Properties

Label 30.2.140...000.1
Degree $30$
Signature $[2, 14]$
Discriminant $1.403\times 10^{46}$
Root discriminant \(34.53\)
Ramified primes $2,5,131$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $D_{30}$ (as 30T14)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 + 11*x^28 + 4*x^27 + 44*x^26 - 6*x^25 - 74*x^24 - 446*x^23 - 1543*x^22 + 183*x^21 - 1721*x^20 + 7116*x^19 + 11884*x^18 - 3168*x^17 + 7664*x^16 - 18756*x^15 + 17109*x^14 - 3363*x^13 - 2431*x^12 + 11594*x^11 - 15080*x^10 + 6868*x^9 + 3884*x^8 - 3768*x^7 + 2512*x^6 - 1864*x^5 - 1696*x^4 + 656*x^3 + 448*x^2 + 16*x - 16)
 
gp: K = bnfinit(y^30 - y^29 + 11*y^28 + 4*y^27 + 44*y^26 - 6*y^25 - 74*y^24 - 446*y^23 - 1543*y^22 + 183*y^21 - 1721*y^20 + 7116*y^19 + 11884*y^18 - 3168*y^17 + 7664*y^16 - 18756*y^15 + 17109*y^14 - 3363*y^13 - 2431*y^12 + 11594*y^11 - 15080*y^10 + 6868*y^9 + 3884*y^8 - 3768*y^7 + 2512*y^6 - 1864*y^5 - 1696*y^4 + 656*y^3 + 448*y^2 + 16*y - 16, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^30 - x^29 + 11*x^28 + 4*x^27 + 44*x^26 - 6*x^25 - 74*x^24 - 446*x^23 - 1543*x^22 + 183*x^21 - 1721*x^20 + 7116*x^19 + 11884*x^18 - 3168*x^17 + 7664*x^16 - 18756*x^15 + 17109*x^14 - 3363*x^13 - 2431*x^12 + 11594*x^11 - 15080*x^10 + 6868*x^9 + 3884*x^8 - 3768*x^7 + 2512*x^6 - 1864*x^5 - 1696*x^4 + 656*x^3 + 448*x^2 + 16*x - 16);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 + 11*x^28 + 4*x^27 + 44*x^26 - 6*x^25 - 74*x^24 - 446*x^23 - 1543*x^22 + 183*x^21 - 1721*x^20 + 7116*x^19 + 11884*x^18 - 3168*x^17 + 7664*x^16 - 18756*x^15 + 17109*x^14 - 3363*x^13 - 2431*x^12 + 11594*x^11 - 15080*x^10 + 6868*x^9 + 3884*x^8 - 3768*x^7 + 2512*x^6 - 1864*x^5 - 1696*x^4 + 656*x^3 + 448*x^2 + 16*x - 16)
 

\( x^{30} - x^{29} + 11 x^{28} + 4 x^{27} + 44 x^{26} - 6 x^{25} - 74 x^{24} - 446 x^{23} - 1543 x^{22} + \cdots - 16 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(14026461290181639205847118647072000000000000000\) \(\medspace = 2^{20}\cdot 5^{15}\cdot 131^{14}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(34.53\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}5^{1/2}131^{1/2}\approx 40.62630398353121$
Ramified primes:   \(2\), \(5\), \(131\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{13}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{12}-\frac{1}{4}a^{11}+\frac{1}{4}a^{8}+\frac{1}{4}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{13}-\frac{1}{4}a^{12}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{17}-\frac{1}{4}a^{12}-\frac{1}{4}a^{8}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{18}-\frac{1}{4}a^{13}-\frac{1}{4}a^{9}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{19}-\frac{1}{4}a^{13}-\frac{1}{4}a^{12}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{20}-\frac{1}{8}a^{19}-\frac{1}{8}a^{17}-\frac{1}{8}a^{16}-\frac{1}{8}a^{14}+\frac{1}{8}a^{13}+\frac{1}{8}a^{12}-\frac{1}{8}a^{10}+\frac{1}{8}a^{9}-\frac{1}{2}a^{8}+\frac{1}{8}a^{7}+\frac{3}{8}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{8}a^{21}-\frac{1}{8}a^{19}-\frac{1}{8}a^{18}-\frac{1}{8}a^{16}-\frac{1}{8}a^{15}-\frac{1}{4}a^{13}-\frac{1}{8}a^{12}-\frac{1}{8}a^{11}+\frac{1}{8}a^{9}+\frac{3}{8}a^{8}-\frac{1}{2}a^{7}-\frac{3}{8}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{8}a^{22}-\frac{1}{8}a^{14}-\frac{1}{4}a^{13}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{2}a^{8}+\frac{3}{8}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{8}a^{23}-\frac{1}{8}a^{15}-\frac{1}{4}a^{13}-\frac{1}{4}a^{12}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{8}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{24}-\frac{1}{8}a^{16}-\frac{3}{8}a^{8}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{25}-\frac{1}{8}a^{17}+\frac{1}{8}a^{9}-\frac{1}{2}a^{8}+\frac{1}{4}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{181424}a^{26}+\frac{5153}{181424}a^{25}-\frac{10609}{181424}a^{24}+\frac{400}{11339}a^{23}+\frac{45}{1564}a^{22}-\frac{929}{90712}a^{21}-\frac{89}{2668}a^{20}+\frac{2355}{45356}a^{19}-\frac{6887}{181424}a^{18}-\frac{10173}{181424}a^