Properties

Label 36.0.113...024.1
Degree $36$
Signature $[0, 18]$
Discriminant $1.135\times 10^{58}$
Root discriminant \(40.99\)
Ramified primes $2,3,7,71$
Class number $72$ (GRH)
Class group [3, 24] (GRH)
Galois group $C_2\times A_4\times D_6$ (as 36T334)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 3*x^35 - 9*x^34 + 45*x^33 - 6*x^32 - 423*x^31 + 987*x^30 + 1500*x^29 - 7605*x^28 + 1541*x^27 + 30849*x^26 - 54360*x^25 - 60048*x^24 + 185232*x^23 + 256266*x^22 - 152940*x^21 - 1073577*x^20 - 336708*x^19 + 2425303*x^18 + 1698282*x^17 - 2128815*x^16 - 3681504*x^15 - 275778*x^14 + 5895882*x^13 + 1320516*x^12 - 4471362*x^11 + 1316007*x^10 + 878499*x^9 - 806031*x^8 + 4374*x^7 + 235467*x^6 - 78003*x^5 - 16038*x^4 + 16767*x^3 - 2187*x^2 - 2187*x + 729)
 
gp: K = bnfinit(y^36 - 3*y^35 - 9*y^34 + 45*y^33 - 6*y^32 - 423*y^31 + 987*y^30 + 1500*y^29 - 7605*y^28 + 1541*y^27 + 30849*y^26 - 54360*y^25 - 60048*y^24 + 185232*y^23 + 256266*y^22 - 152940*y^21 - 1073577*y^20 - 336708*y^19 + 2425303*y^18 + 1698282*y^17 - 2128815*y^16 - 3681504*y^15 - 275778*y^14 + 5895882*y^13 + 1320516*y^12 - 4471362*y^11 + 1316007*y^10 + 878499*y^9 - 806031*y^8 + 4374*y^7 + 235467*y^6 - 78003*y^5 - 16038*y^4 + 16767*y^3 - 2187*y^2 - 2187*y + 729, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - 3*x^35 - 9*x^34 + 45*x^33 - 6*x^32 - 423*x^31 + 987*x^30 + 1500*x^29 - 7605*x^28 + 1541*x^27 + 30849*x^26 - 54360*x^25 - 60048*x^24 + 185232*x^23 + 256266*x^22 - 152940*x^21 - 1073577*x^20 - 336708*x^19 + 2425303*x^18 + 1698282*x^17 - 2128815*x^16 - 3681504*x^15 - 275778*x^14 + 5895882*x^13 + 1320516*x^12 - 4471362*x^11 + 1316007*x^10 + 878499*x^9 - 806031*x^8 + 4374*x^7 + 235467*x^6 - 78003*x^5 - 16038*x^4 + 16767*x^3 - 2187*x^2 - 2187*x + 729);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 - 9*x^34 + 45*x^33 - 6*x^32 - 423*x^31 + 987*x^30 + 1500*x^29 - 7605*x^28 + 1541*x^27 + 30849*x^26 - 54360*x^25 - 60048*x^24 + 185232*x^23 + 256266*x^22 - 152940*x^21 - 1073577*x^20 - 336708*x^19 + 2425303*x^18 + 1698282*x^17 - 2128815*x^16 - 3681504*x^15 - 275778*x^14 + 5895882*x^13 + 1320516*x^12 - 4471362*x^11 + 1316007*x^10 + 878499*x^9 - 806031*x^8 + 4374*x^7 + 235467*x^6 - 78003*x^5 - 16038*x^4 + 16767*x^3 - 2187*x^2 - 2187*x + 729)
 

\( x^{36} - 3 x^{35} - 9 x^{34} + 45 x^{33} - 6 x^{32} - 423 x^{31} + 987 x^{30} + 1500 x^{29} - 7605 x^{28} + \cdots + 729 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(11349174172096312401159270887667863929976078528910955905024\) \(\medspace = 2^{24}\cdot 3^{62}\cdot 7^{12}\cdot 71^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(40.99\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{31/18}7^{1/2}71^{1/2}\approx 234.73274943944722$
Ramified primes:   \(2\), \(3\), \(7\), \(71\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3}a^{12}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{13}+\frac{1}{3}a^{4}$, $\frac{1}{3}a^{14}+\frac{1}{3}a^{5}$, $\frac{1}{3}a^{15}+\frac{1}{3}a^{6}$, $\frac{1}{3}a^{16}+\frac{1}{3}a^{7}$, $\frac{1}{3}a^{17}+\frac{1}{3}a^{8}$, $\frac{1}{3}a^{18}+\frac{1}{3}a^{9}$, $\frac{1}{9}a^{19}-\frac{1}{9}a^{18}+\frac{1}{9}a^{17}+\frac{1}{9}a^{16}-\frac{1}{9}a^{15}+\frac{1}{9}a^{14}-\frac{1}{3}a^{11}+\frac{4}{9}a^{10}-\frac{4}{9}a^{9}+\frac{4}{9}a^{8}+\frac{1}{9}a^{7}-\frac{1}{9}a^{6}+\frac{1}{9}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{20}-\frac{1}{9}a^{17}+\frac{1}{9}a^{14}+\frac{1}{9}a^{11}+\frac{2}{9}a^{8}-\frac{2}{9}a^{5}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{21}-\frac{1}{9}a^{18}+\frac{1}{9}a^{15}+\frac{1}{9}a^{12}+\frac{2}{9}a^{9}-\frac{2}{9}a^{6}+\frac{1}{3}a^{3}$, $\frac{1}{9}a^{22}-\frac{1}{9}a^{18}+\frac{1}{9}a^{17}-\frac{1}{9}a^{16}-\frac{1}{9}a^{15}+\frac{1}{9}a^{14}+\frac{1}{9}a^{13}-\frac{1}{3}a^{11}-\frac{1}{3}a^{10}-\frac{4}{9}a^{9}+\frac{4}{9}a^{8}-\frac{4}{9}a^{7}-\frac{1}{9}a^{6}+\frac{1}{9}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{23}-\frac{1}{9}a^{14}+\frac{1}{3}a^{11}-\frac{2}{9}a^{5}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{24}-\frac{1}{9}a^{15}-\frac{2}{9}a^{6}$, $\frac{1}{27}a^{25}+\frac{1}{9}a^{18}-\frac{1}{9}a^{17}+\frac{2}{27}a^{16}+\frac{1}{9}a^{15}-\frac{1}{9}a^{14}-\frac{1}{9}a^{13}+\frac{1}{3}a^{11}+\frac{1}{3}a^{10}+\frac{4}{9}a^{9}-\frac{4}{9}a^{8}-\frac{8}{27}a^{7}+\frac{1}{9}a^{6}-\frac{1}{9}a^{5}+\frac{2}{9}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{27}a^{26}-\frac{1}{27}a^{17}+\frac{1}{9}a^{14}-\frac{1}{3}a^{11}+\frac{7}{27}a^{8}+\frac{4}{9}a^{5}$, $\frac{1}{81}a^{27}+\frac{1}{27}a^{23}-\frac{1}{27}a^{21}-\frac{1}{27}a^{20}+\frac{11}{81}a^{18}+\frac{4}{27}a^{17}+\frac{1}{9}a^{16}-\frac{1}{9}a^{15}+\frac{1}{27}a^{14}-\frac{1}{27}a^{12}+\frac