Properties

Label 30.0.218...571.1
Degree $30$
Signature $[0, 15]$
Discriminant $-2.187\times 10^{41}$
Root discriminant \(23.88\)
Ramified primes $3,7,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_3\times C_{10}$ (as 30T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 - 7*x^28 + 10*x^27 + 7*x^26 - 19*x^25 + 56*x^24 - 38*x^23 - 238*x^22 + 196*x^21 + 1084*x^20 + 255*x^19 - 3219*x^18 - 4472*x^17 + 2252*x^16 + 12483*x^15 + 13641*x^14 + 1966*x^13 - 11281*x^12 - 13340*x^11 - 5077*x^10 + 3378*x^9 + 6156*x^8 + 4833*x^7 + 3411*x^6 + 3672*x^5 + 4671*x^4 + 4536*x^3 + 2997*x^2 + 1215*x + 243)
 
gp: K = bnfinit(y^30 - y^29 - 7*y^28 + 10*y^27 + 7*y^26 - 19*y^25 + 56*y^24 - 38*y^23 - 238*y^22 + 196*y^21 + 1084*y^20 + 255*y^19 - 3219*y^18 - 4472*y^17 + 2252*y^16 + 12483*y^15 + 13641*y^14 + 1966*y^13 - 11281*y^12 - 13340*y^11 - 5077*y^10 + 3378*y^9 + 6156*y^8 + 4833*y^7 + 3411*y^6 + 3672*y^5 + 4671*y^4 + 4536*y^3 + 2997*y^2 + 1215*y + 243, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^30 - x^29 - 7*x^28 + 10*x^27 + 7*x^26 - 19*x^25 + 56*x^24 - 38*x^23 - 238*x^22 + 196*x^21 + 1084*x^20 + 255*x^19 - 3219*x^18 - 4472*x^17 + 2252*x^16 + 12483*x^15 + 13641*x^14 + 1966*x^13 - 11281*x^12 - 13340*x^11 - 5077*x^10 + 3378*x^9 + 6156*x^8 + 4833*x^7 + 3411*x^6 + 3672*x^5 + 4671*x^4 + 4536*x^3 + 2997*x^2 + 1215*x + 243);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 - 7*x^28 + 10*x^27 + 7*x^26 - 19*x^25 + 56*x^24 - 38*x^23 - 238*x^22 + 196*x^21 + 1084*x^20 + 255*x^19 - 3219*x^18 - 4472*x^17 + 2252*x^16 + 12483*x^15 + 13641*x^14 + 1966*x^13 - 11281*x^12 - 13340*x^11 - 5077*x^10 + 3378*x^9 + 6156*x^8 + 4833*x^7 + 3411*x^6 + 3672*x^5 + 4671*x^4 + 4536*x^3 + 2997*x^2 + 1215*x + 243)
 

\( x^{30} - x^{29} - 7 x^{28} + 10 x^{27} + 7 x^{26} - 19 x^{25} + 56 x^{24} - 38 x^{23} - 238 x^{22} + \cdots + 243 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 15]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-218673142739125286650364496602923076372571\) \(\medspace = -\,3^{10}\cdot 7^{10}\cdot 11^{27}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(23.88\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}7^{1/2}11^{9/10}\approx 39.66094555677728$
Ramified primes:   \(3\), \(7\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-11}) \)
$\card{ \Aut(K/\Q) }$:  $10$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{3}a^{22}-\frac{1}{3}a^{21}-\frac{1}{3}a^{20}+\frac{1}{3}a^{19}+\frac{1}{3}a^{18}-\frac{1}{3}a^{17}-\frac{1}{3}a^{16}+\frac{1}{3}a^{15}-\frac{1}{3}a^{14}+\frac{1}{3}a^{13}+\frac{1}{3}a^{12}+\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{23}+\frac{1}{3}a^{21}-\frac{1}{3}a^{19}+\frac{1}{3}a^{17}-\frac{1}{3}a^{13}+\frac{1}{3}a^{12}+\frac{1}{3}a^{10}-\frac{1}{3}a^{8}+\frac{1}{3}a^{6}-\frac{1}{3}a^{2}$, $\frac{1}{9}a^{24}-\frac{1}{9}a^{23}-\frac{1}{9}a^{22}+\frac{4}{9}a^{21}+\frac{1}{9}a^{20}-\frac{4}{9}a^{19}-\frac{1}{9}a^{18}+\frac{1}{9}a^{17}-\frac{1}{9}a^{16}+\frac{4}{9}a^{15}-\frac{2}{9}a^{14}+\frac{1}{9}a^{11}+\frac{2}{9}a^{10}-\frac{1}{3}a^{9}+\frac{4}{9}a^{7}-\frac{4}{9}a^{6}+\frac{4}{9}a^{5}+\frac{2}{9}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{25}+\frac{1}{9}a^{23}+\frac{2}{9}a^{21}-\frac{2}{9}a^{19}-\frac{1}{3}a^{18}-\frac{1}{3}a^{17}-\frac{1}{3}a^{16}-\frac{1}{9}a^{15}+\frac{1}{9}a^{14}+\frac{1}{3}a^{13}+\frac{1}{9}a^{12}+\frac{1}{3}a^{11}+\frac{2}{9}a^{10}+\frac{1}{3}a^{9}+\frac{4}{9}a^{8}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{4}{9}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{27}a^{26}-\frac{1}{27}a^{25}-\frac{1}{27}a^{24}+\frac{4}{27}a^{23}+\frac{1}{27}a^{22}+\frac{5}{27}a^{21}+\frac{8}{27}a^{20}-\frac{8}{27}a^{19}-\frac{1}{27}a^{18}+\frac{13}{27}a^{17}-\frac{2}{27}a^{16}+\frac{1}{3}a^{15}+\frac{1}{3}a^{14}+\frac{10}{27}a^{13}+\frac{11}{27}a^{12}-\frac{4}{9}a^{11}-\frac{1}{3}a^{10}+\frac{4}{27}a^{9}+\frac{5}{27}a^{8}-\frac{5}{27}a^{7}+\frac{2}{27}a^{6}+\frac{4}{9}a^{4}$, $\frac{1}{16118811}a^{27}-\frac{175403}{16118811}a^{26}-\frac{218239}{5372937}a^{25}-\frac{519343}{16118811}a^{24}+\frac{550706}{5372937}a^{23}-\frac{2171594}{16118811}a^{22}-\frac{2681012}{5372937}a^{21}-\frac{1741096}{16118811}a^{20}-\frac{1864496}{16118811}a^{19}+\frac{6992216}{16118811}a^{18}+\frac{250573}{1790979}a^{17}-\frac{4271440}{16118811}a^{16}+\frac{675887}{1790979}a^{15}-\frac{6204290}{16118811}a^{14}+\frac{6597991}{16118811}a^{13}+\frac{3996766}{16118811}a^{12}+\frac{440647}{1790979}a^{11}-\frac{2066660}{16118811}a^{10}-\frac{5198174}{16118811}a^{9}+\frac{1452506}{16118811}a^{8}+\frac{6909142}{16118811}a^{7}+\frac{1708003}{16118811}a^{6}-\frac{535498}{1790979}a^{5}-\frac{1955864}{5372937}a^{4}-\frac{203687}{1790979}a^{3}-\frac{589217}{1790979}a^{2}-\frac{5286}{596993}a+\frac{11975}{596993}$, $\frac{1}{13\!