{17}-\frac{7519}{181424}a^{16}+\frac{395}{45356}a^{15}+\frac{9661}{90712}a^{14}-\frac{19939}{90712}a^{13}+\frac{213}{3128}a^{12}-\frac{11233}{45356}a^{11}+\frac{39543}{181424}a^{10}-\frac{41403}{181424}a^{9}-\frac{8767}{181424}a^{8}-\frac{22453}{45356}a^{7}-\frac{15647}{90712}a^{6}-\frac{10265}{45356}a^{5}-\frac{3879}{22678}a^{4}+\frac{4739}{45356}a^{3}-\frac{7839}{45356}a^{2}-\frac{10335}{22678}a+\frac{5421}{22678}$, $\frac{1}{362848}a^{27}-\frac{1}{362848}a^{26}-\frac{13233}{362848}a^{25}-\frac{7075}{181424}a^{24}+\frac{8055}{181424}a^{23}+\frac{1631}{45356}a^{22}+\frac{11321}{181424}a^{21}+\frac{9589}{181424}a^{20}+\frac{18709}{362848}a^{19}-\frac{5645}{362848}a^{18}-\frac{7413}{362848}a^{17}-\frac{12437}{181424}a^{16}-\frac{2637}{181424}a^{15}+\frac{471}{7888}a^{14}-\frac{239}{2668}a^{13}-\frac{20745}{90712}a^{12}+\frac{8657}{362848}a^{11}-\frac{38839}{362848}a^{10}+\frac{4993}{362848}a^{9}+\frac{4265}{45356}a^{8}-\frac{67147}{181424}a^{7}+\frac{659}{7888}a^{6}+\frac{24295}{90712}a^{5}+\frac{8157}{90712}a^{4}-\frac{1073}{3128}a^{3}+\frac{1837}{11339}a^{2}+\frac{1389}{45356}a-\frac{11877}{45356}$, $\frac{1}{362848}a^{28}-\frac{2649}{362848}a^{25}-\frac{10363}{181424}a^{24}+\frac{875}{181424}a^{23}-\frac{2687}{181424}a^{22}-\frac{2339}{90712}a^{21}-\frac{941}{362848}a^{20}+\frac{2441}{22678}a^{19}-\frac{8853}{90712}a^{18}-\frac{45161}{362848}a^{17}+\frac{431}{7888}a^{16}+\frac{4249}{90712}a^{15}+\frac{12369}{181424}a^{14}+\frac{9387}{90712}a^{13}-\frac{44511}{362848}a^{12}+\frac{1123}{181424}a^{11}+\frac{1511}{90712}a^{10}-\frac{1945}{21344}a^{9}-\frac{25501}{90712}a^{8}-\frac{978}{11339}a^{7}-\frac{49223}{181424}a^{6}-\frac{9347}{45356}a^{5}+\frac{212}{493}a^{4}+\frac{17513}{90712}a^{3}-\frac{10009}{22678}a^{2}-\frac{3215}{11339}a+\frac{21801}{45356}$, $\frac{1}{69\!\cdots\!88}a^{29}-\frac{73\!\cdots\!69}{69\!\cdots\!88}a^{28}-\frac{44\!\cdots\!01}{69\!\cdots\!88}a^{27}-\frac{14\!\cdots\!97}{34\!\cdots\!44}a^{26}-\frac{36\!\cdots\!85}{34\!\cdots\!44}a^{25}+\frac{54\!\cdots\!51}{10\!\cdots\!16}a^{24}-\frac{10\!\cdots\!73}{34\!\cdots\!44}a^{23}-\frac{21\!\cdots\!61}{34\!\cdots\!44}a^{22}-\frac{18\!\cdots\!27}{69\!\cdots\!88}a^{21}-\frac{60\!\cdots\!05}{40\!\cdots\!64}a^{20}-\frac{86\!\cdots\!97}{69\!\cdots\!88}a^{19}-\frac{16\!\cdots\!97}{34\!\cdots\!44}a^{18}-\frac{50\!\cdots\!41}{47\!\cdots\!28}a^{17}-\frac{41\!\cdots\!55}{34\!\cdots\!44}a^{16}+\frac{99\!\cdots\!28}{10\!\cdots\!17}a^{15}+\frac{11\!\cdots\!21}{43\!\cdots\!68}a^{14}+\frac{10\!\cdots\!65}{69\!\cdots\!88}a^{13}+\frac{92\!\cdots\!29}{40\!\cdots\!64}a^{12}+\frac{71\!\cdots\!17}{69\!\cdots\!88}a^{11}-\frac{42\!\cdots\!95}{17\!\cdots\!72}a^{10}+\frac{83\!\cdots\!41}{99\!\cdots\!52}a^{9}+\frac{36\!\cdots\!13}{34\!\cdots\!44}a^{8}-\frac{15\!\cdots\!03}{86\!\cdots\!36}a^{7}+\frac{15\!\cdots\!03}{17\!\cdots\!72}a^{6}-\frac{95\!\cdots\!17}{23\!\cdots\!64}a^{5}+\frac{19\!\cdots\!19}{43\!\cdots\!68}a^{4}-\frac{24\!\cdots\!15}{86\!\cdots\!36}a^{3}+\frac{12\!\cdots\!55}{29\!\cdots\!84}a^{2}-\frac{11\!\cdots\!19}{43\!\cdots\!68}a+\frac{13\!\cdots\!98}{10\!\cdots\!17}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{63\!\cdots\!45}{23\!\cdots\!72}a^{29}-\frac{91\!\cdots\!87}{23\!\cdots\!72}a^{28}+\frac{73\!\cdots\!57}{23\!\cdots\!72}a^{27}-\frac{15\!\cdots\!87}{59\!\cdots\!68}a^{26}+\frac{14\!\cdots\!65}{11\!\cdots\!36}a^{25}-\frac{20\!\cdots\!91}{29\!\cdots\!84}a^{24}-\frac{20\!\cdots\!49}{11\!\cdots\!36}a^{23}-\frac{13\!\cdots\!55}{11\!\cdots\!36}a^{22}-\frac{86\!\cdots\!83}{23\!\cdots\!72}a^{21}+\frac{49\!\cdots\!45}{23\!\cdots\!72}a^{20}-\frac{12\!\cdots\!87}{23\!\cdots\!72}a^{19}+\frac{12\!\cdots\!09}{59\!\cdots\!68}a^{18}+\frac{36\!\cdots\!77}{16\!\cdots\!32}a^{17}-\frac{21\!\cdots\!77}{11\!\cdots\!36}a^{16}+\frac{16\!\cdots\!11}{59\!\cdots\!68}a^{15}-\frac{18\!\cdots\!11}{29\!\cdots\!84}a^{14}+\frac{17\!\cdots\!25}{23\!\cdots\!72}a^{13}-\frac{95\!\cdots\!93}{23\!\cdots\!72}a^{12}+\frac{24\!\cdots\!43}{23\!\cdots\!72}a^{11}+\frac{31\!\cdots\!39}{11\!\cdots\!36}a^{10}-\frac{77\!