{2}{27}a^{11}-\frac{17}{81}a^{9}-\frac{8}{27}a^{8}-\frac{2}{9}a^{7}-\frac{2}{9}a^{6}+\frac{4}{9}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{81}a^{28}+\frac{1}{27}a^{24}-\frac{1}{27}a^{22}-\frac{1}{27}a^{21}+\frac{2}{81}a^{19}-\frac{2}{27}a^{18}+\frac{1}{9}a^{16}+\frac{4}{27}a^{15}-\frac{1}{9}a^{14}-\frac{1}{27}a^{13}+\frac{2}{27}a^{12}+\frac{1}{3}a^{11}+\frac{28}{81}a^{10}-\frac{5}{27}a^{9}+\frac{1}{3}a^{8}-\frac{4}{9}a^{6}-\frac{1}{9}a^{5}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{243}a^{29}+\frac{1}{81}a^{25}-\frac{1}{27}a^{24}-\frac{4}{81}a^{23}+\frac{2}{81}a^{22}+\frac{2}{243}a^{20}-\frac{2}{81}a^{19}+\frac{2}{27}a^{18}+\frac{2}{27}a^{17}-\frac{8}{81}a^{16}+\frac{2}{27}a^{15}-\frac{4}{81}a^{14}+\frac{5}{81}a^{13}+\frac{1}{9}a^{12}-\frac{26}{243}a^{11}-\frac{14}{81}a^{10}+\frac{2}{27}a^{9}+\frac{13}{27}a^{8}-\frac{11}{27}a^{7}+\frac{4}{9}a^{6}-\frac{1}{3}a^{5}-\frac{1}{9}a^{4}+\frac{1}{3}a^{3}+\frac{4}{9}a^{2}-\frac{1}{3}a$, $\frac{1}{243}a^{30}+\frac{1}{81}a^{26}-\frac{4}{81}a^{24}+\frac{2}{81}a^{23}+\frac{2}{243}a^{21}-\frac{2}{81}a^{20}-\frac{1}{27}a^{19}-\frac{1}{27}a^{18}+\frac{1}{81}a^{17}+\frac{1}{27}a^{16}-\frac{13}{81}a^{15}-\frac{13}{81}a^{14}-\frac{26}{243}a^{12}+\frac{40}{81}a^{11}-\frac{1}{27}a^{10}+\frac{1}{27}a^{9}+\frac{1}{27}a^{8}+\frac{1}{27}a^{7}-\frac{4}{9}a^{6}-\frac{1}{3}a^{5}-\frac{1}{9}a^{4}-\frac{2}{9}a^{3}+\frac{1}{3}a$, $\frac{1}{729}a^{31}+\frac{1}{243}a^{28}+\frac{1}{243}a^{27}-\frac{1}{81}a^{26}-\frac{4}{243}a^{25}+\frac{5}{243}a^{24}-\frac{34}{729}a^{22}+\frac{13}{243}a^{21}-\frac{4}{81}a^{20}-\frac{10}{243}a^{19}-\frac{32}{243}a^{18}+\frac{8}{81}a^{17}-\frac{4}{243}a^{16}-\frac{19}{243}a^{15}+\frac{1}{27}a^{14}-\frac{62}{729}a^{13}+\frac{37}{243}a^{12}+\frac{32}{81}a^{11}-\frac{59}{243}a^{10}-\frac{4}{81}a^{9}+\frac{1}{9}a^{8}-\frac{10}{27}a^{7}-\frac{2}{9}a^{6}-\frac{1}{3}a^{5}+\frac{1}{27}a^{4}-\frac{2}{9}a^{3}-\frac{1}{3}a^{2}-\frac{2}{9}a-\frac{1}{3}$, $\frac{1}{729}a^{32}+\frac{1}{243}a^{28}-\frac{4}{243}a^{26}+\frac{2}{243}a^{25}+\frac{1}{27}a^{24}+\frac{29}{729}a^{23}+\frac{7}{243}a^{22}+\frac{2}{81}a^{21}+\frac{2}{81}a^{20}+\frac{1}{243}a^{19}-\frac{5}{81}a^{18}+\frac{14}{243}a^{17}-\frac{22}{243}a^{16}-\frac{4}{27}a^{15}-\frac{80}{729}a^{14}+\frac{22}{243}a^{13}+\frac{2}{81}a^{12}-\frac{23}{81}a^{11}-\frac{35}{81}a^{10}-\frac{32}{81}a^{9}-\frac{13}{27}a^{8}-\frac{7}{27}a^{7}-\frac{1}{3}a^{6}+\frac{10}{27}a^{5}-\frac{4}{9}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{2187}a^{33}-\frac{1}{729}a^{30}+\frac{1}{729}a^{29}-\frac{1}{243}a^{28}-\frac{1}{729}a^{27}+\frac{8}{729}a^{26}-\frac{1}{81}a^{25}+\frac{119}{2187}a^{24}-\frac{17}{729}a^{23}+\frac{5}{243}a^{22}-\frac{23}{729}a^{21}-\frac{29}{729}a^{20}-\frac{13}{243}a^{19}+\frac{74}{729}a^{18}-\frac{25}{729}a^{17}-\frac{1}{27}a^{16}+\frac{334}{2187}a^{15}-\frac{11}{729}a^{14}-\frac{4}{243}a^{13}-\frac{16}{729}a^{12}-\frac{35}{81}a^{11}+\frac{32}{81}a^{10}-\frac{17}{243}a^{9}+\frac{11}{27}a^{8}+\frac{11}{27}a^{7}+\frac{25}{81}a^{6}+\frac{7}{27}a^{5}+\frac{1}{3}a^{4}+\frac{5}{27}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{2}{9}$, $\frac{1}{84\!\cdots\!31}a^{34}+\frac{32\!\cdots\!64}{28\!\cdots\!77}a^{33}-\frac{15\!\cdots\!14}{93\!\cdots\!59}a^{32}-\frac{14\!\cdots\!59}{28\!\cdots\!77}a^{31}+\frac{36\!\cdots\!65}{28\!\cdots\!77}a^{30}+\frac{13\!\cdots\!78}{93\!\cdots\!59}a^{29}+\frac{16\!\cdots\!48}{28\!\cdots\!77}a^{28}+\frac{98\!\cdots\!59}{28\!\cdots\!77}a^{27}-\frac{52\!\cdots\!02}{93\!\cdots\!59}a^{26}-\frac{82\!\cdots\!99}{84\!\cdots\!31}a^{25}-\frac{25\!\cdots\!55}{28\!\cdots\!77}a^{24}-\frac{30\!\cdots\!52}{93\!\cdots\!59}a^{23}-\frac{60\!\cdots\!56}{28\!\cdots\!77}a^{22}-\frac{14\!\cdots\!32}{28\!\cdots\!77}a^{21}-\frac{44\!\cdots\!51}{10\!\cdots\!51}a^{20}+\frac{16\!\cdots\!85}{28\!\cdots\!77}a^{19}+\frac{12\!\cdots\!30}{28\!\cdots\!77}a^{18}+\frac{95\!\cdots\!29}{93\!\cdots\!59}a^{17}+\frac{11\!\cdots\!75}{84\!\cdots\!31}a^{16}+\frac{14\!\cdots\!94}{93\!\cdots\!59}a^{15}+\frac{47\!\cdots\!47}{34\!\cdots\!17}a^{14}+\frac{35\!\cdots\!48}{28\!\cdots\!77}a^{13}-\frac{50\!\cdots\!87}{31\!\cdots\!53}a^{12}+\frac{14\!\cdots\!24}{93\!\cdots\!59}a^{11}+\frac{13\!\cdots\!01}{31\!\cdots\!53}a^{10}-\frac{11\!\cdots\!92}{31\!\cdots\!53}a^{9}+\frac{11\!\cdots\!21}{34\!\cdots\!17}a^{8}+\frac{11\!\cdots\!00}{31\!\cdots\!53}a^{7}+\frac{38\!\cdots\!71}{34\!\cdots\!17}a^{6}+\frac{17\!\cdots\!74}{34\!\cdots\!17}a^{5}+\frac{51\!\cdots\!49}{10\!\cdots\!51}a^{4}-\frac{12\!\cdots\!96}{38\!\cdots\!13}a^{3}+\frac{14\!\cdots\!69}{34\!\cdots\!17}a^{2}+\frac{43\!\cdots\!46}{38\!\cdots\!13}a-\frac{53\!\cdots\!89}{11\!\cdots\!39}$, $\frac{1}{90\!\cdots\!17}a^{35}+\frac{658236630484}{30\!