\cdots\!83}a^{28}+\frac{10\!\cdots\!92}{13\!\cdots\!83}a^{27}+\frac{16\!\cdots\!65}{13\!\cdots\!83}a^{26}-\frac{19\!\cdots\!74}{13\!\cdots\!83}a^{25}-\frac{72\!\cdots\!98}{13\!\cdots\!83}a^{24}-\frac{84\!\cdots\!83}{13\!\cdots\!83}a^{23}+\frac{17\!\cdots\!28}{13\!\cdots\!83}a^{22}+\frac{38\!\cdots\!91}{13\!\cdots\!83}a^{21}-\frac{63\!\cdots\!69}{13\!\cdots\!83}a^{20}+\frac{17\!\cdots\!18}{13\!\cdots\!83}a^{19}-\frac{64\!\cdots\!87}{13\!\cdots\!83}a^{18}-\frac{18\!\cdots\!85}{44\!\cdots\!61}a^{17}+\frac{13\!\cdots\!66}{44\!\cdots\!61}a^{16}+\frac{35\!\cdots\!12}{13\!\cdots\!83}a^{15}-\frac{43\!\cdots\!41}{13\!\cdots\!83}a^{14}+\frac{11\!\cdots\!33}{44\!\cdots\!61}a^{13}+\frac{70\!\cdots\!35}{44\!\cdots\!61}a^{12}-\frac{52\!\cdots\!95}{13\!\cdots\!83}a^{11}-\frac{54\!\cdots\!64}{13\!\cdots\!83}a^{10}-\frac{46\!\cdots\!16}{13\!\cdots\!83}a^{9}-\frac{62\!\cdots\!32}{13\!\cdots\!83}a^{8}-\frac{18\!\cdots\!74}{14\!\cdots\!87}a^{7}-\frac{73\!\cdots\!04}{44\!\cdots\!61}a^{6}-\frac{44\!\cdots\!14}{16\!\cdots\!43}a^{5}+\frac{22\!\cdots\!96}{14\!\cdots\!87}a^{4}+\frac{26\!\cdots\!25}{49\!\cdots\!29}a^{3}-\frac{50\!\cdots\!83}{49\!\cdots\!29}a^{2}-\frac{43\!\cdots\!73}{16\!\cdots\!43}a+\frac{45\!\cdots\!60}{16\!\cdots\!43}$, $\frac{1}{13\!\cdots\!83}a^{29}-\frac{12\!\cdots\!01}{13\!\cdots\!83}a^{27}-\frac{22\!\cdots\!46}{14\!\cdots\!87}a^{26}+\frac{60\!\cdots\!49}{13\!\cdots\!83}a^{25}+\frac{98\!\cdots\!76}{49\!\cdots\!29}a^{24}-\frac{17\!\cdots\!93}{13\!\cdots\!83}a^{23}+\frac{73\!\cdots\!25}{44\!\cdots\!61}a^{22}+\frac{34\!\cdots\!52}{44\!\cdots\!61}a^{21}+\frac{18\!\cdots\!23}{44\!\cdots\!61}a^{20}-\frac{86\!\cdots\!15}{13\!\cdots\!83}a^{19}+\frac{59\!\cdots\!91}{13\!\cdots\!83}a^{18}-\frac{18\!\cdots\!49}{44\!\cdots\!61}a^{17}-\frac{51\!\cdots\!29}{13\!\cdots\!83}a^{16}+\frac{18\!\cdots\!15}{44\!\cdots\!61}a^{15}-\frac{20\!\cdots\!77}{13\!\cdots\!83}a^{14}+\frac{15\!\cdots\!44}{44\!\cdots\!61}a^{13}-\frac{89\!\cdots\!48}{13\!\cdots\!83}a^{12}+\frac{46\!\cdots\!39}{14\!\cdots\!87}a^{11}-\frac{44\!\cdots\!31}{14\!\cdots\!87}a^{10}+\frac{75\!\cdots\!98}{44\!\cdots\!61}a^{9}-\frac{26\!\cdots\!26}{13\!\cdots\!83}a^{8}+\frac{37\!\cdots\!56}{14\!\cdots\!87}a^{7}-\frac{10\!\cdots\!13}{44\!\cdots\!61}a^{6}+\frac{18\!\cdots\!61}{16\!\cdots\!43}a^{5}+\frac{22\!\cdots\!37}{14\!\cdots\!87}a^{4}+\frac{60\!\cdots\!13}{49\!\cdots\!29}a^{3}+\frac{70\!\cdots\!96}{16\!\cdots\!43}a^{2}-\frac{38\!\cdots\!66}{16\!\cdots\!43}a-\frac{42\!\cdots\!14}{16\!\cdots\!43}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{14985944126668949796770}{444506122090616825805561} a^{29} - \frac{57916689768438880663813}{1333518366271850477416683} a^{28} - \frac{310995119440734449425775}{1333518366271850477416683} a^{27} + \frac{570759361142080836846808}{1333518366271850477416683} a^{26} + \frac{205542305643285951787943}{1333518366271850477416683} a^{25} - \frac{1145929077705595095381430}{1333518366271850477416683} a^{24} + \frac{3048528716784902297297278}{1333518366271850477416683} a^{23} - \frac{2451991912176888140242832}{1333518366271850477416683} a^{22} - \frac{11063715601165292668878010}{1333518366271850477416683} a^{21} + \frac{13911367511948149567990186}{1333518366271850477416683} a^{20} + \frac{45894595032825835522510586}{1333518366271850477416683} a^{19} - \frac{7409899204825608944141599}{1333518366271850477416683} a^{18} - \frac{49827236241543549134194300}{444506122090616825805561} a^{17} - \frac{49021381004627799702597941}{444506122090616825805561} a^{16} + \frac{174808008743312504409384794}{1333518366271850477416683} a^{15} + \frac{515661522125556506978389783}{1333518366271850477416683} a^{14} + \frac{15018328043639418064459739}{49389569121179647311729} a^{13} - \frac{11975206705689880210213799}{148168707363538941935187} a^{12} - \frac{494137991370875464772033209}{1333518366271850477416683} a^{11} - \frac{400469526139081526844869225}{1333518366271850477416683} a^{10} - \frac{41400014075348365025775271}{1333518366271850477416683} a^{9} + \frac{186951589892709425110358449}{1333518366271850477416683} a^{8} + \frac{68122579637294031654713024}{444506122090616825805561} a^{7} + \frac{14557323152659319920512899}{148168707363538941935187} a^{6} + \frac{10475848704164554417644293}{148168707363538941935187} a^{5} + \frac{13955815672782903681447167}{148168707363538941935187} a^{4} + \frac{1959045578039528792102941}{16463189707059882437243} a^{3} + \frac{5088934067583265898729254}{49389569121179647311729} a^{2} + \frac{911351614229557878857748}{16463189707059882437243} a + \frac{251388423805714886048849}{16463189707059882437243} \)  (order $22$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{72\!\cdots\!67}{44\!\cdots\!61}a^{29}-\frac{30\!\cdots\!69}{44\!\cdots\!61}a^{28}-\frac{65\!\cdots\!26}{44\!\cdots\!61}a^{27}+\frac{64\!\cdots\!97}{44\!\cdots\!61}a^{26}+\frac{16\!\cdots\!44}{49\!\cdots\!29}a^{25}-\frac{28\!\cdots\!48}{44\!\cdots\!61}a^{24}+\frac{13\!\cdots\!98}{14\!\cdots\!87}a^{23}+\frac{16\!\cdots\!18}{44\!\cdots\!61}a^{22}-\frac{27\!\cdots\!32}{44\!\cdots\!61}a^{21}+\frac{52\!\cdots\!66}{14\!\cdots\!87}a^{20}+\frac{10\!\cdots\!37}{44\!\cdots\!61}a^{19}+\frac{67\!\cdots\!73}{14\!\cdots\!87}a^{18}-\frac{33\!\cdots\!52}{49\!\cdots\!29}a^{17}-\frac{38\!\cdots\!41}{44\!\cdots\!61}a^{16}+\frac{28\!\cdots\!82}{44\!\cdots\!61}a^{15}+\frac{38\!\cdots\!59}{14\!\cdots\!87}a^{14}+\frac{10\!\cdots\!33}{44\!\cdots\!61}a^{13}-\frac{54\!\cdots\!86}{14\!\cdots\!87}a^{12}-\frac{11\!\cdots\!16}{44\!\cdots\!61}a^{11}-\frac{95\!\cdots\!76}{44\!\cdots\!61}a^{10}-\frac{36\!\cdots\!62}{14\!\cdots\!87}a^{9}+\frac{42\!\cdots\!80}{44\!\cdots\!61}a^{8}+\frac{18\!\cdots\!33}{18\!\cdots\!21}a^{7}+\frac{28\!\cdots\!88}{44\!\cdots\!61}a^{6}+\frac{63\!\cdots\!22}{14\!\cdots\!87}a^{5}+\frac{89\!\cdots\!67}{14\!\cdots\!87}a^{4}+\frac{38\!\cdots\!03}{49\!\cdots\!29}a^{3}+\frac{34\!\cdots\!31}{49\!\cdots\!29}a^{2}+\frac{60\!\cdots\!91}{16\!\cdots\!43}a+\frac{15\!\cdots\!82}{16\!\cdots\!43}$, $\frac{60\!\cdots\!31}{13\!\cdots\!83}a^{29}-\frac{15\!\cdots\!04}{14\!\cdots\!87}a^{28}-\frac{27\!\cdots\!88}{13\!\cdots\!83}a^{27}+\frac{11\!\cdots\!78}{14\!\cdots\!87}a^{26}-\frac{75\!\cdots\!99}{13\!\cdots\!83}a^{25}-\frac{27\!\cdots\!32}{49\!\cdots\!29}a^{24}+\frac{47\!\cdots\!49}{13\!\cdots\!83}a^{23}-\frac{26\!\cdots\!58}{44\!\cdots\!61}a^{22}-\frac{21\!\cdots\!45}{44\!\cdots\!61}a^{21}+\frac{82\!\cdots\!68}{44\!\cdots\!61}a^{20}+\frac{36\!\cdots\!88}{13\!\cdots\!83}a^{19}-\frac{44\!\cdots\!87}{13\!\cdots\!83}a^{18}-\frac{51\!\cdots\!80}{44\!\cdots\!61}a^{17}-\frac{46\!\cdots\!85}{13\!\cdots\!83}a^{16}+\frac{90\!\cdots\!98}{44\!\cdots\!61}a^{15}+\frac{41\!\cdots\!48}{13\!\cdots\!83}a^{14}+\frac{47\!\cdots\!69}{44\!\cdots\!61}a^{13}-\frac{26\!\cdots\!35}{13\!\cdots\!83}a^{12}-\frac{14\!\cdots\!05}{49\!\cdots\!29}a^{11}-\frac{53\!\cdots\!27}{44\!\cdots\!61}a^{10}+\frac{27\!\cdots\!84}{44\!\cdots\!61}a^{9}+\frac{15\!\cdots\!47}{13\!\cdots\!83}a^{8}+\frac{14\!\cdots\!18}{16\!\cdots\!43}a^{7}+\frac{20\!\cdots\!54}{44\!\cdots\!61}a^{6}+\frac{80\!\cdots\!69}{14\!\cdots\!87}a^{5}+\frac{37\!\cdots\!47}{49\!\cdots\!29}a^{4}+\frac{42\!\cdots\!09}{49\!\cdots\!29}a^{3}+\frac{27\!\cdots\!39}{49\!\cdots\!29}a^{2}+\frac{36\!\cdots\!40}{16\!\cdots\!43}a+\frac{33\!\cdots\!74}{16\!\cdots\!43}$, $\frac{21\!\cdots\!68}{49\!\cdots\!29}a^{29}-\frac{32\!\cdots\!09}{44\!\cdots\!61}a^{28}-\frac{11\!\cdots\!27}{44\!\cdots\!61}a^{27}+\frac{92\!\cdots\!13}{14\!\cdots\!87}a^{26}-\frac{16\!\cdots\!14}{14\!\cdots\!87}a^{25}-\frac{11\!\cdots\!69}{14\!\cdots\!87}a^{24}+\frac{44\!\cdots\!77}{14\!\cdots\!87}a^{23}-\frac{55\!\cdots\!58}{14\!\cdots\!87}a^{22}-\frac{11\!\cdots\!51}{14\!\cdots\!87}a^{21}+\frac{63\!\cdots\!08}{44\!\cdots\!61}a^{20}+\frac{16\!\cdots\!97}{44\!\cdots\!61}a^{19}-\frac{23\!\cdots\!51}{14\!\cdots\!87}a^{18}-\frac{59\!\cdots\!41}{44\!\cdots\!61}a^{17}-\frac{45\!\cdots\!68}{44\!\cdots\!61}a^{16}+\frac{80\!\cdots\!16}{44\!\cdots\!61}a^{15}+\frac{17\!\cdots\!76}{40\!\cdots\!29}a^{14}+\frac{12\!\cdots\!07}{44\!\cdots\!61}a^{13}-\frac{67\!\cdots\!74}{44\!\cdots\!61}a^{12}-\frac{18\!\cdots\!94}{44\!\cdots\!61}a^{11}-\frac{12\!\cdots\!54}{44\!\cdots\!61}a^{10}+\frac{65\!\cdots\!90}{44\!\cdots\!61}a^{9}+\frac{73\!\cdots\!88}{44\!