53\!\cdots\!49}{25\!\cdots\!65}a^{29}-\frac{59\!\cdots\!53}{76\!\cdots\!95}a^{28}+\frac{17\!\cdots\!73}{58\!\cdots\!15}a^{27}-\frac{53\!\cdots\!26}{25\!\cdots\!65}a^{26}+\frac{19\!\cdots\!33}{25\!\cdots\!65}a^{25}-\frac{29\!\cdots\!76}{25\!\cdots\!65}a^{24}+\frac{58\!\cdots\!51}{25\!\cdots\!65}a^{23}+\frac{11\!\cdots\!87}{19\!\cdots\!05}a^{22}-\frac{46\!\cdots\!69}{25\!\cdots\!65}a^{21}-\frac{36\!\cdots\!21}{85\!\cdots\!55}a^{20}+\frac{20\!\cdots\!90}{17\!\cdots\!11}a^{19}-\frac{87\!\cdots\!09}{85\!\cdots\!55}a^{18}+\frac{54\!\cdots\!67}{25\!\cdots\!65}a^{17}-\frac{59\!\cdots\!69}{15\!\cdots\!55}a^{16}+\frac{50\!\cdots\!38}{76\!\cdots\!95}a^{15}-\frac{48\!\cdots\!63}{51\!\cdots\!33}a^{14}+\frac{10\!\cdots\!82}{76\!\cdots\!95}a^{13}-\frac{28\!\cdots\!13}{15\!\cdots\!55}a^{12}+\frac{49\!\cdots\!24}{23\!\cdots\!15}a^{11}-\frac{16\!\cdots\!81}{76\!\cdots\!95}a^{10}+\frac{13\!\cdots\!71}{76\!\cdots\!95}a^{9}-\frac{29\!\cdots\!06}{25\!\cdots\!65}a^{8}+\frac{27\!\cdots\!91}{76\!\cdots\!95}a^{7}+\frac{12\!\cdots\!64}{58\!\cdots\!15}a^{6}-\frac{25\!\cdots\!79}{85\!\cdots\!55}a^{5}+\frac{14\!\cdots\!89}{69\!\cdots\!45}a^{4}-\frac{50\!\cdots\!05}{15\!\cdots\!99}a^{3}-\frac{18\!\cdots\!86}{25\!\cdots\!65}a^{2}+\frac{25\!\cdots\!48}{13\!\cdots\!09}a+\frac{11\!\cdots\!80}{11\!\cdots\!23}$, $\frac{16\!\cdots\!73}{48\!\cdots\!15}a^{29}-\frac{59\!\cdots\!31}{48\!\cdots\!15}a^{28}+\frac{74\!\cdots\!33}{16\!\cdots\!05}a^{27}-\frac{18\!\cdots\!51}{54\!\cdots\!35}a^{26}+\frac{66\!\cdots\!22}{54\!\cdots\!35}a^{25}-\frac{10\!\cdots\!63}{54\!\cdots\!35}a^{24}+\frac{19\!\cdots\!49}{54\!\cdots\!35}a^{23}+\frac{49\!\cdots\!93}{54\!\cdots\!35}a^{22}-\frac{46\!\cdots\!59}{16\!\cdots\!05}a^{21}-\frac{11\!\cdots\!38}{16\!\cdots\!05}a^{20}+\frac{63\!\cdots\!14}{32\!\cdots\!21}a^{19}-\frac{68\!\cdots\!71}{41\!\cdots\!95}a^{18}+\frac{16\!\cdots\!07}{48\!\cdots\!15}a^{17}-\frac{42\!\cdots\!16}{69\!\cdots\!45}a^{16}+\frac{17\!\cdots\!39}{16\!\cdots\!05}a^{15}-\frac{14\!\cdots\!23}{97\!\cdots\!63}a^{14}+\frac{11\!\cdots\!44}{48\!\cdots\!15}a^{13}-\frac{67\!\cdots\!99}{23\!\cdots\!15}a^{12}+\frac{16\!\cdots\!34}{48\!\cdots\!15}a^{11}-\frac{17\!\cdots\!39}{48\!\cdots\!15}a^{10}+\frac{45\!\cdots\!58}{16\!\cdots\!05}a^{9}-\frac{87\!\cdots\!36}{48\!\cdots\!15}a^{8}+\frac{53\!\cdots\!95}{97\!\cdots\!63}a^{7}+\frac{11\!\cdots\!50}{32\!\cdots\!21}a^{6}-\frac{23\!\cdots\!13}{48\!