\cdots\!39}a^{34}+\frac{63\!\cdots\!51}{30\!\cdots\!39}a^{33}+\frac{11\!\cdots\!07}{30\!\cdots\!39}a^{32}+\frac{12\!\cdots\!45}{30\!\cdots\!39}a^{31}+\frac{13\!\cdots\!50}{11\!\cdots\!57}a^{30}-\frac{54\!\cdots\!56}{30\!\cdots\!39}a^{29}+\frac{15\!\cdots\!49}{30\!\cdots\!39}a^{28}-\frac{26\!\cdots\!87}{10\!\cdots\!13}a^{27}-\frac{15\!\cdots\!66}{90\!\cdots\!17}a^{26}-\frac{47\!\cdots\!17}{10\!\cdots\!13}a^{25}-\frac{28\!\cdots\!04}{30\!\cdots\!39}a^{24}+\frac{14\!\cdots\!12}{30\!\cdots\!39}a^{23}+\frac{40\!\cdots\!13}{30\!\cdots\!39}a^{22}-\frac{47\!\cdots\!02}{11\!\cdots\!57}a^{21}+\frac{16\!\cdots\!54}{30\!\cdots\!39}a^{20}+\frac{40\!\cdots\!97}{30\!\cdots\!39}a^{19}+\frac{11\!\cdots\!97}{10\!\cdots\!13}a^{18}+\frac{24\!\cdots\!84}{90\!\cdots\!17}a^{17}-\frac{42\!\cdots\!41}{30\!\cdots\!39}a^{16}+\frac{29\!\cdots\!40}{30\!\cdots\!39}a^{15}+\frac{36\!\cdots\!41}{30\!\cdots\!39}a^{14}-\frac{92\!\cdots\!70}{10\!\cdots\!13}a^{13}+\frac{51\!\cdots\!20}{37\!\cdots\!19}a^{12}-\frac{44\!\cdots\!30}{10\!\cdots\!13}a^{11}-\frac{14\!\cdots\!68}{33\!\cdots\!71}a^{10}-\frac{16\!\cdots\!02}{33\!\cdots\!71}a^{9}-\frac{99\!\cdots\!22}{33\!\cdots\!71}a^{8}+\frac{53\!\cdots\!37}{11\!\cdots\!57}a^{7}+\frac{21\!\cdots\!74}{11\!\cdots\!57}a^{6}+\frac{16\!\cdots\!22}{11\!\cdots\!57}a^{5}+\frac{18\!\cdots\!31}{37\!\cdots\!19}a^{4}-\frac{27\!\cdots\!06}{12\!\cdots\!73}a^{3}-\frac{12\!\cdots\!14}{37\!\cdots\!19}a^{2}-\frac{10\!\cdots\!50}{12\!\cdots\!73}a-\frac{32\!\cdots\!28}{12\!\cdots\!73}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}\times C_{24}$, which has order $72$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{140598738624006993592450949966854613825386414101799}{79815739371604428224896475553984715722983668969209231} a^{35} + \frac{312243921911733019244014155255945368836607802155494}{79815739371604428224896475553984715722983668969209231} a^{34} + \frac{1578735476473268299371912832960828920958894424466934}{79815739371604428224896475553984715722983668969209231} a^{33} - \frac{5313959104918935493943298323769217754447723008871627}{79815739371604428224896475553984715722983668969209231} a^{32} - \frac{3895573738181899666661169048845600093252683990310756}{79815739371604428224896475553984715722983668969209231} a^{31} + \frac{19873387679302978293658832338004428757652636710787554}{26605246457201476074965491851328238574327889656403077} a^{30} - \frac{10349601192603967221024543346555315896366046678652740}{8868415485733825358321830617109412858109296552134359} a^{29} - \frac{104192239049352791115224404571110567033340418414293494}{26605246457201476074965491851328238574327889656403077} a^{28} + \frac{299233828777900649937693193919580921182577684650417894}{26605246457201476074965491851328238574327889656403077} a^{27} + \frac{576441275056314243261128345350268181004057778796668833}{79815739371604428224896475553984715722983668969209231} a^{26} - \frac{4420494214459179203003083740332600506367446845006762673}{79815739371604428224896475553984715722983668969209231} a^{25} + \frac{4375122705890246607157597611903804235342746029668624754}{79815739371604428224896475553984715722983668969209231} a^{24} + \frac{13919624134732388750614988428556350471553531721163586381}{79815739371604428224896475553984715722983668969209231} a^{23} - \frac{19198884726220113380080947063566519781129706419091018330}{79815739371604428224896475553984715722983668969209231} a^{22} - \frac{18163439614099092152285633871264806110533343640647002029}{26605246457201476074965491851328238574327889656403077} a^{21} - \frac{2722074583720973561877154224594504645101433640220256791}{26605246457201476074965491851328238574327889656403077} a^{20} + \frac{17849430481573958446660509456965248886851641171506822029}{8868415485733825358321830617109412858109296552134359} a^{19} + \frac{53999921173114354868449291222806254047603937341068980192}{26605246457201476074965491851328238574327889656403077} a^{18} - \frac{286313315922486090008891325523423271358125069340961174627}{79815739371604428224896475553984715722983668969209231} a^{17} - \frac{479483541166529641091056046722837297643902868164265281922}{79815739371604428224896475553984715722983668969209231} a^{16} + \frac{86859620277518877118554251082415817669378136797509565443}{79815739371604428224896475553984715722983668969209231} a^{15} + \frac{683975333046016834849544066354915158445299225429591669540}{79815739371604428224896475553984715722983668969209231} a^{14} + \frac{435581335157162328088184912395655969982290250261494705929}{79815739371604428224896475553984715722983668969209231} a^{13} - \frac{238783770560218717719546244008737649443987278283045367100}{26605246457201476074965491851328238574