\cdots\!61}a^{8}+\frac{66\!\cdots\!51}{44\!\cdots\!61}a^{7}+\frac{38\!\cdots\!27}{44\!\cdots\!61}a^{6}+\frac{11\!\cdots\!21}{14\!\cdots\!87}a^{5}+\frac{14\!\cdots\!32}{14\!\cdots\!87}a^{4}+\frac{62\!\cdots\!06}{49\!\cdots\!29}a^{3}+\frac{50\!\cdots\!42}{49\!\cdots\!29}a^{2}+\frac{79\!\cdots\!11}{16\!\cdots\!43}a+\frac{15\!\cdots\!35}{16\!\cdots\!43}$, $\frac{30\!\cdots\!82}{13\!\cdots\!83}a^{29}-\frac{10\!\cdots\!83}{44\!\cdots\!61}a^{28}-\frac{22\!\cdots\!39}{13\!\cdots\!83}a^{27}+\frac{39\!\cdots\!21}{14\!\cdots\!87}a^{26}+\frac{28\!\cdots\!94}{13\!\cdots\!83}a^{25}-\frac{96\!\cdots\!06}{14\!\cdots\!87}a^{24}+\frac{18\!\cdots\!26}{13\!\cdots\!83}a^{23}-\frac{30\!\cdots\!64}{44\!\cdots\!61}a^{22}-\frac{28\!\cdots\!39}{44\!\cdots\!61}a^{21}+\frac{27\!\cdots\!79}{44\!\cdots\!61}a^{20}+\frac{35\!\cdots\!32}{13\!\cdots\!83}a^{19}-\frac{11\!\cdots\!90}{13\!\cdots\!83}a^{18}-\frac{37\!\cdots\!30}{44\!\cdots\!61}a^{17}-\frac{11\!\cdots\!57}{13\!\cdots\!83}a^{16}+\frac{46\!\cdots\!01}{49\!\cdots\!29}a^{15}+\frac{39\!\cdots\!27}{13\!\cdots\!83}a^{14}+\frac{34\!\cdots\!77}{14\!\cdots\!87}a^{13}-\frac{91\!\cdots\!49}{13\!\cdots\!83}a^{12}-\frac{12\!\cdots\!81}{44\!\cdots\!61}a^{11}-\frac{98\!\cdots\!39}{44\!\cdots\!61}a^{10}-\frac{54\!\cdots\!04}{44\!\cdots\!61}a^{9}+\frac{14\!\cdots\!45}{13\!\cdots\!83}a^{8}+\frac{48\!\cdots\!64}{44\!\cdots\!61}a^{7}+\frac{10\!\cdots\!16}{14\!\cdots\!87}a^{6}+\frac{25\!\cdots\!16}{49\!\cdots\!29}a^{5}+\frac{10\!\cdots\!06}{14\!\cdots\!87}a^{4}+\frac{43\!\cdots\!09}{49\!\cdots\!29}a^{3}+\frac{37\!\cdots\!65}{49\!\cdots\!29}a^{2}+\frac{62\!\cdots\!10}{16\!\cdots\!43}a+\frac{16\!\cdots\!78}{16\!\cdots\!43}$, $\frac{78\!\cdots\!04}{13\!\cdots\!83}a^{29}-\frac{12\!\cdots\!65}{13\!\cdots\!83}a^{28}-\frac{47\!\cdots\!01}{13\!\cdots\!83}a^{27}+\frac{11\!\cdots\!14}{13\!\cdots\!83}a^{26}-\frac{11\!\cdots\!22}{13\!\cdots\!83}a^{25}-\frac{15\!\cdots\!73}{13\!\cdots\!83}a^{24}+\frac{54\!\cdots\!20}{13\!\cdots\!83}a^{23}-\frac{63\!\cdots\!44}{13\!\cdots\!83}a^{22}-\frac{15\!\cdots\!64}{13\!\cdots\!83}a^{21}+\frac{26\!\cdots\!22}{13\!\cdots\!83}a^{20}+\frac{69\!\cdots\!09}{13\!\cdots\!83}a^{19}-\frac{90\!\cdots\!70}{44\!\cdots\!61}a^{18}-\frac{80\!\cdots\!97}{44\!\cdots\!61}a^{17}-\frac{19\!\cdots\!96}{13\!\cdots\!83}a^{16}+\frac{32\!\cdots\!52}{13\!\cdots\!83}a^{15}+\frac{26\!\cdots\!59}{44\!\cdots\!61}a^{14}+\frac{18\!\cdots\!02}{44\!\cdots\!61}a^{13}-\frac{24\!\cdots\!78}{13\!\cdots\!83}a^{12}-\frac{76\!\cdots\!42}{13\!\cdots\!83}a^{11}-\frac{54\!\cdots\!98}{13\!\cdots\!83}a^{10}-\frac{15\!\cdots\!51}{13\!\cdots\!83}a^{9}+\frac{99\!\cdots\!51}{44\!\cdots\!61}a^{8}+\frac{32\!\cdots\!18}{14\!\cdots\!87}a^{7}+\frac{59\!\cdots\!15}{44\!\cdots\!61}a^{6}+\frac{15\!\cdots\!77}{14\!\cdots\!87}a^{5}+\frac{21\!\cdots\!09}{14\!\cdots\!87}a^{4}+\frac{28\!\cdots\!28}{16\!\cdots\!43}a^{3}+\frac{71\!\cdots\!39}{49\!\cdots\!29}a^{2}+\frac{11\!\cdots\!21}{16\!\cdots\!43}a+\frac{27\!\cdots\!40}{16\!\cdots\!43}$, $\frac{88\!\cdots\!97}{14\!\cdots\!87}a^{29}-\frac{10\!\cdots\!26}{13\!\cdots\!83}a^{28}-\frac{53\!\cdots\!60}{13\!\cdots\!83}a^{27}+\frac{10\!\cdots\!76}{13\!\cdots\!83}a^{26}+\frac{27\!\cdots\!51}{13\!\cdots\!83}a^{25}-\frac{19\!\cdots\!38}{13\!\cdots\!83}a^{24}+\frac{53\!\cdots\!52}{13\!\cdots\!83}a^{23}-\frac{47\!\cdots\!93}{13\!\cdots\!83}a^{22}-\frac{18\!\cdots\!61}{13\!\cdots\!83}a^{21}+\frac{25\!\cdots\!54}{13\!\cdots\!83}a^{20}+\frac{79\!\cdots\!65}{13\!\cdots\!83}a^{19}-\frac{17\!\cdots\!48}{13\!\cdots\!83}a^{18}-\frac{87\!\cdots\!37}{44\!\cdots\!61}a^{17}-\frac{80\!\cdots\!32}{44\!\cdots\!61}a^{16}+\frac{32\!\cdots\!59}{13\!\cdots\!83}a^{15}+\frac{89\!\cdots\!59}{13\!\cdots\!83}a^{14}+\frac{21\!\cdots\!58}{44\!\cdots\!61}a^{13}-\frac{83\!\cdots\!12}{44\!\cdots\!61}a^{12}-\frac{86\!\cdots\!29}{13\!\cdots\!83}a^{11}-\frac{63\!\cdots\!73}{13\!\cdots\!83}a^{10}-\frac{12\!\cdots\!94}{13\!\cdots\!83}a^{9}+\frac{33\!\cdots\!44}{13\!\cdots\!83}a^{8}+\frac{10\!\cdots\!15}{44\!\cdots\!61}a^{7}+\frac{67\!\cdots\!15}{44\!\cdots\!61}a^{6}+\frac{16\!\cdots\!13}{14\!\cdots\!87}a^{5}+\frac{23\!\cdots\!24}{14\!\cdots\!87}a^{4}+\frac{98\!\cdots\!16}{49\!\cdots\!29}a^{3}+\frac{82\!\cdots\!59}{49\!\cdots\!29}a^{2}+\frac{13\!\cdots\!74}{16\!\cdots\!43}a+\frac{32\!\cdots\!81}{16\!\cdots\!43}$, $\frac{26\!\cdots\!11}{13\!\cdots\!83}a^{29}-\frac{12\!