\cdots\!15}a^{5}+\frac{16\!\cdots\!66}{48\!\cdots\!15}a^{4}-\frac{55\!\cdots\!17}{10\!\cdots\!07}a^{3}-\frac{56\!\cdots\!54}{48\!\cdots\!15}a^{2}+\frac{14\!\cdots\!94}{48\!\cdots\!15}a+\frac{19\!\cdots\!26}{12\!\cdots\!85}$, $\frac{68\!\cdots\!87}{53\!\cdots\!65}a^{29}-\frac{25\!\cdots\!89}{53\!\cdots\!65}a^{28}+\frac{31\!\cdots\!81}{17\!\cdots\!55}a^{27}-\frac{23\!\cdots\!23}{17\!\cdots\!55}a^{26}+\frac{17\!\cdots\!11}{35\!\cdots\!31}a^{25}-\frac{12\!\cdots\!63}{17\!\cdots\!55}a^{24}+\frac{25\!\cdots\!73}{17\!\cdots\!55}a^{23}+\frac{62\!\cdots\!37}{17\!\cdots\!55}a^{22}-\frac{40\!\cdots\!41}{35\!\cdots\!31}a^{21}-\frac{47\!\cdots\!77}{17\!\cdots\!55}a^{20}+\frac{13\!\cdots\!42}{17\!\cdots\!55}a^{19}-\frac{11\!\cdots\!01}{17\!\cdots\!55}a^{18}+\frac{70\!\cdots\!27}{53\!\cdots\!65}a^{17}-\frac{18\!\cdots\!42}{76\!\cdots\!95}a^{16}+\frac{73\!\cdots\!32}{17\!\cdots\!55}a^{15}-\frac{31\!\cdots\!57}{53\!\cdots\!65}a^{14}+\frac{47\!\cdots\!41}{53\!\cdots\!65}a^{13}-\frac{13\!\cdots\!34}{12\!\cdots\!65}a^{12}+\frac{64\!\cdots\!08}{48\!\cdots\!15}a^{11}-\frac{72\!\cdots\!57}{53\!\cdots\!65}a^{10}+\frac{38\!\cdots\!32}{35\!\cdots\!31}a^{9}-\frac{37\!\cdots\!49}{53\!\cdots\!65}a^{8}+\frac{11\!\cdots\!32}{53\!\cdots\!65}a^{7}+\frac{76\!\cdots\!73}{59\!\cdots\!85}a^{6}-\frac{99\!\cdots\!81}{53\!\cdots\!65}a^{5}+\frac{64\!\cdots\!53}{48\!\cdots\!15}a^{4}-\frac{71\!\cdots\!93}{35\!\cdots\!31}a^{3}-\frac{23\!\cdots\!81}{53\!\cdots\!65}a^{2}+\frac{54\!\cdots\!56}{48\!\cdots\!15}a+\frac{80\!\cdots\!16}{13\!\cdots\!35}$, $\frac{11\!\cdots\!95}{11\!\cdots\!23}a^{29}-\frac{12\!\cdots\!02}{76\!\cdots\!95}a^{28}+\frac{20\!\cdots\!16}{25\!\cdots\!65}a^{27}-\frac{89\!\cdots\!93}{85\!\cdots\!55}a^{26}+\frac{21\!\cdots\!67}{13\!\cdots\!47}a^{25}-\frac{46\!\cdots\!07}{85\!\cdots\!55}a^{24}+\frac{31\!\cdots\!55}{17\!\cdots\!11}a^{23}+\frac{27\!\cdots\!29}{17\!\cdots\!11}a^{22}-\frac{11\!\cdots\!47}{25\!\cdots\!65}a^{21}-\frac{71\!\cdots\!34}{25\!\cdots\!65}a^{20}+\frac{18\!\cdots\!66}{25\!\cdots\!65}a^{19}-\frac{47\!\cdots\!43}{85\!\cdots\!55}a^{18}+\frac{12\!\cdots\!48}{76\!\cdots\!95}a^{17}-\frac{22\!\cdots\!16}{76\!\cdots\!95}a^{16}+\frac{44\!\cdots\!93}{85\!\cdots\!55}a^{15}-\frac{61\!\cdots\!86}{76\!\cdots\!95}a^{14}+\frac{69\!\cdots\!73}{58\!\cdots\!15}a^{13}-\frac{13\!\cdots\!09}{85\!\cdots\!55}a^{12}+\frac{13\!\cdots\!32}{69\!\cdots\!45}a^{11}-\frac{16\!