327889656403077} a^{12} - \frac{252657319047268054463686272357936395824135264700159574017}{26605246457201476074965491851328238574327889656403077} a^{11} + \frac{139465834076103043638336427612918295607323737716832291735}{26605246457201476074965491851328238574327889656403077} a^{10} + \frac{20979102394921616527564034228432894702579976165333057796}{8868415485733825358321830617109412858109296552134359} a^{9} - \frac{8954070281887493576472672189846872114730708082125285179}{2956138495244608452773943539036470952703098850711453} a^{8} + \frac{2118153863534173518842754689671282608448103364558200246}{2956138495244608452773943539036470952703098850711453} a^{7} + \frac{2041466295866872836213080999458751121948901907449245472}{2956138495244608452773943539036470952703098850711453} a^{6} - \frac{1084838454631363711756521479400285606795849283095857822}{2956138495244608452773943539036470952703098850711453} a^{5} - \frac{86624193703985642384600935249048646451629602826658209}{2956138495244608452773943539036470952703098850711453} a^{4} + \frac{70589205693095437840092538581097631277630776190436334}{985379498414869484257981179678823650901032950237151} a^{3} - \frac{18118781946338958592916062165617498705585539577535496}{985379498414869484257981179678823650901032950237151} a^{2} - \frac{4641136796283273830381627396133239564451066174894761}{985379498414869484257981179678823650901032950237151} a + \frac{1022553358374367128951898942230360424139049142711177}{328459832804956494752660393226274550300344316745717} \)  (order $18$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{98\!\cdots\!85}{23\!\cdots\!93}a^{35}-\frac{16\!\cdots\!81}{79\!\cdots\!31}a^{34}-\frac{29\!\cdots\!77}{26\!\cdots\!77}a^{33}+\frac{69\!\cdots\!77}{26\!\cdots\!77}a^{32}-\frac{32\!\cdots\!19}{79\!\cdots\!31}a^{31}-\frac{14\!\cdots\!11}{88\!\cdots\!59}a^{30}+\frac{60\!\cdots\!80}{79\!\cdots\!31}a^{29}-\frac{18\!\cdots\!54}{79\!\cdots\!31}a^{28}-\frac{42\!\cdots\!27}{98\!\cdots\!51}a^{27}+\frac{16\!\cdots\!91}{23\!\cdots\!93}a^{26}+\frac{29\!\cdots\!04}{26\!\cdots\!77}a^{25}-\frac{12\!\cdots\!81}{26\!\cdots\!77}a^{24}+\frac{59\!\cdots\!60}{26\!\cdots\!77}a^{23}+\frac{32\!\cdots\!14}{26\!\cdots\!77}a^{22}-\frac{12\!\cdots\!86}{26\!\cdots\!77}a^{21}-\frac{21\!\cdots\!54}{79\!\cdots\!31}a^{20}-\frac{27\!\cdots\!24}{79\!\cdots\!31}a^{19}+\frac{70\!\cdots\!85}{98\!\cdots\!51}a^{18}+\frac{30\!\cdots\!26}{23\!\cdots\!93}a^{17}-\frac{93\!\cdots\!01}{79\!\cdots\!31}a^{16}-\frac{19\!\cdots\!42}{88\!\cdots\!59}a^{15}-\frac{22\!\cdots\!36}{26\!\cdots\!77}a^{14}+\frac{19\!\cdots\!66}{79\!\cdots\!31}a^{13}+\frac{75\!\cdots\!30}{26\!\cdots\!77}a^{12}-\frac{98\!\cdots\!26}{26\!\cdots\!77}a^{11}-\frac{66\!\cdots\!77}{26\!\cdots\!77}a^{10}+\frac{30\!\cdots\!03}{88\!\cdots\!59}a^{9}-\frac{14\!\cdots\!25}{88\!\cdots\!59}a^{8}-\frac{58\!\cdots\!48}{98\!\cdots\!51}a^{7}+\frac{77\!\cdots\!85}{98\!\cdots\!51}a^{6}-\frac{13\!\cdots\!69}{10\!\cdots\!39}a^{5}-\frac{31\!\cdots\!70}{29\!\cdots\!53}a^{4}+\frac{75\!\cdots\!85}{98\!\cdots\!51}a^{3}-\frac{50\!\cdots\!27}{98\!\cdots\!51}a^{2}-\frac{10\!\cdots\!87}{98\!\cdots\!51}a+\frac{86\!\cdots\!46}{32\!\cdots\!17}$, $\frac{79\!\cdots\!75}{80\!\cdots\!11}a^{35}-\frac{12\!\cdots\!60}{29\!\cdots\!93}a^{34}-\frac{38\!\cdots\!59}{89\!\cdots\!79}a^{33}+\frac{14\!\cdots\!67}{26\!\cdots\!37}a^{32}-\frac{18\!\cdots\!02}{26\!\cdots\!37}a^{31}-\frac{34\!\cdots\!08}{89\!\cdots\!79}a^{30}+\frac{41\!\cdots\!97}{26\!\cdots\!37}a^{29}-\frac{10\!\cdots\!88}{26\!\cdots\!37}a^{28}-\frac{27\!\cdots\!74}{29\!\cdots\!93}a^{27}+\frac{99\!\cdots\!32}{80\!\cdots\!11}a^{26}+\frac{66\!\cdots\!08}{26\!\cdots\!37}a^{25}-\frac{83\!\cdots\!37}{89\!\cdots\!79}a^{24}+\frac{72\!\cdots\!75}{26\!\cdots\!37}a^{23}+\frac{63\!\cdots\!39}{26\!\cdots\!37}a^{22}-\frac{40\!\cdots\!95}{29\!\cdots\!93}a^{21}-\frac{11\!\cdots\!54}{26\!\cdots\!37}a^{20}-\frac{21\!\cdots\!91}{26\!\cdots\!37}a^{19}+\frac{33\!\cdots\!44}{33\!\cdots\!77}a^{18}+\frac{19\!\cdots\!10}{80\!\cdots\!11}a^{17}-\frac{41\!\cdots\!71}{26\!\cdots\!37}a^{16}-\frac{10\!\cdots\!80}{29\!\cdots\!93}a^{15}-\frac{15\!\cdots\!49}{26\!\cdots\!37}a^{14}+\frac{10\!\cdots\!08}{29\!\cdots\!93}a^{13}+\frac{46\!\cdots\!07}{89\!\cdots\!79}a^{12}-\frac{60\!\cdots\!61}{99\!\cdots\!31}a^{11}-\frac{38\!\cdots\!45}{99\!\cdots\!31}a^{10}+\frac{19\!\cdots\!52}{29\!\cdots\!93}a^{9}-\frac{89\!\cdots\!66}{29\!\cdots\!93}a^{8}-\frac{49\!\cdots\!35}{99\!\cdots\!31}a^{7}+\frac{38\!\cdots\!46}{33\!\cdots\!77}a^{6}-\frac{28\!\cdots\!12}{99\!\cdots\!31}a^{5}-\frac{18\!\cdots\!93}{11\!\cdots\!59}a^{4}+\frac{40\!\cdots\!79}{33\!\cdots\!77}a^{3}-\frac{20\!\cdots\!92}{11\!\cdots\!59}a^{2}-\frac{39\!\cdots\!66}{36\!