\cdots\!12}{44\!\cdots\!61}a^{28}-\frac{18\!\cdots\!87}{13\!\cdots\!83}a^{27}+\frac{12\!\cdots\!27}{44\!\cdots\!61}a^{26}+\frac{93\!\cdots\!77}{13\!\cdots\!83}a^{25}-\frac{25\!\cdots\!98}{44\!\cdots\!61}a^{24}+\frac{19\!\cdots\!38}{13\!\cdots\!83}a^{23}-\frac{19\!\cdots\!20}{14\!\cdots\!87}a^{22}-\frac{21\!\cdots\!66}{44\!\cdots\!61}a^{21}+\frac{10\!\cdots\!27}{14\!\cdots\!87}a^{20}+\frac{25\!\cdots\!74}{13\!\cdots\!83}a^{19}-\frac{81\!\cdots\!92}{13\!\cdots\!83}a^{18}-\frac{29\!\cdots\!88}{44\!\cdots\!61}a^{17}-\frac{72\!\cdots\!94}{13\!\cdots\!83}a^{16}+\frac{44\!\cdots\!36}{49\!\cdots\!29}a^{15}+\frac{28\!\cdots\!61}{13\!\cdots\!83}a^{14}+\frac{62\!\cdots\!42}{44\!\cdots\!61}a^{13}-\frac{10\!\cdots\!72}{13\!\cdots\!83}a^{12}-\frac{92\!\cdots\!98}{44\!\cdots\!61}a^{11}-\frac{61\!\cdots\!66}{44\!\cdots\!61}a^{10}+\frac{17\!\cdots\!50}{14\!\cdots\!87}a^{9}+\frac{10\!\cdots\!32}{13\!\cdots\!83}a^{8}+\frac{36\!\cdots\!91}{49\!\cdots\!29}a^{7}+\frac{18\!\cdots\!71}{44\!\cdots\!61}a^{6}+\frac{52\!\cdots\!23}{14\!\cdots\!87}a^{5}+\frac{85\!\cdots\!50}{16\!\cdots\!43}a^{4}+\frac{30\!\cdots\!82}{49\!\cdots\!29}a^{3}+\frac{80\!\cdots\!85}{16\!\cdots\!43}a^{2}+\frac{38\!\cdots\!08}{16\!\cdots\!43}a+\frac{91\!\cdots\!20}{16\!\cdots\!43}$, $\frac{13\!\cdots\!75}{44\!\cdots\!61}a^{29}-\frac{76\!\cdots\!56}{13\!\cdots\!83}a^{28}-\frac{22\!\cdots\!99}{13\!\cdots\!83}a^{27}+\frac{62\!\cdots\!30}{13\!\cdots\!83}a^{26}-\frac{21\!\cdots\!84}{13\!\cdots\!83}a^{25}-\frac{75\!\cdots\!41}{13\!\cdots\!83}a^{24}+\frac{29\!\cdots\!34}{13\!\cdots\!83}a^{23}-\frac{39\!\cdots\!32}{13\!\cdots\!83}a^{22}-\frac{69\!\cdots\!45}{13\!\cdots\!83}a^{21}+\frac{15\!\cdots\!60}{13\!\cdots\!83}a^{20}+\frac{32\!\cdots\!06}{13\!\cdots\!83}a^{19}-\frac{23\!\cdots\!77}{13\!\cdots\!83}a^{18}-\frac{39\!\cdots\!04}{44\!\cdots\!61}a^{17}-\frac{22\!\cdots\!52}{44\!\cdots\!61}a^{16}+\frac{18\!\cdots\!17}{13\!\cdots\!83}a^{15}+\frac{35\!\cdots\!78}{13\!\cdots\!83}a^{14}+\frac{18\!\cdots\!41}{14\!\cdots\!87}a^{13}-\frac{63\!\cdots\!35}{44\!\cdots\!61}a^{12}-\frac{33\!\cdots\!94}{13\!\cdots\!83}a^{11}-\frac{16\!\cdots\!21}{13\!\cdots\!83}a^{10}+\frac{59\!\cdots\!93}{13\!\cdots\!83}a^{9}+\frac{13\!\cdots\!66}{13\!\cdots\!83}a^{8}+\frac{34\!\cdots\!24}{44\!\cdots\!61}a^{7}+\frac{18\!\cdots\!83}{44\!\cdots\!61}a^{6}+\frac{19\!\cdots\!34}{49\!\cdots\!29}a^{5}+\frac{30\!\cdots\!55}{49\!\cdots\!29}a^{4}+\frac{36\!\cdots\!00}{49\!\cdots\!29}a^{3}+\frac{86\!\cdots\!70}{16\!\cdots\!43}a^{2}+\frac{33\!\cdots\!39}{16\!\cdots\!43}a+\frac{31\!\cdots\!31}{16\!\cdots\!43}$, $\frac{37\!\cdots\!30}{13\!\cdots\!83}a^{29}-\frac{15\!\cdots\!23}{13\!\cdots\!83}a^{28}-\frac{11\!\cdots\!50}{44\!\cdots\!61}a^{27}+\frac{33\!\cdots\!43}{13\!\cdots\!83}a^{26}+\frac{25\!\cdots\!86}{44\!\cdots\!61}a^{25}-\frac{14\!\cdots\!73}{13\!\cdots\!83}a^{24}+\frac{73\!\cdots\!91}{44\!\cdots\!61}a^{23}+\frac{58\!\cdots\!24}{13\!\cdots\!83}a^{22}-\frac{13\!\cdots\!92}{13\!\cdots\!83}a^{21}+\frac{85\!\cdots\!33}{13\!\cdots\!83}a^{20}+\frac{19\!\cdots\!94}{49\!\cdots\!29}a^{19}+\frac{13\!\cdots\!75}{13\!\cdots\!83}a^{18}-\frac{51\!\cdots\!16}{44\!\cdots\!61}a^{17}-\frac{20\!\cdots\!61}{13\!\cdots\!83}a^{16}+\frac{13\!\cdots\!00}{13\!\cdots\!83}a^{15}+\frac{59\!\cdots\!29}{13\!\cdots\!83}a^{14}+\frac{18\!\cdots\!58}{44\!\cdots\!61}a^{13}-\frac{50\!\cdots\!15}{13\!\cdots\!83}a^{12}-\frac{58\!\cdots\!98}{13\!\cdots\!83}a^{11}-\frac{52\!\cdots\!03}{13\!\cdots\!83}a^{10}-\frac{80\!\cdots\!20}{13\!\cdots\!83}a^{9}+\frac{22\!\cdots\!96}{13\!\cdots\!83}a^{8}+\frac{81\!\cdots\!64}{44\!\cdots\!61}a^{7}+\frac{51\!\cdots\!66}{44\!\cdots\!61}a^{6}+\frac{40\!\cdots\!94}{49\!\cdots\!29}a^{5}+\frac{16\!\cdots\!04}{14\!\cdots\!87}a^{4}+\frac{68\!\cdots\!92}{49\!\cdots\!29}a^{3}+\frac{21\!\cdots\!60}{16\!\cdots\!43}a^{2}+\frac{11\!\cdots\!44}{16\!\cdots\!43}a+\frac{34\!\cdots\!22}{16\!\cdots\!43}$, $\frac{17\!\cdots\!86}{44\!\cdots\!61}a^{29}-\frac{63\!\cdots\!12}{13\!\cdots\!83}a^{28}-\frac{27\!\cdots\!91}{13\!\cdots\!83}a^{27}+\frac{30\!\cdots\!59}{13\!\cdots\!83}a^{26}+\frac{23\!\cdots\!14}{13\!\cdots\!83}a^{25}+\frac{58\!\cdots\!94}{13\!\cdots\!83}a^{24}-\frac{69\!\cdots\!98}{13\!\cdots\!83}a^{23}-\frac{52\!\cdots\!50}{13\!\cdots\!83}a^{22}-\frac{63\!\cdots\!62}{13\!\cdots\!83}a^{21}-\frac{63\!\cdots\!30}{13\!\cdots\!83}a^{20}+\frac{66\!\cdots\!83}{13\!