\cdots\!54}{76\!\cdots\!95}a^{10}+\frac{16\!\cdots\!78}{85\!\cdots\!55}a^{9}-\frac{15\!\cdots\!42}{10\!\cdots\!85}a^{8}+\frac{59\!\cdots\!66}{76\!\cdots\!95}a^{7}-\frac{48\!\cdots\!41}{51\!\cdots\!33}a^{6}-\frac{14\!\cdots\!07}{75\!\cdots\!95}a^{5}+\frac{11\!\cdots\!84}{53\!\cdots\!65}a^{4}-\frac{28\!\cdots\!49}{25\!\cdots\!65}a^{3}-\frac{15\!\cdots\!89}{58\!\cdots\!15}a^{2}+\frac{30\!\cdots\!36}{99\!\cdots\!35}a+\frac{11\!\cdots\!72}{19\!\cdots\!05}$, $\frac{63\!\cdots\!34}{53\!\cdots\!65}a^{29}-\frac{45\!\cdots\!63}{10\!\cdots\!93}a^{28}+\frac{86\!\cdots\!94}{53\!\cdots\!65}a^{27}-\frac{21\!\cdots\!64}{17\!\cdots\!55}a^{26}+\frac{76\!\cdots\!11}{17\!\cdots\!55}a^{25}-\frac{23\!\cdots\!20}{35\!\cdots\!31}a^{24}+\frac{23\!\cdots\!28}{17\!\cdots\!55}a^{23}+\frac{44\!\cdots\!27}{13\!\cdots\!35}a^{22}-\frac{35\!\cdots\!36}{35\!\cdots\!31}a^{21}-\frac{43\!\cdots\!07}{17\!\cdots\!55}a^{20}+\frac{12\!\cdots\!53}{17\!\cdots\!55}a^{19}-\frac{34\!\cdots\!81}{59\!\cdots\!85}a^{18}+\frac{64\!\cdots\!01}{53\!\cdots\!65}a^{17}-\frac{16\!\cdots\!91}{76\!\cdots\!95}a^{16}+\frac{20\!\cdots\!44}{53\!\cdots\!65}a^{15}-\frac{28\!\cdots\!08}{53\!\cdots\!65}a^{14}+\frac{43\!\cdots\!28}{53\!\cdots\!65}a^{13}-\frac{60\!\cdots\!22}{58\!\cdots\!15}a^{12}+\frac{58\!\cdots\!39}{48\!\cdots\!15}a^{11}-\frac{66\!\cdots\!48}{53\!\cdots\!65}a^{10}+\frac{52\!\cdots\!28}{53\!\cdots\!65}a^{9}-\frac{33\!\cdots\!86}{53\!\cdots\!65}a^{8}+\frac{10\!\cdots\!66}{53\!\cdots\!65}a^{7}+\frac{65\!\cdots\!11}{53\!\cdots\!65}a^{6}-\frac{18\!\cdots\!49}{10\!\cdots\!93}a^{5}+\frac{58\!\cdots\!69}{48\!\cdots\!15}a^{4}-\frac{92\!\cdots\!41}{53\!\cdots\!65}a^{3}-\frac{22\!\cdots\!48}{53\!\cdots\!65}a^{2}+\frac{49\!\cdots\!43}{48\!\cdots\!15}a+\frac{22\!\cdots\!99}{41\!\cdots\!05}$, $\frac{33\!\cdots\!73}{53\!\cdots\!65}a^{29}-\frac{13\!\cdots\!16}{53\!\cdots\!65}a^{28}+\frac{29\!\cdots\!58}{35\!\cdots\!31}a^{27}-\frac{22\!\cdots\!81}{35\!\cdots\!31}a^{26}+\frac{87\!\cdots\!78}{35\!\cdots\!31}a^{25}-\frac{62\!\cdots\!91}{17\!\cdots\!55}a^{24}+\frac{12\!\cdots\!27}{17\!\cdots\!55}a^{23}+\frac{30\!\cdots\!42}{17\!\cdots\!55}a^{22}-\frac{10\!\cdots\!27}{17\!\cdots\!55}a^{21}-\frac{23\!\cdots\!22}{17\!\cdots\!55}a^{20}+\frac{65\!\cdots\!22}{17\!\cdots\!55}a^{19}-\frac{55\!\cdots\!84}{17\!\cdots\!55}a^{18}+\frac{34\!\cdots\!94}{53\!\cdots\!65}a^{17}-\frac{89\!\cdots\!12}{76\!\cdots\!95}a^{16}+\frac{36\!