\cdots\!81}{14\!\cdots\!56}a^{9}+\frac{48\!\cdots\!55}{11\!\cdots\!36}a^{8}-\frac{40\!\cdots\!61}{59\!\cdots\!68}a^{7}-\frac{18\!\cdots\!15}{25\!\cdots\!16}a^{6}+\frac{79\!\cdots\!01}{81\!\cdots\!16}a^{5}-\frac{27\!\cdots\!73}{29\!\cdots\!84}a^{4}-\frac{19\!\cdots\!43}{29\!\cdots\!84}a^{3}+\frac{59\!\cdots\!05}{29\!\cdots\!84}a^{2}+\frac{14\!\cdots\!09}{43\!\cdots\!38}a+\frac{46\!\cdots\!95}{74\!\cdots\!46}$, $\frac{14\!\cdots\!53}{69\!\cdots\!88}a^{29}-\frac{23\!\cdots\!47}{69\!\cdots\!88}a^{28}+\frac{58\!\cdots\!41}{23\!\cdots\!72}a^{27}-\frac{53\!\cdots\!65}{86\!\cdots\!36}a^{26}+\frac{30\!\cdots\!11}{34\!\cdots\!44}a^{25}-\frac{12\!\cdots\!15}{17\!\cdots\!72}a^{24}-\frac{50\!\cdots\!69}{34\!\cdots\!44}a^{23}-\frac{75\!\cdots\!41}{88\!\cdots\!84}a^{22}-\frac{80\!\cdots\!97}{30\!\cdots\!56}a^{21}+\frac{56\!\cdots\!85}{23\!\cdots\!72}a^{20}-\frac{15\!\cdots\!31}{40\!\cdots\!64}a^{19}+\frac{15\!\cdots\!61}{86\!\cdots\!36}a^{18}+\frac{74\!\cdots\!95}{47\!\cdots\!28}a^{17}-\frac{72\!\cdots\!99}{34\!\cdots\!44}a^{16}+\frac{34\!\cdots\!63}{17\!\cdots\!72}a^{15}-\frac{45\!\cdots\!75}{86\!\cdots\!36}a^{14}+\frac{41\!\cdots\!13}{69\!\cdots\!88}a^{13}-\frac{23\!\cdots\!89}{69\!\cdots\!88}a^{12}+\frac{30\!\cdots\!23}{69\!\cdots\!88}a^{11}+\frac{79\!\cdots\!73}{34\!\cdots\!44}a^{10}-\frac{44\!\cdots\!41}{99\!\cdots\!52}a^{9}+\frac{11\!\cdots\!89}{34\!\cdots\!44}a^{8}-\frac{58\!\cdots\!11}{17\!\cdots\!72}a^{7}-\frac{17\!\cdots\!53}{17\!\cdots\!72}a^{6}+\frac{20\!\cdots\!09}{23\!\cdots\!64}a^{5}-\frac{63\!\cdots\!17}{86\!\cdots\!36}a^{4}-\frac{53\!\cdots\!57}{50\!\cdots\!08}a^{3}+\frac{24\!\cdots\!51}{86\!\cdots\!36}a^{2}+\frac{22\!\cdots\!43}{74\!\cdots\!46}a-\frac{64\!\cdots\!05}{21\!\cdots\!34}$, $\frac{62\!\cdots\!99}{69\!\cdots\!88}a^{29}-\frac{65\!\cdots\!91}{69\!\cdots\!88}a^{28}+\frac{68\!\cdots\!63}{69\!\cdots\!88}a^{27}+\frac{27\!\cdots\!41}{86\!\cdots\!36}a^{26}+\frac{67\!\cdots\!39}{17\!\cdots\!72}a^{25}-\frac{28\!\cdots\!07}{43\!\cdots\!68}a^{24}-\frac{23\!\cdots\!21}{34\!\cdots\!44}a^{23}-\frac{13\!\cdots\!71}{34\!\cdots\!44}a^{22}-\frac{94\!\cdots\!89}{69\!\cdots\!88}a^{21}+\frac{16\!\cdots\!13}{69\!\cdots\!88}a^{20}-\frac{10\!\cdots\!93}{69\!\cdots\!88}a^{19}+\frac{68\!\cdots\!33}{10\!\cdots\!17}a^{18}+\frac{24\!\cdots\!65}{23\!\cdots\!64}a^{17}-\frac{44\!\cdots\!99}{11\!\cdots\!36}a^{16}+\frac{12\!\cdots\!93}{17\!\cdots\!72}a^{15}-\frac{28\!\cdots\!45}{17\!\cdots\!72}a^{14}+\frac{10\!\cdots\!55}{69\!\cdots\!88}a^{13}-\frac{16\!\cdots\!77}{69\!\cdots\!88}a^{12}-\frac{33\!\cdots\!07}{69\!\cdots\!88}a^{11}+\frac{47\!\cdots\!83}{34\!\cdots\!44}a^{10}-\frac{17\!\cdots\!42}{10\!\cdots\!59}a^{9}+\frac{27\!\cdots\!31}{34\!\cdots\!44}a^{8}+\frac{57\!\cdots\!65}{17\!\cdots\!72}a^{7}-\frac{45\!\cdots\!89}{86\!\cdots\!36}a^{6}+\frac{96\!\cdots\!55}{23\!\cdots\!64}a^{5}-\frac{22\!\cdots\!51}{86\!\cdots\!36}a^{4}-\frac{13\!\cdots\!58}{10\!\cdots\!17}a^{3}+\frac{70\!\cdots\!69}{86\!\cdots\!36}a^{2}+\frac{39\!\cdots\!49}{37\!\cdots\!73}a+\frac{51\!\cdots\!31}{43\!\cdots\!68}$, $\frac{25\!\cdots\!95}{69\!\cdots\!88}a^{29}-\frac{34\!\cdots\!05}{69\!\cdots\!88}a^{28}+\frac{29\!\cdots\!23}{69\!\cdots\!88}a^{27}-\frac{12\!\cdots\!67}{17\!\cdots\!72}a^{26}+\frac{58\!\cdots\!95}{34\!\cdots\!44}a^{25}-\frac{13\!\cdots\!51}{17\!\cdots\!72}a^{24}-\frac{82\!\cdots\!83}{34\!\cdots\!44}a^{23}-\frac{54\!\cdots\!25}{34\!\cdots\!44}a^{22}-\frac{36\!\cdots\!81}{69\!\cdots\!88}a^{21}+\frac{16\!\cdots\!15}{69\!\cdots\!88}a^{20}-\frac{53\!\cdots\!73}{69\!\cdots\!88}a^{19}+\frac{50\!\cdots\!37}{17\!\cdots\!72}a^{18}+\frac{16\!\cdots\!19}{47\!\cdots\!28}a^{17}-\frac{76\!\cdots\!61}{34\!\cdots\!44}a^{16}+\frac{40\!\cdots\!43}{10\!\cdots\!16}a^{15}-\frac{17\!\cdots\!11}{21\!\cdots\!34}a^{14}+\frac{66\!\cdots\!07}{69\!\cdots\!88}a^{13}-\frac{34\!\cdots\!43}{69\!\cdots\!88}a^{12}+\frac{79\!\cdots\!69}{69\!\cdots\!88}a^{11}+\frac{13\!\cdots\!73}{34\!\cdots\!44}a^{10}-\frac{68\!\cdots\!25}{99\!\cdots\!52}a^{9}+\frac{60\!\cdots\!51}{11\!\cdots\!36}a^{8}-\frac{82\!\cdots\!99}{17\!