\cdots\!53}a+\frac{55\!\cdots\!55}{11\!\cdots\!59}$, $\frac{17\!\cdots\!15}{30\!\cdots\!39}a^{35}-\frac{13\!\cdots\!38}{10\!\cdots\!13}a^{34}-\frac{59\!\cdots\!47}{10\!\cdots\!13}a^{33}+\frac{22\!\cdots\!23}{10\!\cdots\!13}a^{32}+\frac{32\!\cdots\!36}{33\!\cdots\!71}a^{31}-\frac{97\!\cdots\!24}{41\!\cdots\!91}a^{30}+\frac{42\!\cdots\!91}{10\!\cdots\!13}a^{29}+\frac{11\!\cdots\!43}{10\!\cdots\!13}a^{28}-\frac{12\!\cdots\!16}{33\!\cdots\!71}a^{27}-\frac{39\!\cdots\!00}{30\!\cdots\!39}a^{26}+\frac{56\!\cdots\!18}{33\!\cdots\!71}a^{25}-\frac{21\!\cdots\!96}{10\!\cdots\!13}a^{24}-\frac{46\!\cdots\!93}{10\!\cdots\!13}a^{23}+\frac{78\!\cdots\!59}{10\!\cdots\!13}a^{22}+\frac{64\!\cdots\!53}{33\!\cdots\!71}a^{21}+\frac{25\!\cdots\!79}{10\!\cdots\!13}a^{20}-\frac{60\!\cdots\!41}{10\!\cdots\!13}a^{19}-\frac{18\!\cdots\!54}{33\!\cdots\!71}a^{18}+\frac{32\!\cdots\!82}{30\!\cdots\!39}a^{17}+\frac{16\!\cdots\!96}{10\!\cdots\!13}a^{16}-\frac{27\!\cdots\!30}{10\!\cdots\!13}a^{15}-\frac{23\!\cdots\!41}{10\!\cdots\!13}a^{14}-\frac{15\!\cdots\!76}{10\!\cdots\!13}a^{13}+\frac{84\!\cdots\!73}{33\!\cdots\!71}a^{12}+\frac{77\!\cdots\!07}{33\!\cdots\!71}a^{11}-\frac{40\!\cdots\!73}{33\!\cdots\!71}a^{10}-\frac{11\!\cdots\!30}{11\!\cdots\!57}a^{9}+\frac{49\!\cdots\!99}{11\!\cdots\!57}a^{8}-\frac{47\!\cdots\!45}{37\!\cdots\!19}a^{7}-\frac{50\!\cdots\!42}{37\!\cdots\!19}a^{6}+\frac{27\!\cdots\!88}{37\!\cdots\!19}a^{5}+\frac{18\!\cdots\!66}{37\!\cdots\!19}a^{4}-\frac{14\!\cdots\!61}{12\!\cdots\!73}a^{3}+\frac{34\!\cdots\!68}{12\!\cdots\!73}a^{2}+\frac{19\!\cdots\!78}{12\!\cdots\!73}a-\frac{38\!\cdots\!76}{41\!\cdots\!91}$, $\frac{43\!\cdots\!04}{37\!\cdots\!19}a^{35}-\frac{36\!\cdots\!28}{33\!\cdots\!71}a^{34}+\frac{90\!\cdots\!57}{10\!\cdots\!13}a^{33}+\frac{13\!\cdots\!24}{11\!\cdots\!57}a^{32}-\frac{30\!\cdots\!18}{10\!\cdots\!13}a^{31}-\frac{60\!\cdots\!62}{11\!\cdots\!57}a^{30}+\frac{13\!\cdots\!65}{33\!\cdots\!71}a^{29}-\frac{14\!\cdots\!49}{33\!\cdots\!71}a^{28}-\frac{79\!\cdots\!64}{37\!\cdots\!19}a^{27}+\frac{17\!\cdots\!07}{33\!\cdots\!71}a^{26}+\frac{13\!\cdots\!31}{33\!\cdots\!71}a^{25}-\frac{33\!\cdots\!66}{12\!\cdots\!19}a^{24}+\frac{84\!\cdots\!06}{33\!\cdots\!71}a^{23}+\frac{72\!\cdots\!07}{10\!\cdots\!13}a^{22}-\frac{26\!\cdots\!08}{33\!\cdots\!71}a^{21}-\frac{78\!\cdots\!85}{33\!\cdots\!71}a^{20}-\frac{38\!\cdots\!50}{33\!\cdots\!71}a^{19}+\frac{79\!\cdots\!00}{11\!\cdots\!57}a^{18}+\frac{26\!\cdots\!47}{33\!\cdots\!71}a^{17}-\frac{13\!\cdots\!48}{11\!\cdots\!57}a^{16}-\frac{19\!\cdots\!29}{10\!\cdots\!13}a^{15}+\frac{71\!\cdots\!93}{33\!\cdots\!71}a^{14}+\frac{25\!\cdots\!31}{10\!\cdots\!13}a^{13}+\frac{66\!\cdots\!71}{33\!\cdots\!71}a^{12}-\frac{35\!\cdots\!04}{11\!\cdots\!57}a^{11}-\frac{81\!\cdots\!78}{33\!\cdots\!71}a^{10}+\frac{22\!\cdots\!10}{11\!\cdots\!57}a^{9}-\frac{63\!\cdots\!18}{12\!\cdots\!73}a^{8}-\frac{20\!\cdots\!89}{37\!\cdots\!19}a^{7}+\frac{68\!\cdots\!74}{37\!\cdots\!19}a^{6}+\frac{10\!\cdots\!82}{12\!\cdots\!73}a^{5}-\frac{17\!\cdots\!30}{37\!\cdots\!19}a^{4}+\frac{85\!\cdots\!67}{12\!\cdots\!73}a^{3}+\frac{13\!\cdots\!26}{41\!\cdots\!91}a^{2}+\frac{76\!\cdots\!45}{12\!\cdots\!73}a-\frac{18\!\cdots\!32}{41\!\cdots\!91}$, $\frac{86\!\cdots\!01}{30\!\cdots\!39}a^{35}-\frac{21\!\cdots\!09}{30\!\cdots\!39}a^{34}+\frac{14\!\cdots\!74}{10\!\cdots\!13}a^{33}+\frac{23\!\cdots\!46}{33\!\cdots\!71}a^{32}-\frac{87\!\cdots\!63}{33\!\cdots\!71}a^{31}-\frac{98\!\cdots\!67}{10\!\cdots\!13}a^{30}+\frac{28\!\cdots\!30}{10\!\cdots\!13}a^{29}-\frac{53\!\cdots\!55}{10\!\cdots\!13}a^{28}-\frac{11\!\cdots\!82}{10\!\cdots\!13}a^{27}+\frac{12\!\cdots\!72}{30\!\cdots\!39}a^{26}-\frac{74\!\cdots\!58}{30\!\cdots\!39}a^{25}-\frac{18\!\cdots\!09}{10\!\cdots\!13}a^{24}+\frac{10\!\cdots\!78}{33\!\cdots\!71}a^{23}+\frac{36\!\cdots\!53}{10\!\cdots\!13}a^{22}-\frac{82\!\cdots\!78}{10\!\cdots\!13}a^{21}-\frac{14\!\cdots\!02}{10\!\cdots\!13}a^{20}-\frac{53\!\cdots\!38}{10\!\cdots\!13}a^{19}+\frac{48\!\cdots\!38}{10\!\cdots\!13}a^{18}+\frac{12\!\cdots\!97}{30\!\cdots\!39}a^{17}-\frac{24\!\cdots\!38}{30\!\cdots\!39}a^{16}-\frac{29\!\cdots\!70}{33\!\cdots\!71}a^{15}-\frac{90\!\cdots\!83}{11\!\cdots\!57}a^{14}+\frac{77\!\cdots\!89}{10\!\cdots\!13}a^{13}+\frac{10\!\cdots\!31}{11\!\cdots\!57}a^{12}-\frac{42\!\cdots\!09}{37\!\cdots\!19}a^{11}+\frac{47\!\cdots\!05}{33\!\cdots\!71}a^{10}+\frac{34\!\cdots\!08}{11\!\cdots\!57}a^{9}-\frac{34\!\cdots\!65}{11\!\cdots\!57}a^{8}-\frac{43\!\cdots\!14}{11\!\cdots\!57}a^{7}+\frac{30\!\cdots\!63}{41\!\cdots\!91}a^{6}-\frac{25\!\cdots\!22}{12\!\cdots\!73}a^{5}-\frac{24\!\cdots\!84}{37\!\cdots\!19}a^{4}+\frac{37\!\cdots\!15}{41\!\cdots\!91}a^{3}-\frac{50\!\cdots\!40}{41\!