Properties

Label 32.0.146...976.1
Degree $32$
Signature $[0, 16]$
Discriminant $1.462\times 10^{48}$
Root discriminant \(32.00\)
Ramified prime $2$
Class number $17$ (GRH)
Class group [17] (GRH)
Galois group $C_2\times C_{16}$ (as 32T32)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 1)
 
gp: K = bnfinit(y^32 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 + 1)
 

\( x^{32} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1461501637330902918203684832716283019655932542976\) \(\medspace = 2^{160}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(32.00\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{5}\approx 32.0$
Ramified primes:   \(2\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $32$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(64=2^{6}\)
Dirichlet character group:    $\lbrace$$\chi_{64}(1,·)$, $\chi_{64}(3,·)$, $\chi_{64}(5,·)$, $\chi_{64}(7,·)$, $\chi_{64}(9,·)$, $\chi_{64}(11,·)$, $\chi_{64}(13,·)$, $\chi_{64}(15,·)$, $\chi_{64}(17,·)$, $\chi_{64}(19,·)$, $\chi_{64}(21,·)$, $\chi_{64}(23,·)$, $\chi_{64}(25,·)$, $\chi_{64}(27,·)$, $\chi_{64}(29,·)$, $\chi_{64}(31,·)$, $\chi_{64}(33,·)$, $\chi_{64}(35,·)$, $\chi_{64}(37,·)$, $\chi_{64}(39,·)$, $\chi_{64}(41,·)$, $\chi_{64}(43,·)$, $\chi_{64}(45,·)$, $\chi_{64}(47,·)$, $\chi_{64}(49,·)$, $\chi_{64}(51,·)$, $\chi_{64}(53,·)$, $\chi_{64}(55,·)$, $\chi_{64}(57,·)$, $\chi_{64}(59,·)$, $\chi_{64}(61,·)$, $\chi_{64}(63,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{17}$, which has order $17$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( a \)  (order $64$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{2}+a+1$, $a^{6}+a^{3}+1$, $a^{4}+a^{3}+a^{2}+a+1$, $a^{12}+a^{9}+a^{6}+a^{3}+1$, $a^{18}+a^{17}+a^{16}+a^{15}+a^{14}+a^{13}+a^{12}+a^{11}+a^{10}+a^{9}+a^{8}+a^{7}+a^{6}+a^{5}+a^{4}+a^{3}+a^{2}+a+1$, $a^{30}-a^{2}+1$, $a^{26}-a^{20}+a^{13}-a^{7}+1$, $a^{27}-a^{18}-a^{13}+a^{9}+a^{4}$, $a^{22}-a^{11}+a$, $a^{31}-a^{30}+a^{29}-a^{28}+a^{27}-a^{26}+a^{25}-a^{21}+a^{20}-a^{19}+a^{18}-a^{17}+a^{16}-a^{15}+a^{14}-a^{10}+a^{9}-a^{8}+a^{7}-a^{6}+a^{5}-a^{4}+a^{3}$, $a^{28}-a^{21}+a^{14}-a^{7}+a^{3}$, $a^{26}-a^{6}+1$, $a^{27}-a^{22}+1$, $a^{29}-a^{27}-a^{22}-a^{17}-a^{12}-a^{7}-a^{2}$, $a^{31}-a^{30}+a^{29}-a^{28}+a^{27}-a^{26}+a^{25}-a^{24}+a^{23}-a^{22}+a^{21}-a^{20}+a^{19}-a^{18}+a^{17}-a^{16}+a^{15}-a^{14}+a^{13}-a^{12}+a^{11}-a^{10}+1$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 211230625393.46567 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 211230625393.46567 \cdot 17}{64\cdot\sqrt{1461501637330902918203684832716283019655932542976}}\cr\approx \mathstrut & 0.273844531562237 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{16}$ (as 32T32):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_{16}$
Character table for $C_2\times C_{16}$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{8})\), \(\Q(\zeta_{16})^+\), 4.0.2048.2, \(\Q(\zeta_{16})\), \(\Q(\zeta_{32})^+\), 8.0.2147483648.1, \(\Q(\zeta_{32})\), \(\Q(\zeta_{64})^+\), 16.0.604462909807314587353088.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $16^{2}$ $16^{2}$ ${\href{/padicField/7.8.0.1}{8} }^{4}$ $16^{2}$ $16^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{8}$ $16^{2}$ ${\href{/padicField/23.8.0.1}{8} }^{4}$ $16^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{16}$ $16^{2}$ ${\href{/padicField/41.8.0.1}{8} }^{4}$ $16^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{8}$ $16^{2}$ $16^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $32$$32$$1$$160$