\cdots\!72}a^{7}-\frac{20\!\cdots\!93}{17\!\cdots\!72}a^{6}+\frac{33\!\cdots\!83}{23\!\cdots\!64}a^{5}-\frac{10\!\cdots\!45}{86\!\cdots\!36}a^{4}-\frac{18\!\cdots\!29}{86\!\cdots\!36}a^{3}+\frac{26\!\cdots\!05}{86\!\cdots\!36}a^{2}+\frac{68\!\cdots\!27}{37\!\cdots\!73}a-\frac{16\!\cdots\!98}{10\!\cdots\!17}$, $\frac{26\!\cdots\!17}{69\!\cdots\!88}a^{29}-\frac{32\!\cdots\!41}{69\!\cdots\!88}a^{28}+\frac{29\!\cdots\!53}{69\!\cdots\!88}a^{27}+\frac{42\!\cdots\!99}{86\!\cdots\!36}a^{26}+\frac{28\!\cdots\!83}{17\!\cdots\!72}a^{25}-\frac{54\!\cdots\!85}{86\!\cdots\!36}a^{24}-\frac{92\!\cdots\!51}{34\!\cdots\!44}a^{23}-\frac{56\!\cdots\!37}{34\!\cdots\!44}a^{22}-\frac{56\!\cdots\!41}{10\!\cdots\!64}a^{21}+\frac{13\!\cdots\!55}{69\!\cdots\!88}a^{20}-\frac{48\!\cdots\!91}{69\!\cdots\!88}a^{19}+\frac{10\!\cdots\!81}{37\!\cdots\!32}a^{18}+\frac{90\!\cdots\!61}{23\!\cdots\!64}a^{17}-\frac{72\!\cdots\!29}{34\!\cdots\!44}a^{16}+\frac{58\!\cdots\!09}{17\!\cdots\!72}a^{15}-\frac{13\!\cdots\!95}{17\!\cdots\!72}a^{14}+\frac{58\!\cdots\!17}{69\!\cdots\!88}a^{13}-\frac{10\!\cdots\!49}{30\!\cdots\!56}a^{12}-\frac{12\!\cdots\!41}{69\!\cdots\!88}a^{11}+\frac{14\!\cdots\!81}{34\!\cdots\!44}a^{10}-\frac{82\!\cdots\!35}{12\!\cdots\!44}a^{9}+\frac{13\!\cdots\!25}{34\!\cdots\!44}a^{8}+\frac{10\!\cdots\!99}{17\!\cdots\!72}a^{7}-\frac{17\!\cdots\!48}{10\!\cdots\!17}a^{6}+\frac{30\!\cdots\!77}{23\!\cdots\!64}a^{5}-\frac{85\!\cdots\!17}{86\!\cdots\!36}a^{4}-\frac{48\!\cdots\!87}{10\!\cdots\!17}a^{3}+\frac{33\!\cdots\!23}{86\!\cdots\!36}a^{2}+\frac{27\!\cdots\!05}{37\!\cdots\!73}a-\frac{69\!\cdots\!21}{43\!\cdots\!68}$, $\frac{42\!\cdots\!97}{34\!\cdots\!44}a^{29}-\frac{50\!\cdots\!79}{34\!\cdots\!44}a^{28}+\frac{23\!\cdots\!79}{17\!\cdots\!72}a^{27}+\frac{86\!\cdots\!73}{34\!\cdots\!44}a^{26}+\frac{17\!\cdots\!83}{34\!\cdots\!44}a^{25}-\frac{15\!\cdots\!97}{86\!\cdots\!36}a^{24}-\frac{82\!\cdots\!29}{86\!\cdots\!36}a^{23}-\frac{91\!\cdots\!85}{17\!\cdots\!72}a^{22}-\frac{61\!\cdots\!93}{34\!\cdots\!44}a^{21}+\frac{21\!\cdots\!27}{34\!\cdots\!44}a^{20}-\frac{33\!\cdots\!83}{17\!\cdots\!72}a^{19}+\frac{31\!\cdots\!01}{34\!\cdots\!44}a^{18}+\frac{62\!\cdots\!75}{47\!\cdots\!28}a^{17}-\frac{12\!\cdots\!15}{17\!\cdots\!72}a^{16}+\frac{15\!\cdots\!45}{17\!\cdots\!72}a^{15}-\frac{42\!\cdots\!39}{17\!\cdots\!72}a^{14}+\frac{80\!\cdots\!85}{34\!\cdots\!44}a^{13}-\frac{20\!\cdots\!09}{34\!\cdots\!44}a^{12}-\frac{25\!\cdots\!59}{43\!\cdots\!68}a^{11}+\frac{57\!\cdots\!37}{34\!\cdots\!44}a^{10}-\frac{22\!\cdots\!53}{99\!\cdots\!52}a^{9}+\frac{95\!\cdots\!23}{86\!\cdots\!36}a^{8}+\frac{75\!\cdots\!39}{17\!\cdots\!72}a^{7}-\frac{11\!\cdots\!25}{17\!\cdots\!72}a^{6}+\frac{14\!\cdots\!79}{34\!\cdots\!48}a^{5}-\frac{24\!\cdots\!41}{86\!\cdots\!36}a^{4}-\frac{17\!\cdots\!81}{86\!\cdots\!36}a^{3}+\frac{15\!\cdots\!41}{10\!\cdots\!17}a^{2}+\frac{56\!\cdots\!31}{14\!\cdots\!92}a-\frac{52\!\cdots\!01}{43\!\cdots\!68}$, $\frac{53\!\cdots\!53}{97\!\cdots\!48}a^{29}+\frac{66\!\cdots\!85}{33\!\cdots\!12}a^{28}+\frac{10\!\cdots\!91}{97\!\cdots\!48}a^{27}+\frac{15\!\cdots\!43}{48\!\cdots\!24}a^{26}+\frac{73\!\cdots\!13}{12\!\cdots\!56}a^{25}+\frac{24\!\cdots\!13}{24\!\cdots\!12}a^{24}-\frac{83\!\cdots\!91}{48\!\cdots\!24}a^{23}-\frac{20\!\cdots\!03}{48\!\cdots\!24}a^{22}-\frac{17\!\cdots\!27}{97\!\cdots\!48}a^{21}-\frac{15\!\cdots\!79}{57\!\cdots\!44}a^{20}+\frac{32\!\cdots\!39}{97\!\cdots\!48}a^{19}-\frac{36\!\cdots\!53}{48\!\cdots\!24}a^{18}+\frac{45\!\cdots\!79}{15\!\cdots\!57}a^{17}+\frac{51\!\cdots\!05}{48\!\cdots\!24}a^{16}-\frac{19\!\cdots\!25}{61\!\cdots\!28}a^{15}+\frac{35\!\cdots\!99}{24\!\cdots\!12}a^{14}-\frac{63\!\cdots\!83}{97\!\cdots\!48}a^{13}+\frac{84\!\cdots\!67}{97\!\cdots\!48}a^{12}-\frac{35\!\cdots\!15}{57\!\cdots\!44}a^{11}+\frac{46\!\cdots\!37}{24\!\cdots\!12}a^{10}+\frac{77\!\cdots\!35}{44\!\cdots\!31}a^{9}-\frac{30\!\cdots\!09}{48\!\cdots\!24}a^{8}+\frac{17\!\cdots\!05}{30\!\cdots\!14}a^{7}-\frac{52\!\cdots\!27}{30\!\cdots\!14}a^{6}-\frac{21\!\cdots\!17}{24\!\cdots\!12}a^{5}+\frac{29\!