\cdots\!22}{17\!\cdots\!55}a^{15}-\frac{15\!\cdots\!47}{53\!\cdots\!65}a^{14}+\frac{23\!\cdots\!09}{53\!\cdots\!65}a^{13}-\frac{14\!\cdots\!63}{25\!\cdots\!65}a^{12}+\frac{31\!\cdots\!78}{48\!\cdots\!15}a^{11}-\frac{36\!\cdots\!17}{53\!\cdots\!65}a^{10}+\frac{32\!\cdots\!67}{59\!\cdots\!85}a^{9}-\frac{18\!\cdots\!91}{53\!\cdots\!65}a^{8}+\frac{58\!\cdots\!51}{53\!\cdots\!65}a^{7}+\frac{11\!\cdots\!73}{17\!\cdots\!55}a^{6}-\frac{49\!\cdots\!11}{53\!\cdots\!65}a^{5}+\frac{63\!\cdots\!29}{97\!\cdots\!63}a^{4}-\frac{28\!\cdots\!14}{27\!\cdots\!87}a^{3}-\frac{11\!\cdots\!59}{53\!\cdots\!65}a^{2}+\frac{27\!\cdots\!99}{48\!\cdots\!15}a+\frac{13\!\cdots\!27}{45\!\cdots\!45}$, $\frac{59\!\cdots\!48}{35\!\cdots\!31}a^{29}-\frac{36\!\cdots\!64}{59\!\cdots\!85}a^{28}+\frac{30\!\cdots\!83}{17\!\cdots\!55}a^{27}-\frac{22\!\cdots\!46}{13\!\cdots\!35}a^{26}+\frac{16\!\cdots\!39}{27\!\cdots\!87}a^{25}-\frac{32\!\cdots\!40}{35\!\cdots\!31}a^{24}+\frac{25\!\cdots\!27}{13\!\cdots\!35}a^{23}+\frac{81\!\cdots\!52}{17\!\cdots\!55}a^{22}-\frac{52\!\cdots\!17}{35\!\cdots\!31}a^{21}-\frac{64\!\cdots\!78}{17\!\cdots\!55}a^{20}+\frac{34\!\cdots\!54}{35\!\cdots\!31}a^{19}-\frac{11\!\cdots\!71}{13\!\cdots\!35}a^{18}+\frac{10\!\cdots\!97}{59\!\cdots\!85}a^{17}-\frac{76\!\cdots\!79}{25\!\cdots\!65}a^{16}+\frac{93\!\cdots\!63}{17\!\cdots\!55}a^{15}-\frac{26\!\cdots\!23}{35\!\cdots\!31}a^{14}+\frac{66\!\cdots\!22}{59\!\cdots\!85}a^{13}-\frac{36\!\cdots\!96}{25\!\cdots\!65}a^{12}+\frac{26\!\cdots\!51}{16\!\cdots\!05}a^{11}-\frac{23\!\cdots\!92}{13\!\cdots\!35}a^{10}+\frac{15\!\cdots\!30}{11\!\cdots\!77}a^{9}-\frac{11\!\cdots\!56}{13\!\cdots\!35}a^{8}+\frac{41\!\cdots\!98}{17\!\cdots\!55}a^{7}+\frac{11\!\cdots\!93}{59\!\cdots\!85}a^{6}-\frac{44\!\cdots\!18}{17\!\cdots\!55}a^{5}+\frac{54\!\cdots\!81}{32\!\cdots\!21}a^{4}-\frac{12\!\cdots\!97}{59\!\cdots\!85}a^{3}-\frac{74\!\cdots\!98}{11\!\cdots\!77}a^{2}+\frac{24\!\cdots\!62}{16\!\cdots\!05}a+\frac{11\!\cdots\!99}{13\!\cdots\!35}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 17149795938.655872 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{15}\cdot 17149795938.655872 \cdot 1}{6\cdot\sqrt{18201370075621419164235703647136688232421875}}\cr\approx \mathstrut & 0.629149262500347 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^30 - 10*x^27 - 54*x^25 + 90*x^24 + 315*x^23 + 15*x^22 - 240*x^21 + 504*x^20 - 