\cdots\!91}a^{2}-\frac{13\!\cdots\!82}{12\!\cdots\!73}a+\frac{75\!\cdots\!77}{41\!\cdots\!91}$, $\frac{80\!\cdots\!25}{30\!\cdots\!39}a^{35}-\frac{81\!\cdots\!69}{11\!\cdots\!57}a^{34}-\frac{25\!\cdots\!58}{10\!\cdots\!13}a^{33}+\frac{37\!\cdots\!41}{33\!\cdots\!71}a^{32}+\frac{67\!\cdots\!45}{10\!\cdots\!13}a^{31}-\frac{36\!\cdots\!79}{33\!\cdots\!71}a^{30}+\frac{23\!\cdots\!11}{10\!\cdots\!13}a^{29}+\frac{43\!\cdots\!34}{10\!\cdots\!13}a^{28}-\frac{62\!\cdots\!99}{33\!\cdots\!71}a^{27}+\frac{87\!\cdots\!88}{30\!\cdots\!39}a^{26}+\frac{77\!\cdots\!25}{10\!\cdots\!13}a^{25}-\frac{12\!\cdots\!63}{10\!\cdots\!13}a^{24}-\frac{57\!\cdots\!48}{33\!\cdots\!71}a^{23}+\frac{41\!\cdots\!01}{10\!\cdots\!13}a^{22}+\frac{84\!\cdots\!74}{11\!\cdots\!57}a^{21}-\frac{90\!\cdots\!36}{10\!\cdots\!13}a^{20}-\frac{27\!\cdots\!22}{10\!\cdots\!13}a^{19}-\frac{56\!\cdots\!77}{33\!\cdots\!71}a^{18}+\frac{16\!\cdots\!95}{30\!\cdots\!39}a^{17}+\frac{57\!\cdots\!13}{10\!\cdots\!13}a^{16}-\frac{26\!\cdots\!59}{10\!\cdots\!13}a^{15}-\frac{31\!\cdots\!01}{33\!\cdots\!71}a^{14}-\frac{61\!\cdots\!03}{13\!\cdots\!97}a^{13}+\frac{41\!\cdots\!91}{33\!\cdots\!71}a^{12}+\frac{21\!\cdots\!14}{33\!\cdots\!71}a^{11}-\frac{24\!\cdots\!57}{37\!\cdots\!19}a^{10}+\frac{26\!\cdots\!65}{11\!\cdots\!57}a^{9}+\frac{58\!\cdots\!75}{11\!\cdots\!57}a^{8}-\frac{25\!\cdots\!43}{37\!\cdots\!19}a^{7}-\frac{67\!\cdots\!77}{37\!\cdots\!19}a^{6}+\frac{16\!\cdots\!61}{12\!\cdots\!73}a^{5}-\frac{14\!\cdots\!92}{41\!\cdots\!91}a^{4}-\frac{42\!\cdots\!76}{12\!\cdots\!73}a^{3}+\frac{14\!\cdots\!21}{12\!\cdots\!73}a^{2}+\frac{55\!\cdots\!04}{13\!\cdots\!97}a-\frac{25\!\cdots\!11}{41\!\cdots\!91}$, $\frac{11\!\cdots\!09}{30\!\cdots\!39}a^{35}-\frac{41\!\cdots\!42}{30\!\cdots\!39}a^{34}-\frac{25\!\cdots\!71}{10\!\cdots\!13}a^{33}+\frac{18\!\cdots\!89}{10\!\cdots\!13}a^{32}-\frac{14\!\cdots\!70}{10\!\cdots\!13}a^{31}-\frac{15\!\cdots\!22}{10\!\cdots\!13}a^{30}+\frac{47\!\cdots\!00}{10\!\cdots\!13}a^{29}+\frac{24\!\cdots\!01}{10\!\cdots\!13}a^{28}-\frac{29\!\cdots\!27}{10\!\cdots\!13}a^{27}+\frac{82\!\cdots\!70}{30\!\cdots\!39}a^{26}+\frac{28\!\cdots\!25}{30\!\cdots\!39}a^{25}-\frac{27\!\cdots\!35}{10\!\cdots\!13}a^{24}-\frac{26\!\cdots\!95}{10\!\cdots\!13}a^{23}+\frac{23\!\cdots\!92}{33\!\cdots\!71}a^{22}+\frac{37\!\cdots\!79}{10\!\cdots\!13}a^{21}-\frac{61\!\cdots\!28}{10\!\cdots\!13}a^{20}-\frac{26\!\cdots\!31}{10\!\cdots\!13}a^{19}+\frac{11\!\cdots\!88}{10\!\cdots\!13}a^{18}+\frac{19\!\cdots\!60}{30\!\cdots\!39}a^{17}-\frac{57\!\cdots\!29}{30\!\cdots\!39}a^{16}-\frac{66\!\cdots\!01}{11\!\cdots\!57}a^{15}-\frac{26\!\cdots\!46}{10\!\cdots\!13}a^{14}+\frac{78\!\cdots\!12}{10\!\cdots\!13}a^{13}+\frac{40\!\cdots\!33}{33\!\cdots\!71}a^{12}-\frac{62\!\cdots\!64}{33\!\cdots\!71}a^{11}-\frac{11\!\cdots\!36}{11\!\cdots\!57}a^{10}+\frac{29\!\cdots\!37}{11\!\cdots\!57}a^{9}+\frac{14\!\cdots\!90}{11\!\cdots\!57}a^{8}+\frac{14\!\cdots\!92}{11\!\cdots\!57}a^{7}+\frac{77\!\cdots\!65}{41\!\cdots\!91}a^{6}-\frac{24\!\cdots\!41}{37\!\cdots\!19}a^{5}-\frac{17\!\cdots\!04}{37\!\cdots\!19}a^{4}-\frac{50\!\cdots\!10}{12\!\cdots\!73}a^{3}-\frac{79\!\cdots\!33}{12\!\cdots\!73}a^{2}+\frac{18\!\cdots\!40}{41\!\cdots\!91}a+\frac{51\!\cdots\!59}{41\!\cdots\!91}$, $\frac{43\!\cdots\!94}{30\!\cdots\!39}a^{35}-\frac{49\!\cdots\!74}{30\!\cdots\!39}a^{34}-\frac{21\!\cdots\!26}{10\!\cdots\!13}a^{33}+\frac{40\!\cdots\!69}{10\!\cdots\!13}a^{32}+\frac{11\!\cdots\!49}{10\!\cdots\!13}a^{31}-\frac{62\!\cdots\!95}{10\!\cdots\!13}a^{30}+\frac{29\!\cdots\!52}{10\!\cdots\!13}a^{29}+\frac{48\!\cdots\!53}{10\!\cdots\!13}a^{28}-\frac{70\!\cdots\!97}{10\!\cdots\!13}a^{27}-\frac{53\!\cdots\!61}{30\!\cdots\!39}a^{26}+\frac{14\!\cdots\!45}{30\!\cdots\!39}a^{25}+\frac{24\!\cdots\!87}{10\!\cdots\!13}a^{24}-\frac{23\!\cdots\!86}{10\!\cdots\!13}a^{23}+\frac{11\!\cdots\!14}{10\!\cdots\!13}a^{22}+\frac{85\!\cdots\!04}{10\!\cdots\!13}a^{21}+\frac{46\!\cdots\!01}{10\!\cdots\!13}a^{20}-\frac{18\!\cdots\!37}{10\!\cdots\!13}a^{19}-\frac{33\!\cdots\!55}{10\!\cdots\!13}a^{18}+\frac{73\!\cdots\!57}{30\!\cdots\!39}a^{17}+\frac{25\!\cdots\!95}{30\!\cdots\!39}a^{16}+\frac{53\!\cdots\!62}{33\!\cdots\!71}a^{15}-\frac{10\!\cdots\!49}{10\!\cdots\!13}a^{14}-\frac{33\!\cdots\!21}{33\!\cdots\!71}a^{13}+\frac{22\!\cdots\!05}{33\!\cdots\!71}a^{12}+\frac{55\!\cdots\!14}{33\!\cdots\!71}a^{11}-\frac{82\!\cdots\!40}{33\!\cdots\!71}a^{10}-\frac{91\!\cdots\!34}{11\!\cdots\!57}a^{9}+\frac{54\!\cdots\!49}{11\!\cdots\!57}a^{8}-\frac{77\!\cdots\!39}{11\!\cdots\!57}a^{7}-\frac{20\!\cdots\!39}{12\!\cdots\!73}a^{6}+\frac{20\!\cdots\!79}{37\!\cdots\!19}a^{5}+\frac{24\!\cdots\!54}{12\!\cdots\!73}a^{4}-\frac{20\!\cdots\!57}{12\!