\cdots\!69}{26\!\cdots\!36}a^{4}-\frac{20\!\cdots\!13}{15\!\cdots\!57}a^{3}+\frac{26\!\cdots\!61}{12\!\cdots\!56}a^{2}+\frac{57\!\cdots\!43}{21\!\cdots\!32}a+\frac{10\!\cdots\!39}{26\!\cdots\!36}$, $\frac{49\!\cdots\!33}{97\!\cdots\!48}a^{29}-\frac{32\!\cdots\!19}{97\!\cdots\!48}a^{28}+\frac{48\!\cdots\!91}{97\!\cdots\!48}a^{27}+\frac{21\!\cdots\!35}{48\!\cdots\!24}a^{26}+\frac{22\!\cdots\!95}{12\!\cdots\!56}a^{25}+\frac{71\!\cdots\!33}{24\!\cdots\!12}a^{24}-\frac{28\!\cdots\!23}{48\!\cdots\!24}a^{23}-\frac{11\!\cdots\!83}{48\!\cdots\!24}a^{22}-\frac{81\!\cdots\!99}{97\!\cdots\!48}a^{21}+\frac{58\!\cdots\!69}{97\!\cdots\!48}a^{20}-\frac{18\!\cdots\!41}{97\!\cdots\!48}a^{19}+\frac{16\!\cdots\!07}{48\!\cdots\!24}a^{18}+\frac{50\!\cdots\!61}{61\!\cdots\!28}a^{17}-\frac{11\!\cdots\!71}{48\!\cdots\!24}a^{16}-\frac{19\!\cdots\!53}{15\!\cdots\!57}a^{15}-\frac{19\!\cdots\!57}{24\!\cdots\!12}a^{14}+\frac{16\!\cdots\!33}{97\!\cdots\!48}a^{13}+\frac{83\!\cdots\!59}{97\!\cdots\!48}a^{12}-\frac{10\!\cdots\!59}{97\!\cdots\!48}a^{11}+\frac{20\!\cdots\!97}{24\!\cdots\!12}a^{10}-\frac{31\!\cdots\!75}{44\!\cdots\!31}a^{9}-\frac{17\!\cdots\!93}{48\!\cdots\!24}a^{8}+\frac{29\!\cdots\!61}{30\!\cdots\!14}a^{7}-\frac{17\!\cdots\!91}{30\!\cdots\!14}a^{6}+\frac{14\!\cdots\!03}{24\!\cdots\!12}a^{5}+\frac{71\!\cdots\!11}{61\!\cdots\!28}a^{4}-\frac{42\!\cdots\!69}{15\!\cdots\!57}a^{3}+\frac{82\!\cdots\!57}{71\!\cdots\!68}a^{2}+\frac{12\!\cdots\!51}{21\!\cdots\!32}a-\frac{55\!\cdots\!51}{61\!\cdots\!28}$, $\frac{12\!\cdots\!89}{69\!\cdots\!88}a^{29}-\frac{12\!\cdots\!55}{69\!\cdots\!88}a^{28}+\frac{82\!\cdots\!17}{40\!\cdots\!64}a^{27}+\frac{12\!\cdots\!69}{17\!\cdots\!72}a^{26}+\frac{28\!\cdots\!19}{34\!\cdots\!44}a^{25}-\frac{19\!\cdots\!25}{17\!\cdots\!72}a^{24}-\frac{46\!\cdots\!69}{34\!\cdots\!44}a^{23}-\frac{28\!\cdots\!95}{34\!\cdots\!44}a^{22}-\frac{19\!\cdots\!87}{69\!\cdots\!88}a^{21}+\frac{24\!\cdots\!57}{69\!\cdots\!88}a^{20}-\frac{22\!\cdots\!19}{69\!\cdots\!88}a^{19}+\frac{22\!\cdots\!77}{17\!\cdots\!72}a^{18}+\frac{10\!\cdots\!83}{47\!\cdots\!28}a^{17}-\frac{21\!\cdots\!63}{34\!\cdots\!44}a^{16}+\frac{27\!\cdots\!59}{17\!\cdots\!72}a^{15}-\frac{73\!\cdots\!27}{21\!\cdots\!34}a^{14}+\frac{22\!\cdots\!29}{69\!\cdots\!88}a^{13}-\frac{44\!\cdots\!57}{69\!\cdots\!88}a^{12}-\frac{39\!\cdots\!33}{69\!\cdots\!88}a^{11}+\frac{84\!\cdots\!03}{34\!\cdots\!44}a^{10}-\frac{17\!\cdots\!69}{58\!\cdots\!56}a^{9}+\frac{51\!\cdots\!73}{34\!\cdots\!44}a^{8}+\frac{10\!\cdots\!69}{17\!\cdots\!72}a^{7}-\frac{14\!\cdots\!71}{17\!\cdots\!72}a^{6}+\frac{14\!\cdots\!01}{23\!\cdots\!64}a^{5}-\frac{35\!\cdots\!55}{86\!\cdots\!36}a^{4}-\frac{23\!\cdots\!97}{86\!\cdots\!36}a^{3}+\frac{11\!\cdots\!47}{86\!\cdots\!36}a^{2}+\frac{12\!\cdots\!89}{21\!\cdots\!34}a+\frac{91\!\cdots\!91}{10\!\cdots\!17}$, $\frac{20\!\cdots\!71}{34\!\cdots\!44}a^{29}-\frac{24\!\cdots\!77}{34\!\cdots\!44}a^{28}+\frac{23\!\cdots\!75}{34\!\cdots\!44}a^{27}+\frac{11\!\cdots\!01}{86\!\cdots\!36}a^{26}+\frac{47\!\cdots\!23}{17\!\cdots\!72}a^{25}-\frac{59\!\cdots\!31}{86\!\cdots\!36}a^{24}-\frac{66\!\cdots\!51}{17\!\cdots\!72}a^{23}-\frac{45\!\cdots\!51}{17\!\cdots\!72}a^{22}-\frac{31\!\cdots\!77}{34\!\cdots\!44}a^{21}+\frac{68\!\cdots\!43}{34\!\cdots\!44}a^{20}-\frac{43\!\cdots\!93}{34\!\cdots\!44}a^{19}+\frac{47\!\cdots\!20}{10\!\cdots\!17}a^{18}+\frac{14\!\cdots\!47}{23\!\cdots\!64}a^{17}-\frac{38\!\cdots\!19}{17\!\cdots\!72}a^{16}+\frac{12\!\cdots\!17}{18\!\cdots\!16}a^{15}-\frac{10\!\cdots\!45}{86\!\cdots\!36}a^{14}+\frac{46\!\cdots\!87}{34\!\cdots\!44}a^{13}-\frac{18\!\cdots\!83}{34\!\cdots\!44}a^{12}+\frac{27\!\cdots\!73}{34\!\cdots\!44}a^{11}+\frac{11\!\cdots\!01}{17\!\cdots\!72}a^{10}-\frac{50\!\cdots\!31}{49\!\cdots\!76}a^{9}+\frac{11\!\cdots\!29}{17\!\cdots\!72}a^{8}+\frac{28\!\cdots\!75}{86\!\cdots\!36}a^{7}-\frac{15\!\cdots\!21}{86\!\cdots\!36}a^{6}+\frac{26\!\cdots\!07}{11\!\cdots\!32}a^{5}-\frac{16\!\cdots\!17}{10\!\cdots\!17}a^{4}-\frac{21\!\cdots\!33}{43\!\cdots\!68}a^{3}+\frac{17\!\cdots\!11}{43\!