4740*x^19 + 8375*x^18 - 14580*x^17 + 25140*x^16 - 34179*x^15 + 51465*x^14 - 61710*x^13 + 70215*x^12 - 67800*x^11 + 45276*x^10 - 22840*x^9 - 3240*x^8 + 16350*x^7 - 10730*x^6 + 4956*x^5 + 2280*x^4 - 4065*x^3 - 420*x^2 + 780*x + 169)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^30 - 10*x^27 - 54*x^25 + 90*x^24 + 315*x^23 + 15*x^22 - 240*x^21 + 504*x^20 - 4740*x^19 + 8375*x^18 - 14580*x^17 + 25140*x^16 - 34179*x^15 + 51465*x^14 - 61710*x^13 + 70215*x^12 - 67800*x^11 + 45276*x^10 - 22840*x^9 - 3240*x^8 + 16350*x^7 - 10730*x^6 + 4956*x^5 + 2280*x^4 - 4065*x^3 - 420*x^2 + 780*x + 169, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^30 - 10*x^27 - 54*x^25 + 90*x^24 + 315*x^23 + 15*x^22 - 240*x^21 + 504*x^20 - 4740*x^19 + 8375*x^18 - 14580*x^17 + 25140*x^16 - 34179*x^15 + 51465*x^14 - 61710*x^13 + 70215*x^12 - 67800*x^11 + 45276*x^10 - 22840*x^9 - 3240*x^8 + 16350*x^7 - 10730*x^6 + 4956*x^5 + 2280*x^4 - 4065*x^3 - 420*x^2 + 780*x + 169);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - 10*x^27 - 54*x^25 + 90*x^24 + 315*x^23 + 15*x^22 - 240*x^21 + 504*x^20 - 4740*x^19 + 8375*x^18 - 14580*x^17 + 25140*x^16 - 34179*x^15 + 51465*x^14 - 61710*x^13 + 70215*x^12 - 67800*x^11 + 45276*x^10 - 22840*x^9 - 3240*x^8 + 16350*x^7 - 10730*x^6 + 4956*x^5 + 2280*x^4 - 4065*x^3 - 420*x^2 + 780*x + 169);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{30}$ (as 30T14):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 60
The 18 conjugacy class representatives for $D_{30}$
Character table for $D_{30}$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.135.1, 5.1.140625.1, 6.0.54675.1, 10.0.59326171875.1, 15.1.2463153133392333984375.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 30 sibling: deg 30
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $30$ R R ${\href{/padicField/7.2.0.1}{2} }^{14}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.2.0.1}{2} }^{15}$ ${\href{/padicField/13.2.0.1}{2} }^{14}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ $30$ $15^{2}$ $30$ ${\href{/padicField/29.2.0.1}{2} }^{15}$ $15^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{14}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{15}$ ${\href{/padicField/43.2.0.1}{2} }^{14}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.10.0.1}{10} }^{3}$ $30$ ${\href{/padicField/59.2.0.1}{2} }^{15}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.6.7.5$x^{6} + 6 x^{2} + 3$$6$$1$$7$$D_{6}$$[3/2]_{2}^{2}$