\cdots\!73}a^{3}+\frac{33\!\cdots\!84}{12\!\cdots\!73}a^{2}+\frac{19\!\cdots\!57}{12\!\cdots\!73}a-\frac{36\!\cdots\!45}{41\!\cdots\!91}$, $\frac{91\!\cdots\!11}{33\!\cdots\!71}a^{35}-\frac{21\!\cdots\!16}{30\!\cdots\!39}a^{34}-\frac{83\!\cdots\!96}{30\!\cdots\!39}a^{33}+\frac{37\!\cdots\!36}{33\!\cdots\!71}a^{32}+\frac{32\!\cdots\!61}{10\!\cdots\!13}a^{31}-\frac{11\!\cdots\!36}{10\!\cdots\!13}a^{30}+\frac{21\!\cdots\!62}{10\!\cdots\!13}a^{29}+\frac{50\!\cdots\!98}{10\!\cdots\!13}a^{28}-\frac{61\!\cdots\!88}{33\!\cdots\!71}a^{27}-\frac{39\!\cdots\!02}{10\!\cdots\!13}a^{26}+\frac{24\!\cdots\!78}{30\!\cdots\!39}a^{25}-\frac{33\!\cdots\!84}{30\!\cdots\!39}a^{24}-\frac{21\!\cdots\!19}{10\!\cdots\!13}a^{23}+\frac{40\!\cdots\!28}{10\!\cdots\!13}a^{22}+\frac{29\!\cdots\!59}{33\!\cdots\!71}a^{21}-\frac{97\!\cdots\!83}{10\!\cdots\!13}a^{20}-\frac{29\!\cdots\!54}{10\!\cdots\!13}a^{19}-\frac{76\!\cdots\!40}{33\!\cdots\!71}a^{18}+\frac{56\!\cdots\!45}{10\!\cdots\!13}a^{17}+\frac{21\!\cdots\!16}{30\!\cdots\!39}a^{16}-\frac{73\!\cdots\!75}{30\!\cdots\!39}a^{15}-\frac{11\!\cdots\!77}{10\!\cdots\!13}a^{14}-\frac{62\!\cdots\!30}{10\!\cdots\!13}a^{13}+\frac{13\!\cdots\!48}{10\!\cdots\!13}a^{12}+\frac{38\!\cdots\!26}{37\!\cdots\!19}a^{11}-\frac{24\!\cdots\!99}{33\!\cdots\!71}a^{10}-\frac{21\!\cdots\!44}{33\!\cdots\!71}a^{9}+\frac{18\!\cdots\!59}{12\!\cdots\!73}a^{8}-\frac{75\!\cdots\!76}{11\!\cdots\!57}a^{7}-\frac{41\!\cdots\!77}{11\!\cdots\!57}a^{6}+\frac{91\!\cdots\!21}{37\!\cdots\!19}a^{5}+\frac{22\!\cdots\!80}{37\!\cdots\!19}a^{4}-\frac{96\!\cdots\!69}{37\!\cdots\!19}a^{3}+\frac{25\!\cdots\!16}{41\!\cdots\!91}a^{2}+\frac{47\!\cdots\!15}{12\!\cdots\!73}a-\frac{24\!\cdots\!98}{12\!\cdots\!73}$, $\frac{41\!\cdots\!72}{10\!\cdots\!13}a^{35}-\frac{28\!\cdots\!37}{30\!\cdots\!39}a^{34}-\frac{13\!\cdots\!56}{30\!\cdots\!39}a^{33}+\frac{15\!\cdots\!52}{10\!\cdots\!13}a^{32}+\frac{36\!\cdots\!56}{37\!\cdots\!19}a^{31}-\frac{63\!\cdots\!28}{37\!\cdots\!19}a^{30}+\frac{28\!\cdots\!43}{10\!\cdots\!13}a^{29}+\frac{86\!\cdots\!85}{10\!\cdots\!13}a^{28}-\frac{26\!\cdots\!61}{10\!\cdots\!13}a^{27}-\frac{52\!\cdots\!02}{37\!\cdots\!19}a^{26}+\frac{37\!\cdots\!75}{30\!\cdots\!39}a^{25}-\frac{40\!\cdots\!87}{30\!\cdots\!39}a^{24}-\frac{41\!\cdots\!73}{11\!\cdots\!57}a^{23}+\frac{20\!\cdots\!64}{37\!\cdots\!19}a^{22}+\frac{15\!\cdots\!38}{10\!\cdots\!13}a^{21}+\frac{28\!\cdots\!74}{10\!\cdots\!13}a^{20}-\frac{45\!\cdots\!07}{10\!\cdots\!13}a^{19}-\frac{45\!\cdots\!26}{10\!\cdots\!13}a^{18}+\frac{78\!\cdots\!55}{10\!\cdots\!13}a^{17}+\frac{39\!\cdots\!10}{30\!\cdots\!39}a^{16}-\frac{47\!\cdots\!03}{30\!\cdots\!39}a^{15}-\frac{18\!\cdots\!73}{10\!\cdots\!13}a^{14}-\frac{43\!\cdots\!44}{33\!\cdots\!71}a^{13}+\frac{19\!\cdots\!26}{10\!\cdots\!13}a^{12}+\frac{22\!\cdots\!51}{11\!\cdots\!57}a^{11}-\frac{31\!\cdots\!52}{33\!\cdots\!71}a^{10}-\frac{13\!\cdots\!07}{33\!\cdots\!71}a^{9}+\frac{17\!\cdots\!33}{37\!\cdots\!19}a^{8}-\frac{72\!\cdots\!01}{11\!\cdots\!57}a^{7}-\frac{18\!\cdots\!14}{11\!\cdots\!57}a^{6}+\frac{25\!\cdots\!90}{37\!\cdots\!19}a^{5}+\frac{14\!\cdots\!85}{12\!\cdots\!73}a^{4}-\frac{53\!\cdots\!12}{37\!\cdots\!19}a^{3}+\frac{33\!\cdots\!53}{13\!\cdots\!97}a^{2}+\frac{24\!\cdots\!46}{12\!\cdots\!73}a-\frac{12\!\cdots\!24}{12\!\cdots\!73}$, $\frac{16\!\cdots\!72}{90\!\cdots\!17}a^{35}-\frac{14\!\cdots\!38}{30\!\cdots\!39}a^{34}-\frac{18\!\cdots\!23}{10\!\cdots\!13}a^{33}+\frac{22\!\cdots\!51}{30\!\cdots\!39}a^{32}+\frac{68\!\cdots\!73}{30\!\cdots\!39}a^{31}-\frac{76\!\cdots\!57}{10\!\cdots\!13}a^{30}+\frac{43\!\cdots\!01}{30\!\cdots\!39}a^{29}+\frac{10\!\cdots\!59}{30\!\cdots\!39}a^{28}-\frac{12\!\cdots\!23}{10\!\cdots\!13}a^{27}-\frac{24\!\cdots\!96}{90\!\cdots\!17}a^{26}+\frac{52\!\cdots\!15}{10\!\cdots\!13}a^{25}-\frac{73\!\cdots\!21}{10\!\cdots\!13}a^{24}-\frac{40\!\cdots\!38}{30\!\cdots\!39}a^{23}+\frac{75\!\cdots\!97}{30\!\cdots\!39}a^{22}+\frac{58\!\cdots\!56}{10\!\cdots\!13}a^{21}+\frac{34\!\cdots\!57}{30\!\cdots\!39}a^{20}-\frac{55\!\cdots\!68}{30\!\cdots\!39}a^{19}-\frac{16\!\cdots\!17}{10\!\cdots\!13}a^{18}+\frac{28\!\cdots\!48}{90\!\cdots\!17}a^{17}+\frac{14\!\cdots\!80}{30\!\cdots\!39}a^{16}-\frac{27\!\cdots\!73}{10\!\cdots\!13}a^{15}-\frac{18\!\cdots\!54}{30\!\cdots\!39}a^{14}-\frac{49\!\cdots\!11}{10\!\cdots\!13}a^{13}+\frac{65\!\cdots\!35}{10\!\cdots\!13}a^{12}+\frac{57\!\cdots\!93}{10\!\cdots\!13}a^{11}-\frac{73\!\cdots\!88}{33\!\cdots\!71}a^{10}+\frac{72\!\cdots\!13}{33\!\cdots\!71}a^{9}+\frac{13\!\cdots\!12}{33\!\cdots\!71}a^{8}-\frac{10\!\cdots\!38}{11\!\cdots\!57}a^{7}-\frac{74\!\cdots\!84}{37\!\cdots\!19}a^{6}+\frac{10\!\cdots\!73}{11\!\cdots\!57}a^{5}-\frac{12\!\cdots\!57}{37\!