\cdots\!68}a^{2}+\frac{35\!\cdots\!87}{74\!\cdots\!46}a-\frac{22\!\cdots\!41}{10\!\cdots\!17}$, $\frac{15\!\cdots\!05}{69\!\cdots\!88}a^{29}-\frac{48\!\cdots\!23}{69\!\cdots\!88}a^{28}+\frac{22\!\cdots\!65}{69\!\cdots\!88}a^{27}-\frac{41\!\cdots\!55}{86\!\cdots\!36}a^{26}+\frac{39\!\cdots\!99}{34\!\cdots\!44}a^{25}-\frac{39\!\cdots\!17}{17\!\cdots\!72}a^{24}-\frac{43\!\cdots\!21}{34\!\cdots\!44}a^{23}-\frac{10\!\cdots\!73}{15\!\cdots\!28}a^{22}-\frac{10\!\cdots\!59}{69\!\cdots\!88}a^{21}+\frac{45\!\cdots\!97}{69\!\cdots\!88}a^{20}-\frac{60\!\cdots\!03}{69\!\cdots\!88}a^{19}+\frac{23\!\cdots\!57}{86\!\cdots\!36}a^{18}-\frac{60\!\cdots\!65}{47\!\cdots\!28}a^{17}-\frac{13\!\cdots\!95}{34\!\cdots\!44}a^{16}+\frac{10\!\cdots\!43}{17\!\cdots\!72}a^{15}-\frac{45\!\cdots\!15}{43\!\cdots\!68}a^{14}+\frac{10\!\cdots\!17}{69\!\cdots\!88}a^{13}-\frac{10\!\cdots\!17}{69\!\cdots\!88}a^{12}+\frac{56\!\cdots\!95}{69\!\cdots\!88}a^{11}+\frac{19\!\cdots\!25}{34\!\cdots\!44}a^{10}-\frac{10\!\cdots\!45}{99\!\cdots\!52}a^{9}+\frac{46\!\cdots\!17}{34\!\cdots\!44}a^{8}-\frac{16\!\cdots\!33}{17\!\cdots\!72}a^{7}+\frac{37\!\cdots\!17}{17\!\cdots\!72}a^{6}+\frac{55\!\cdots\!57}{23\!\cdots\!64}a^{5}-\frac{30\!\cdots\!11}{86\!\cdots\!36}a^{4}+\frac{17\!\cdots\!03}{86\!\cdots\!36}a^{3}-\frac{33\!\cdots\!37}{86\!\cdots\!36}a^{2}-\frac{65\!\cdots\!59}{21\!\cdots\!34}a+\frac{23\!\cdots\!98}{10\!\cdots\!17}$, $\frac{11\!\cdots\!37}{69\!\cdots\!88}a^{29}-\frac{16\!\cdots\!77}{69\!\cdots\!88}a^{28}+\frac{13\!\cdots\!85}{69\!\cdots\!88}a^{27}-\frac{22\!\cdots\!37}{17\!\cdots\!72}a^{26}+\frac{12\!\cdots\!41}{17\!\cdots\!72}a^{25}-\frac{70\!\cdots\!79}{17\!\cdots\!72}a^{24}-\frac{38\!\cdots\!55}{34\!\cdots\!44}a^{23}-\frac{24\!\cdots\!21}{34\!\cdots\!44}a^{22}-\frac{15\!\cdots\!59}{69\!\cdots\!88}a^{21}+\frac{89\!\cdots\!91}{69\!\cdots\!88}a^{20}-\frac{22\!\cdots\!67}{69\!\cdots\!88}a^{19}+\frac{22\!\cdots\!25}{17\!\cdots\!72}a^{18}+\frac{34\!\cdots\!97}{23\!\cdots\!64}a^{17}-\frac{41\!\cdots\!83}{34\!\cdots\!44}a^{16}+\frac{29\!\cdots\!91}{17\!\cdots\!72}a^{15}-\frac{65\!\cdots\!45}{17\!\cdots\!72}a^{14}+\frac{30\!\cdots\!37}{69\!\cdots\!88}a^{13}-\frac{15\!\cdots\!39}{69\!\cdots\!88}a^{12}+\frac{22\!\cdots\!35}{69\!\cdots\!88}a^{11}+\frac{65\!\cdots\!51}{34\!\cdots\!44}a^{10}-\frac{41\!\cdots\!35}{12\!\cdots\!44}a^{9}+\frac{84\!\cdots\!43}{34\!\cdots\!44}a^{8}-\frac{36\!\cdots\!49}{17\!\cdots\!72}a^{7}-\frac{28\!\cdots\!27}{43\!\cdots\!68}a^{6}+\frac{16\!\cdots\!97}{23\!\cdots\!64}a^{5}-\frac{50\!\cdots\!69}{86\!\cdots\!36}a^{4}-\frac{16\!\cdots\!29}{21\!\cdots\!34}a^{3}+\frac{51\!\cdots\!61}{29\!\cdots\!84}a^{2}+\frac{25\!\cdots\!17}{94\!\cdots\!58}a-\frac{18\!\cdots\!21}{43\!\cdots\!68}$, $\frac{68\!\cdots\!73}{94\!\cdots\!56}a^{29}-\frac{10\!\cdots\!27}{94\!\cdots\!56}a^{28}+\frac{80\!\cdots\!05}{94\!\cdots\!56}a^{27}-\frac{30\!\cdots\!03}{23\!\cdots\!64}a^{26}+\frac{15\!\cdots\!49}{47\!\cdots\!28}a^{25}-\frac{21\!\cdots\!39}{10\!\cdots\!68}a^{24}-\frac{21\!\cdots\!61}{47\!\cdots\!28}a^{23}-\frac{14\!\cdots\!15}{47\!\cdots\!28}a^{22}-\frac{91\!\cdots\!59}{94\!\cdots\!56}a^{21}+\frac{60\!\cdots\!13}{94\!\cdots\!56}a^{20}-\frac{13\!\cdots\!19}{94\!\cdots\!56}a^{19}+\frac{14\!\cdots\!65}{23\!\cdots\!64}a^{18}+\frac{27\!\cdots\!57}{47\!\cdots\!28}a^{17}-\frac{25\!\cdots\!71}{47\!\cdots\!28}a^{16}+\frac{17\!\cdots\!95}{23\!\cdots\!64}a^{15}-\frac{20\!\cdots\!55}{11\!\cdots\!32}a^{14}+\frac{19\!\cdots\!77}{94\!\cdots\!56}a^{13}-\frac{11\!\cdots\!49}{94\!\cdots\!56}a^{12}+\frac{35\!\cdots\!95}{94\!\cdots\!56}a^{11}+\frac{30\!\cdots\!79}{47\!\cdots\!28}a^{10}-\frac{66\!\cdots\!15}{47\!\cdots\!56}a^{9}+\frac{53\!\cdots\!65}{47\!\cdots\!28}a^{8}-\frac{52\!\cdots\!63}{23\!\cdots\!64}a^{7}-\frac{44\!\cdots\!73}{23\!\cdots\!64}a^{6}+\frac{61\!\cdots\!09}{23\!\cdots\!64}a^{5}-\frac{29\!\cdots\!67}{11\!\cdots\!32}a^{4}-\frac{14\!\cdots\!71}{11\!\cdots\!32}a^{3}+\frac{40\!\cdots\!07}{69\!\cdots\!96}a^{2}+\frac{30\!\cdots\!39}{29\!\cdots\!58}a-\frac{91\!\cdots\!33}{29\!\cdots\!58}$, $\frac{26\!\cdots\!51}{34\!