\cdots\!83}a^{19}+\frac{33\!\cdots\!17}{13\!\cdots\!83}a^{18}-\frac{17\!\cdots\!48}{13\!\cdots\!43}a^{17}-\frac{11\!\cdots\!27}{49\!\cdots\!29}a^{16}+\frac{88\!\cdots\!81}{13\!\cdots\!83}a^{15}+\frac{76\!\cdots\!35}{13\!\cdots\!83}a^{14}+\frac{28\!\cdots\!26}{44\!\cdots\!61}a^{13}+\frac{64\!\cdots\!15}{44\!\cdots\!61}a^{12}-\frac{77\!\cdots\!76}{13\!\cdots\!83}a^{11}-\frac{72\!\cdots\!73}{13\!\cdots\!83}a^{10}-\frac{15\!\cdots\!85}{13\!\cdots\!83}a^{9}+\frac{27\!\cdots\!42}{13\!\cdots\!83}a^{8}+\frac{83\!\cdots\!36}{44\!\cdots\!61}a^{7}+\frac{21\!\cdots\!68}{14\!\cdots\!87}a^{6}+\frac{20\!\cdots\!62}{14\!\cdots\!87}a^{5}+\frac{27\!\cdots\!60}{14\!\cdots\!87}a^{4}+\frac{11\!\cdots\!68}{49\!\cdots\!29}a^{3}+\frac{93\!\cdots\!11}{49\!\cdots\!29}a^{2}+\frac{14\!\cdots\!95}{16\!\cdots\!43}a+\frac{24\!\cdots\!62}{16\!\cdots\!43}$, $\frac{21\!\cdots\!93}{44\!\cdots\!61}a^{29}-\frac{17\!\cdots\!87}{13\!\cdots\!83}a^{28}-\frac{24\!\cdots\!78}{13\!\cdots\!83}a^{27}+\frac{12\!\cdots\!94}{13\!\cdots\!83}a^{26}-\frac{12\!\cdots\!15}{13\!\cdots\!83}a^{25}-\frac{69\!\cdots\!20}{13\!\cdots\!83}a^{24}+\frac{59\!\cdots\!65}{13\!\cdots\!83}a^{23}-\frac{11\!\cdots\!53}{13\!\cdots\!83}a^{22}-\frac{43\!\cdots\!01}{13\!\cdots\!83}a^{21}+\frac{32\!\cdots\!48}{13\!\cdots\!83}a^{20}+\frac{27\!\cdots\!29}{13\!\cdots\!83}a^{19}-\frac{65\!\cdots\!44}{12\!\cdots\!87}a^{18}-\frac{16\!\cdots\!69}{14\!\cdots\!87}a^{17}+\frac{12\!\cdots\!86}{44\!\cdots\!61}a^{16}+\frac{33\!\cdots\!62}{13\!\cdots\!83}a^{15}+\frac{30\!\cdots\!19}{13\!\cdots\!83}a^{14}-\frac{11\!\cdots\!44}{16\!\cdots\!43}a^{13}-\frac{47\!\cdots\!18}{16\!\cdots\!43}a^{12}-\frac{26\!\cdots\!00}{13\!\cdots\!83}a^{11}+\frac{60\!\cdots\!57}{13\!\cdots\!83}a^{10}+\frac{18\!\cdots\!89}{13\!\cdots\!83}a^{9}+\frac{10\!\cdots\!04}{13\!\cdots\!83}a^{8}+\frac{14\!\cdots\!02}{44\!\cdots\!61}a^{7}+\frac{23\!\cdots\!59}{44\!\cdots\!61}a^{6}+\frac{15\!\cdots\!05}{49\!\cdots\!29}a^{5}+\frac{83\!\cdots\!95}{14\!\cdots\!87}a^{4}+\frac{81\!\cdots\!96}{16\!\cdots\!43}a^{3}+\frac{69\!\cdots\!51}{49\!\cdots\!29}a^{2}-\frac{12\!\cdots\!56}{16\!\cdots\!43}a-\frac{16\!\cdots\!91}{16\!\cdots\!43}$, $\frac{26\!\cdots\!28}{13\!\cdots\!83}a^{29}-\frac{41\!\cdots\!22}{13\!\cdots\!83}a^{28}-\frac{55\!\cdots\!30}{44\!\cdots\!61}a^{27}+\frac{37\!\cdots\!56}{13\!\cdots\!83}a^{26}-\frac{20\!\cdots\!99}{44\!\cdots\!61}a^{25}-\frac{53\!\cdots\!80}{12\!\cdots\!87}a^{24}+\frac{63\!\cdots\!46}{44\!\cdots\!61}a^{23}-\frac{20\!\cdots\!14}{13\!\cdots\!83}a^{22}-\frac{55\!\cdots\!02}{13\!\cdots\!83}a^{21}+\frac{89\!\cdots\!46}{13\!\cdots\!83}a^{20}+\frac{81\!\cdots\!35}{44\!\cdots\!61}a^{19}-\frac{86\!\cdots\!24}{13\!\cdots\!83}a^{18}-\frac{27\!\cdots\!05}{44\!\cdots\!61}a^{17}-\frac{69\!\cdots\!15}{13\!\cdots\!83}a^{16}+\frac{10\!\cdots\!47}{13\!\cdots\!83}a^{15}+\frac{27\!\cdots\!96}{13\!\cdots\!83}a^{14}+\frac{70\!\cdots\!99}{49\!\cdots\!29}a^{13}-\frac{81\!\cdots\!03}{13\!\cdots\!83}a^{12}-\frac{26\!\cdots\!85}{13\!\cdots\!83}a^{11}-\frac{19\!\cdots\!59}{13\!\cdots\!83}a^{10}-\frac{43\!\cdots\!02}{13\!\cdots\!83}a^{9}+\frac{10\!\cdots\!87}{13\!\cdots\!83}a^{8}+\frac{37\!\cdots\!88}{49\!\cdots\!29}a^{7}+\frac{23\!\cdots\!16}{49\!\cdots\!29}a^{6}+\frac{55\!\cdots\!15}{14\!\cdots\!87}a^{5}+\frac{74\!\cdots\!95}{14\!\cdots\!87}a^{4}+\frac{10\!\cdots\!80}{16\!\cdots\!43}a^{3}+\frac{84\!\cdots\!77}{16\!\cdots\!43}a^{2}+\frac{42\!\cdots\!63}{16\!\cdots\!43}a+\frac{10\!\cdots\!30}{16\!\cdots\!43}$, $\frac{27\!\cdots\!51}{13\!\cdots\!83}a^{29}+\frac{20\!\cdots\!40}{13\!\cdots\!83}a^{28}-\frac{25\!\cdots\!17}{44\!\cdots\!61}a^{27}-\frac{68\!\cdots\!89}{13\!\cdots\!83}a^{26}+\frac{14\!\cdots\!39}{44\!\cdots\!61}a^{25}-\frac{41\!\cdots\!78}{13\!\cdots\!83}a^{24}-\frac{16\!\cdots\!34}{44\!\cdots\!61}a^{23}+\frac{17\!\cdots\!02}{13\!\cdots\!83}a^{22}-\frac{39\!\cdots\!58}{13\!\cdots\!83}a^{21}-\frac{14\!\cdots\!05}{13\!\cdots\!83}a^{20}+\frac{42\!\cdots\!43}{44\!\cdots\!61}a^{19}+\frac{13\!\cdots\!17}{13\!\cdots\!83}a^{18}-\frac{96\!\cdots\!77}{44\!\cdots\!61}a^{17}-\frac{69\!\cdots\!65}{13\!\cdots\!83}a^{16}-\frac{14\!\cdots\!29}{13\!\cdots\!83}a^{15}+\frac{14\!\cdots\!74}{13\!\cdots\!83}a^{14}+\frac{60\!\cdots\!00}{44\!\cdots\!61}a^{13}+\frac{28\!\cdots\!03}{13\!\cdots\!83}a^{12}-\frac{14\!\cdots\!68}{13\!\cdots\!83}a^{11}-\frac{16\!\cdots\!19}{13\!