3.12.14.11$x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 792 x^{8} + 1728 x^{7} + 2918 x^{6} + 3684 x^{5} + 3156 x^{4} + 1376 x^{3} - 36 x^{2} - 168 x + 25$$6$$2$$14$$D_6$$[3/2]_{2}^{2}$
3.12.14.11$x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 792 x^{8} + 1728 x^{7} + 2918 x^{6} + 3684 x^{5} + 3156 x^{4} + 1376 x^{3} - 36 x^{2} - 168 x + 25$$6$$2$$14$$D_6$$[3/2]_{2}^{2}$
\(5\) Copy content Toggle raw display 5.10.12.10$x^{10} + 20 x^{7} - 200 x^{6} + 10 x^{5} + 100 x^{4} + 100 x^{2} + 25$$5$$2$$12$$D_{10}$$[3/2]_{2}^{2}$
Deg $20$$10$$2$$26$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
1.15.2t1.a.a$1$ $ 3 \cdot 5 $ \(\Q(\sqrt{-15}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.135.6t3.a.a$2$ $ 3^{3} \cdot 5 $ 6.2.91125.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.135.3t2.b.a$2$ $ 3^{3} \cdot 5 $ 3.1.135.1 $S_3$ (as 3T2) $1$ $0$
* 2.375.5t2.a.a$2$ $ 3 \cdot 5^{3}$ 5.1.140625.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.375.5t2.a.b$2$ $ 3 \cdot 5^{3}$ 5.1.140625.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.375.10t3.a.b$2$ $ 3 \cdot 5^{3}$ 10.2.98876953125.1 $D_{10}$ (as 10T3) $1$ $0$
* 2.375.10t3.a.a$2$ $ 3 \cdot 5^{3}$ 10.2.98876953125.1 $D_{10}$ (as 10T3) $1$ $0$
* 2.3375.15t2.a.a$2$ $ 3^{3} \cdot 5^{3}$ 15.1.2463153133392333984375.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3375.30t14.a.c$2$ $ 3^{3} \cdot 5^{3}$ 30.0.18201370075621419164235703647136688232421875.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.3375.15t2.a.c$2$ $ 3^{3} \cdot 5^{3}$ 15.1.2463153133392333984375.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3375.30t14.a.a$2$ $ 3^{3} \cdot 5^{3}$ 30.0.18201370075621419164235703647136688232421875.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.3375.15t2.a.b$2$ $ 3^{3} \cdot 5^{3}$ 15.1.2463153133392333984375.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3375.30t14.a.b$2$ $ 3^{3} \cdot 5^{3}$ 30.0.18201370075621419164235703647136688232421875.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.3375.15t2.a.d$2$ $ 3^{3} \cdot 5^{3}$ 15.1.2463153133392333984375.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3375.30t14.a.d$2$ $ 3^{3} \cdot 5^{3}$ 30.0.18201370075621419164235703647136688232421875.1 $D_{30}$ (as 30T14) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.