\cdots\!44}a^{29}-\frac{90\!\cdots\!65}{86\!\cdots\!36}a^{28}+\frac{30\!\cdots\!37}{34\!\cdots\!44}a^{27}-\frac{74\!\cdots\!01}{17\!\cdots\!72}a^{26}+\frac{11\!\cdots\!75}{34\!\cdots\!44}a^{25}-\frac{30\!\cdots\!59}{17\!\cdots\!72}a^{24}-\frac{20\!\cdots\!71}{37\!\cdots\!73}a^{23}-\frac{70\!\cdots\!75}{21\!\cdots\!34}a^{22}-\frac{37\!\cdots\!45}{34\!\cdots\!44}a^{21}+\frac{96\!\cdots\!55}{17\!\cdots\!72}a^{20}-\frac{48\!\cdots\!47}{34\!\cdots\!44}a^{19}+\frac{26\!\cdots\!57}{44\!\cdots\!92}a^{18}+\frac{34\!\cdots\!91}{47\!\cdots\!28}a^{17}-\frac{23\!\cdots\!37}{43\!\cdots\!68}a^{16}+\frac{34\!\cdots\!35}{50\!\cdots\!08}a^{15}-\frac{30\!\cdots\!61}{17\!\cdots\!72}a^{14}+\frac{64\!\cdots\!87}{34\!\cdots\!44}a^{13}-\frac{14\!\cdots\!03}{17\!\cdots\!72}a^{12}+\frac{18\!\cdots\!69}{34\!\cdots\!44}a^{11}+\frac{72\!\cdots\!59}{86\!\cdots\!36}a^{10}-\frac{14\!\cdots\!55}{99\!\cdots\!52}a^{9}+\frac{16\!\cdots\!39}{17\!\cdots\!72}a^{8}+\frac{13\!\cdots\!83}{86\!\cdots\!36}a^{7}-\frac{52\!\cdots\!45}{17\!\cdots\!72}a^{6}+\frac{31\!\cdots\!41}{11\!\cdots\!32}a^{5}-\frac{59\!\cdots\!25}{25\!\cdots\!04}a^{4}-\frac{55\!\cdots\!63}{86\!\cdots\!36}a^{3}+\frac{33\!\cdots\!27}{43\!\cdots\!68}a^{2}+\frac{40\!\cdots\!43}{21\!\cdots\!34}a-\frac{32\!\cdots\!59}{43\!\cdots\!68}$, $\frac{14\!\cdots\!83}{34\!\cdots\!44}a^{29}-\frac{19\!\cdots\!63}{34\!\cdots\!44}a^{28}+\frac{16\!\cdots\!23}{34\!\cdots\!44}a^{27}-\frac{26\!\cdots\!56}{10\!\cdots\!17}a^{26}+\frac{16\!\cdots\!93}{86\!\cdots\!36}a^{25}-\frac{18\!\cdots\!03}{21\!\cdots\!34}a^{24}-\frac{20\!\cdots\!47}{10\!\cdots\!16}a^{23}-\frac{29\!\cdots\!39}{17\!\cdots\!72}a^{22}-\frac{19\!\cdots\!33}{34\!\cdots\!44}a^{21}+\frac{75\!\cdots\!01}{34\!\cdots\!44}a^{20}-\frac{35\!\cdots\!09}{34\!\cdots\!44}a^{19}+\frac{27\!\cdots\!37}{86\!\cdots\!36}a^{18}+\frac{19\!\cdots\!55}{59\!\cdots\!16}a^{17}-\frac{12\!\cdots\!73}{75\!\cdots\!64}a^{16}+\frac{48\!\cdots\!43}{86\!\cdots\!36}a^{15}-\frac{19\!\cdots\!97}{21\!\cdots\!34}a^{14}+\frac{41\!\cdots\!03}{34\!\cdots\!44}a^{13}-\frac{27\!\cdots\!17}{34\!\cdots\!44}a^{12}+\frac{49\!\cdots\!45}{11\!\cdots\!36}a^{11}+\frac{51\!\cdots\!01}{17\!\cdots\!72}a^{10}-\frac{87\!\cdots\!41}{12\!\cdots\!44}a^{9}+\frac{12\!\cdots\!33}{17\!\cdots\!72}a^{8}-\frac{22\!\cdots\!37}{86\!\cdots\!36}a^{7}+\frac{77\!\cdots\!77}{21\!\cdots\!34}a^{6}+\frac{15\!\cdots\!11}{11\!\cdots\!32}a^{5}-\frac{61\!\cdots\!05}{43\!\cdots\!68}a^{4}+\frac{27\!\cdots\!58}{10\!\cdots\!17}a^{3}-\frac{15\!\cdots\!09}{43\!\cdots\!68}a^{2}-\frac{75\!\cdots\!47}{10\!\cdots\!17}a+\frac{32\!\cdots\!15}{21\!\cdots\!34}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 145673548066.95038 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{14}\cdot 145673548066.95038 \cdot 2}{2\cdot\sqrt{14026461290181639205847118647072000000000000000}}\cr\approx \mathstrut & 0.735334238100197 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 + 11*x^28 + 4*x^27 + 44*x^26 - 6*x^25 - 74*x^24 - 446*x^23 - 1543*x^22 + 183*x^21 - 1721*x^20 + 7116*x^19 + 11884*x^18 - 3168*x^17 + 7664*x^16 - 18756*x^15 + 17109*x^14 - 3363*x^13 - 2431*x^12 + 11594*x^11 - 15080*x^10 + 6868*x^9 + 3884*x^8 - 3768*x^7 + 2512*x^6 - 1864*x^5 - 1696*x^4 + 656*x^3 + 448*x^2 + 16*x - 16)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^30 - x^29 + 11*x^28 + 4*x^27 + 44*x^26 - 6*x^25 - 74*x^24 - 446*x^23 - 1543*x^22 + 183*x^21 - 1721*x^20 + 7116*x^19 + 11884*x^18 - 3168*x^17 + 7664*x^16 - 18756*x^15 + 17109*x^14 - 3363*x^13 - 2431*x^12 + 11594*x^11 - 15080*x^10 + 6868*x^9 + 3884*x^8 - 3768*x^7 + 2512*x^6 - 1864*x^5 - 1696*x^4 + 656*x^3 + 448*x^2 + 16*x - 16, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^30 - x^29 + 11*x^28 + 4*x^27 + 44*x^26 - 6*x^25 - 74*x^24 - 446*x^23 - 1543*x^22 + 183*x^21 - 1721*x^20 + 7116*x^19 + 11884*x^18 - 3168*x^17 + 7664*x^16 - 18756*x^15 + 17109*x^14 - 3363*x^13 - 2431*x^12 + 11594*x^11 - 15080*x^10 + 6868*x^9 + 3884*x^8 - 3768*x^7 + 2512*x^6 - 1864*x^5 - 1696*x^4 + 656*x^3 + 448*x^2 + 16*x - 16);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 + 11*x^28 + 4*x^27 + 44*x^26 - 6*x^25 - 74*x^24 - 446*x^23 - 1543*x^22 + 183*x^21 - 1721*x^20 + 7116*x^19 + 11884*x^18 - 3168*x^17 + 7664*x^16 - 18756*x^15 + 17109*x^14 - 3363*x^13 - 2431*x^12 + 11594*x^11 - 15080*x^10 + 6868*x^9 + 3884*x^8 - 3768*x^7 + 2512*x^6 - 1864*x^5 - 1696*x^4 + 656*x^3 + 448*x^2 + 16*x - 16);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{30}$ (as 30T14):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 60