\cdots\!83}a^{10}-\frac{42\!\cdots\!17}{13\!\cdots\!83}a^{9}+\frac{53\!\cdots\!26}{13\!\cdots\!83}a^{8}+\frac{22\!\cdots\!36}{44\!\cdots\!61}a^{7}+\frac{49\!\cdots\!20}{14\!\cdots\!87}a^{6}+\frac{28\!\cdots\!14}{14\!\cdots\!87}a^{5}+\frac{38\!\cdots\!56}{14\!\cdots\!87}a^{4}+\frac{18\!\cdots\!32}{49\!\cdots\!29}a^{3}+\frac{18\!\cdots\!41}{49\!\cdots\!29}a^{2}+\frac{37\!\cdots\!09}{16\!\cdots\!43}a+\frac{12\!\cdots\!18}{16\!\cdots\!43}$, $\frac{37\!\cdots\!57}{13\!\cdots\!83}a^{29}-\frac{17\!\cdots\!13}{44\!\cdots\!61}a^{28}-\frac{25\!\cdots\!44}{13\!\cdots\!83}a^{27}+\frac{56\!\cdots\!69}{14\!\cdots\!87}a^{26}+\frac{10\!\cdots\!54}{13\!\cdots\!83}a^{25}-\frac{35\!\cdots\!38}{49\!\cdots\!29}a^{24}+\frac{26\!\cdots\!91}{13\!\cdots\!83}a^{23}-\frac{77\!\cdots\!05}{44\!\cdots\!61}a^{22}-\frac{29\!\cdots\!46}{44\!\cdots\!61}a^{21}+\frac{41\!\cdots\!55}{44\!\cdots\!61}a^{20}+\frac{37\!\cdots\!67}{13\!\cdots\!83}a^{19}-\frac{11\!\cdots\!09}{13\!\cdots\!83}a^{18}-\frac{41\!\cdots\!83}{44\!\cdots\!61}a^{17}-\frac{10\!\cdots\!31}{13\!\cdots\!83}a^{16}+\frac{17\!\cdots\!46}{14\!\cdots\!87}a^{15}+\frac{40\!\cdots\!45}{13\!\cdots\!83}a^{14}+\frac{35\!\cdots\!15}{16\!\cdots\!43}a^{13}-\frac{12\!\cdots\!93}{13\!\cdots\!83}a^{12}-\frac{12\!\cdots\!94}{44\!\cdots\!61}a^{11}-\frac{93\!\cdots\!47}{44\!\cdots\!61}a^{10}-\frac{19\!\cdots\!71}{44\!\cdots\!61}a^{9}+\frac{15\!\cdots\!00}{13\!\cdots\!83}a^{8}+\frac{50\!\cdots\!86}{44\!\cdots\!61}a^{7}+\frac{33\!\cdots\!61}{49\!\cdots\!29}a^{6}+\frac{77\!\cdots\!29}{14\!\cdots\!87}a^{5}+\frac{11\!\cdots\!28}{14\!\cdots\!87}a^{4}+\frac{45\!\cdots\!04}{49\!\cdots\!29}a^{3}+\frac{36\!\cdots\!44}{49\!\cdots\!29}a^{2}+\frac{63\!\cdots\!83}{16\!\cdots\!43}a+\frac{15\!\cdots\!73}{16\!\cdots\!43}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2830009383.1065817 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{15}\cdot 2830009383.1065817 \cdot 1}{22\cdot\sqrt{218673142739125286650364496602923076372571}}\cr\approx \mathstrut & 0.258324440068225 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 - 7*x^28 + 10*x^27 + 7*x^26 - 19*x^25 + 56*x^24 - 38*x^23 - 238*x^22 + 196*x^21 + 1084*x^20 + 255*x^19 - 3219*x^18 - 4472*x^17 + 2252*x^16 + 12483*x^15 + 13641*x^14 + 1966*x^13 - 11281*x^12 - 13340*x^11 - 5077*x^10 + 3378*x^9 + 6156*x^8 + 4833*x^7 + 3411*x^6 + 3672*x^5 + 4671*x^4 + 4536*x^3 + 2997*x^2 + 1215*x + 243)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^30 - x^29 - 7*x^28 + 10*x^27 + 7*x^26 - 19*x^25 + 56*x^24 - 38*x^23 - 238*x^22 + 196*x^21 + 1084*x^20 + 255*x^19 - 3219*x^18 - 4472*x^17 + 2252*x^16 + 12483*x^15 + 13641*x^14 + 1966*x^13 - 11281*x^12 - 13340*x^11 - 5077*x^10 + 3378*x^9 + 6156*x^8 + 4833*x^7 + 3411*x^6 + 3672*x^5 + 4671*x^4 + 4536*x^3 + 2997*x^2 + 1215*x + 243, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^30 - x^29 - 7*x^28 + 10*x^27 + 7*x^26 - 19*x^25 + 56*x^24 - 38*x^23 - 238*x^22 + 196*x^21 + 1084*x^20 + 255*x^19 - 3219*x^18 - 4472*x^17 + 2252*x^16 + 12483*x^15 + 13641*x^14 + 1966*x^13 - 11281*x^12 - 13340*x^11 - 5077*x^10 + 3378*x^9 + 6156*x^8 + 4833*x^7 + 3411*x^6 + 3672*x^5 + 4671*x^4 + 4536*x^3 + 2997*x^2 + 1215*x + 243);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 - 7*x^28 + 10*x^27 + 7*x^26 - 19*x^25 + 56*x^24 - 38*x^23 - 238*x^22 + 196*x^21 + 1084*x^20 + 255*x^19 - 3219*x^18 - 4472*x^17 + 2252*x^16 + 12483*x^15 + 13641*x^14 + 1966*x^13 - 11281*x^12 - 13340*x^11 - 5077*x^10 + 3378*x^9 + 6156*x^8 + 4833*x^7 + 3411*x^6 + 3672*x^5 + 4671*x^4 + 4536*x^3 + 2997*x^2 + 1215*x + 243);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times C_{10}$ (as 30T12):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 60
The 30 conjugacy class representatives for $S_3\times C_{10}$
Character table for $S_3\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-11}) \), 3.1.231.1, \(\Q(\zeta_{11})^+\), 6.0.586971.1, \(\Q(\zeta_{11})\), 15.5.140994243189740741031.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 30 sibling: deg 30
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $30$ R $15^{2}$ R R $30$ ${\href{/padicField/17.10.0.1}{10} }^{3}$ $30$ ${\href{/padicField/23.2.0.1}{2} }^{10}{,}\,{\href{/padicField/23.1.0.1}{1} }^{10}$ $30$ ${\href{/padicField/31.10.0.1}{10} }^{2}{,}\,{\href{/padicField/31.5.0.1}{5} }^{2}$ $15^{2}$ ${\href{/padicField/41.10.0.1}{10} }^{3}$ ${\href{/padicField/43.2.0.1}{2} }^{15}$ $15^{2}$ ${\href{/padicField/53.10.0.1}{10} }^{2}{,}\,{\href{/padicField/53.5.0.1}{5} }^{2}$ $15^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.5.0.1$x^{5} + 2 x + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