The 18 conjugacy class representatives for $D_{30}$
Character table for $D_{30}$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.1.524.1, 5.1.17161.1, 6.2.34322000.3, 10.2.920312253125.1, 15.1.677952124826430464.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 30 sibling: deg 30
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $30$ R $30$ ${\href{/padicField/11.5.0.1}{5} }^{6}$ $30$ ${\href{/padicField/17.2.0.1}{2} }^{15}$ ${\href{/padicField/19.2.0.1}{2} }^{14}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{15}$ ${\href{/padicField/29.2.0.1}{2} }^{14}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{14}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{15}$ $15^{2}$ $30$ ${\href{/padicField/47.2.0.1}{2} }^{15}$ ${\href{/padicField/53.6.0.1}{6} }^{5}$ $15^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
\(5\) Copy content Toggle raw display 5.10.5.1$x^{10} + 100 x^{9} + 4025 x^{8} + 82000 x^{7} + 860258 x^{6} + 4015486 x^{5} + 4317350 x^{4} + 2373700 x^{3} + 3853141 x^{2} + 15123594 x + 12051954$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} + 100 x^{9} + 4025 x^{8} + 82000 x^{7} + 860258 x^{6} + 4015486 x^{5} + 4317350 x^{4} + 2373700 x^{3} + 3853141 x^{2} + 15123594 x + 12051954$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} + 100 x^{9} + 4025 x^{8} + 82000 x^{7} + 860258 x^{6} + 4015486 x^{5} + 4317350 x^{4} + 2373700 x^{3} + 3853141 x^{2} + 15123594 x + 12051954$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
\(131\) Copy content Toggle raw display $\Q_{131}$$x + 129$$1$$1$$0$Trivial$[\ ]$
$\Q_{131}$$x + 129$$1$$1$$0$Trivial$[\ ]$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 131$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.655.2t1.a.a$1$ $ 5 \cdot 131 $ \(\Q(\sqrt{-655}) \) $C_2$ (as 2T1) $1$ $-1$
1.131.2t1.a.a$1$ $ 131 $ \(\Q(\sqrt{-131}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
* 2.13100.6t3.b.a$2$ $ 2^{2} \cdot 5^{2} \cdot 131 $ 6.0.4496182000.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.524.3t2.a.a$2$ $ 2^{2} \cdot 131 $ 3.1.524.1 $S_3$ (as 3T2) $1$ $0$
* 2.131.5t2.a.b$2$ $ 131 $ 5.1.17161.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.131.5t2.a.a$2$ $ 131 $ 5.1.17161.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.3275.10t3.a.b$2$ $ 5^{2} \cdot 131 $ 10.0.120560905159375.1 $D_{10}$ (as 10T3) $1$ $0$
* 2.3275.10t3.a.a$2$ $ 5^{2} \cdot 131 $ 10.0.120560905159375.1 $D_{10}$ (as 10T3) $1$ $0$
* 2.524.15t2.a.a$2$ $ 2^{2} \cdot 131 $ 15.1.677952124826430464.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.13100.30t14.a.c$2$ $ 2^{2} \cdot 5^{2} \cdot 131 $ 30.2.14026461290181639205847118647072000000000000000.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.524.15t2.a.c$2$ $ 2^{2} \cdot 131 $ 15.1.677952124826430464.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.13100.30t14.a.a$2$ $ 2^{2} \cdot 5^{2} \cdot 131 $ 30.2.14026461290181639205847118647072000000000000000.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.524.15t2.a.b$2$ $ 2^{2} \cdot 131 $ 15.1.677952124826430464.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.13100.30t14.a.b$2$ $ 2^{2} \cdot 5^{2} \cdot 131 $ 30.2.14026461290181639205847118647072000000000000000.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.524.15t2.a.d$2$ $ 2^{2} \cdot 131 $ 15.1.677952124826430464.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.13100.30t14.a.d$2$ $ 2^{2} \cdot 5^{2} \cdot 131 $ 30.2.14026461290181639205847118647072000000000000000.1 $D_{30}$ (as 30T14) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.