3.5.0.1$x^{5} + 2 x + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
3.10.5.1$x^{10} + 162 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
3.10.5.1$x^{10} + 162 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
\(7\) Copy content Toggle raw display 7.10.0.1$x^{10} + x^{6} + x^{5} + 4 x^{4} + x^{3} + 2 x^{2} + 3 x + 3$$1$$10$$0$$C_{10}$$[\ ]^{10}$
7.20.10.1$x^{20} + 70 x^{18} + 2207 x^{16} + 2 x^{15} + 41168 x^{14} - 68 x^{13} + 501639 x^{12} - 3674 x^{11} + 4175501 x^{10} - 48430 x^{9} + 24202032 x^{8} - 163712 x^{7} + 97377995 x^{6} + 430996 x^{5} + 259701777 x^{4} + 2947158 x^{3} + 412861211 x^{2} + 7541370 x + 287825400$$2$$10$$10$20T3$[\ ]_{2}^{10}$
\(11\) Copy content Toggle raw display 11.10.9.7$x^{10} + 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.20.18.1$x^{20} + 70 x^{19} + 2225 x^{18} + 42420 x^{17} + 539670 x^{16} + 4821684 x^{15} + 31004730 x^{14} + 144683280 x^{13} + 488310165 x^{12} + 1177567510 x^{11} + 1996241675 x^{10} + 2355135790 x^{9} + 1953262935 x^{8} + 1157863560 x^{7} + 500734950 x^{6} + 191763012 x^{5} + 243790230 x^{4} + 806750280 x^{3} + 2014356815 x^{2} + 2999040310 x + 2009802620$$10$$2$$18$20T3$[\ ]_{10}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.21.2t1.a.a$1$ $ 3 \cdot 7 $ \(\Q(\sqrt{21}) \) $C_2$ (as 2T1) $1$ $1$
* 1.11.2t1.a.a$1$ $ 11 $ \(\Q(\sqrt{-11}) \) $C_2$ (as 2T1) $1$ $-1$
1.231.2t1.a.a$1$ $ 3 \cdot 7 \cdot 11 $ \(\Q(\sqrt{-231}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.11.5t1.a.a$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
* 1.11.10t1.a.a$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
1.231.10t1.a.a$1$ $ 3 \cdot 7 \cdot 11 $ 10.10.875463320250981.1 $C_{10}$ (as 10T1) $0$ $1$
1.231.10t1.b.a$1$ $ 3 \cdot 7 \cdot 11 $ 10.0.9630096522760791.1 $C_{10}$ (as 10T1) $0$ $-1$
1.231.10t1.b.b$1$ $ 3 \cdot 7 \cdot 11 $ 10.0.9630096522760791.1 $C_{10}$ (as 10T1) $0$ $-1$
* 1.11.10t1.a.b$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
* 1.11.10t1.a.c$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
1.231.10t1.a.b$1$ $ 3 \cdot 7 \cdot 11 $ 10.10.875463320250981.1 $C_{10}$ (as 10T1) $0$ $1$
* 1.11.10t1.a.d$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
1.231.10t1.a.c$1$ $ 3 \cdot 7 \cdot 11 $ 10.10.875463320250981.1 $C_{10}$ (as 10T1) $0$ $1$
* 1.11.5t1.a.b$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
1.231.10t1.a.d$1$ $ 3 \cdot 7 \cdot 11 $ 10.10.875463320250981.1 $C_{10}$ (as 10T1) $0$ $1$
* 1.11.5t1.a.c$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
1.231.10t1.b.c$1$ $ 3 \cdot 7 \cdot 11 $ 10.0.9630096522760791.1 $C_{10}$ (as 10T1) $0$ $-1$
* 1.11.5t1.a.d$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
1.231.10t1.b.d$1$ $ 3 \cdot 7 \cdot 11 $ 10.0.9630096522760791.1 $C_{10}$ (as 10T1) $0$ $-1$
* 2.231.6t3.b.a$2$ $ 3 \cdot 7 \cdot 11 $ 6.2.1120581.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.231.3t2.a.a$2$ $ 3 \cdot 7 \cdot 11 $ 3.1.231.1 $S_3$ (as 3T2) $1$ $0$
* 2.2541.15t4.b.a$2$ $ 3 \cdot 7 \cdot 11^{2}$ 15.5.140994243189740741031.1 $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.2541.15t4.b.b$2$ $ 3 \cdot 7 \cdot 11^{2}$ 15.5.140994243189740741031.1 $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.2541.15t4.b.c$2$ $ 3 \cdot 7 \cdot 11^{2}$ 15.5.140994243189740741031.1 $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.2541.15t4.b.d$2$ $ 3 \cdot 7 \cdot 11^{2}$ 15.5.140994243189740741031.1 $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.2541.30t12.b.a$2$ $ 3 \cdot 7 \cdot 11^{2}$ 30.0.218673142739125286650364496602923076372571.1 $S_3\times C_{10}$ (as 30T12) $0$ $0$
* 2.2541.30t12.b.b$2$ $ 3 \cdot 7 \cdot 11^{2}$ 30.0.218673142739125286650364496602923076372571.1 $S_3\times C_{10}$ (as 30T12) $0$ $0$
* 2.2541.30t12.b.c$2$ $ 3 \cdot 7 \cdot 11^{2}$ 30.0.218673142739125286650364496602923076372571.1 $S_3\times C_{10}$ (as 30T12) $0$ $0$
* 2.2541.30t12.b.d$2$ $ 3 \cdot 7 \cdot 11^{2}$ 30.0.218673142739125286650364496602923076372571.1 $S_3\times C_{10}$ (as 30T12) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.