\cdots\!19}a^{4}+\frac{34\!\cdots\!79}{37\!\cdots\!19}a^{3}+\frac{40\!\cdots\!63}{37\!\cdots\!19}a^{2}-\frac{38\!\cdots\!19}{12\!\cdots\!73}a-\frac{13\!\cdots\!26}{12\!\cdots\!73}$, $\frac{76\!\cdots\!18}{30\!\cdots\!39}a^{35}-\frac{19\!\cdots\!99}{30\!\cdots\!39}a^{34}-\frac{88\!\cdots\!00}{33\!\cdots\!71}a^{33}+\frac{10\!\cdots\!28}{10\!\cdots\!13}a^{32}+\frac{38\!\cdots\!90}{10\!\cdots\!13}a^{31}-\frac{10\!\cdots\!03}{10\!\cdots\!13}a^{30}+\frac{19\!\cdots\!18}{10\!\cdots\!13}a^{29}+\frac{54\!\cdots\!57}{11\!\cdots\!57}a^{28}-\frac{17\!\cdots\!35}{10\!\cdots\!13}a^{27}-\frac{15\!\cdots\!95}{30\!\cdots\!39}a^{26}+\frac{23\!\cdots\!13}{30\!\cdots\!39}a^{25}-\frac{10\!\cdots\!17}{10\!\cdots\!13}a^{24}-\frac{21\!\cdots\!39}{10\!\cdots\!13}a^{23}+\frac{38\!\cdots\!71}{10\!\cdots\!13}a^{22}+\frac{86\!\cdots\!91}{10\!\cdots\!13}a^{21}-\frac{13\!\cdots\!94}{10\!\cdots\!13}a^{20}-\frac{94\!\cdots\!46}{33\!\cdots\!71}a^{19}-\frac{22\!\cdots\!44}{10\!\cdots\!13}a^{18}+\frac{16\!\cdots\!13}{30\!\cdots\!39}a^{17}+\frac{21\!\cdots\!63}{30\!\cdots\!39}a^{16}-\frac{24\!\cdots\!08}{10\!\cdots\!13}a^{15}-\frac{11\!\cdots\!75}{10\!\cdots\!13}a^{14}-\frac{20\!\cdots\!92}{33\!\cdots\!71}a^{13}+\frac{44\!\cdots\!41}{33\!\cdots\!71}a^{12}+\frac{35\!\cdots\!78}{33\!\cdots\!71}a^{11}-\frac{25\!\cdots\!63}{33\!\cdots\!71}a^{10}-\frac{16\!\cdots\!43}{11\!\cdots\!57}a^{9}+\frac{22\!\cdots\!45}{11\!\cdots\!57}a^{8}-\frac{11\!\cdots\!69}{11\!\cdots\!57}a^{7}-\frac{13\!\cdots\!88}{37\!\cdots\!19}a^{6}+\frac{12\!\cdots\!35}{37\!\cdots\!19}a^{5}+\frac{23\!\cdots\!32}{12\!\cdots\!73}a^{4}-\frac{38\!\cdots\!46}{12\!\cdots\!73}a^{3}+\frac{19\!\cdots\!35}{12\!\cdots\!73}a^{2}-\frac{38\!\cdots\!49}{12\!\cdots\!73}a-\frac{77\!\cdots\!25}{41\!\cdots\!91}$, $\frac{38\!\cdots\!24}{90\!\cdots\!17}a^{35}-\frac{34\!\cdots\!24}{33\!\cdots\!71}a^{34}-\frac{13\!\cdots\!07}{30\!\cdots\!39}a^{33}+\frac{50\!\cdots\!71}{30\!\cdots\!39}a^{32}+\frac{23\!\cdots\!26}{30\!\cdots\!39}a^{31}-\frac{17\!\cdots\!35}{10\!\cdots\!13}a^{30}+\frac{95\!\cdots\!17}{30\!\cdots\!39}a^{29}+\frac{25\!\cdots\!33}{30\!\cdots\!39}a^{28}-\frac{28\!\cdots\!52}{10\!\cdots\!13}a^{27}-\frac{99\!\cdots\!05}{90\!\cdots\!17}a^{26}+\frac{39\!\cdots\!42}{30\!\cdots\!39}a^{25}-\frac{47\!\cdots\!94}{30\!\cdots\!39}a^{24}-\frac{11\!\cdots\!55}{30\!\cdots\!39}a^{23}+\frac{18\!\cdots\!96}{30\!\cdots\!39}a^{22}+\frac{15\!\cdots\!45}{10\!\cdots\!13}a^{21}+\frac{25\!\cdots\!09}{30\!\cdots\!39}a^{20}-\frac{14\!\cdots\!49}{30\!\cdots\!39}a^{19}-\frac{41\!\cdots\!52}{10\!\cdots\!13}a^{18}+\frac{79\!\cdots\!88}{90\!\cdots\!17}a^{17}+\frac{38\!\cdots\!91}{30\!\cdots\!39}a^{16}-\frac{10\!\cdots\!34}{30\!\cdots\!39}a^{15}-\frac{58\!\cdots\!74}{30\!\cdots\!39}a^{14}-\frac{11\!\cdots\!16}{10\!\cdots\!13}a^{13}+\frac{24\!\cdots\!52}{11\!\cdots\!57}a^{12}+\frac{19\!\cdots\!15}{10\!\cdots\!13}a^{11}-\frac{13\!\cdots\!17}{11\!\cdots\!57}a^{10}-\frac{11\!\cdots\!20}{33\!\cdots\!71}a^{9}+\frac{15\!\cdots\!99}{33\!\cdots\!71}a^{8}-\frac{13\!\cdots\!54}{11\!\cdots\!57}a^{7}-\frac{16\!\cdots\!04}{11\!\cdots\!57}a^{6}+\frac{91\!\cdots\!38}{11\!\cdots\!57}a^{5}+\frac{35\!\cdots\!54}{37\!\cdots\!19}a^{4}-\frac{17\!\cdots\!67}{12\!\cdots\!73}a^{3}+\frac{13\!\cdots\!21}{37\!\cdots\!19}a^{2}+\frac{19\!\cdots\!89}{13\!\cdots\!97}a-\frac{13\!\cdots\!37}{12\!\cdots\!73}$, $\frac{48\!\cdots\!60}{90\!\cdots\!17}a^{35}-\frac{21\!\cdots\!71}{10\!\cdots\!13}a^{34}-\frac{38\!\cdots\!20}{10\!\cdots\!13}a^{33}+\frac{91\!\cdots\!00}{30\!\cdots\!39}a^{32}-\frac{63\!\cdots\!14}{30\!\cdots\!39}a^{31}-\frac{82\!\cdots\!10}{33\!\cdots\!71}a^{30}+\frac{22\!\cdots\!78}{30\!\cdots\!39}a^{29}+\frac{15\!\cdots\!67}{30\!\cdots\!39}a^{28}-\frac{17\!\cdots\!45}{33\!\cdots\!71}a^{27}+\frac{33\!\cdots\!97}{90\!\cdots\!17}a^{26}+\frac{59\!\cdots\!95}{30\!\cdots\!39}a^{25}-\frac{14\!\cdots\!25}{33\!\cdots\!71}a^{24}-\frac{64\!\cdots\!66}{30\!\cdots\!39}a^{23}+\frac{46\!\cdots\!72}{30\!\cdots\!39}a^{22}+\frac{39\!\cdots\!50}{47\!\cdots\!91}a^{21}-\frac{92\!\cdots\!48}{30\!\cdots\!39}a^{20}-\frac{20\!\cdots\!88}{30\!\cdots\!39}a^{19}+\frac{14\!\cdots\!24}{33\!\cdots\!71}a^{18}+\frac{19\!\cdots\!19}{90\!\cdots\!17}a^{17}+\frac{63\!\cdots\!49}{30\!\cdots\!39}a^{16}-\frac{33\!\cdots\!24}{10\!\cdots\!13}a^{15}-\frac{67\!\cdots\!64}{30\!\cdots\!39}a^{14}+\frac{90\!\cdots\!16}{33\!\cdots\!71}a^{13}+\frac{58\!\cdots\!50}{10\!\cdots\!13}a^{12}-\frac{15\!\cdots\!12}{10\!\cdots\!13}a^{11}-\frac{21\!\cdots\!23}{33\!\cdots\!71}a^{10}+\frac{38\!\cdots\!56}{33\!\cdots\!71}a^{9}+\frac{71\!\cdots\!09}{33\!\cdots\!71}a^{8}-\frac{72\!\cdots\!88}{11\!\cdots\!57}a^{7}-\frac{85\!\cdots\!38}{37\!\cdots\!19}a^{6}+\frac{27\!\cdots\!25}{11\!\cdots\!57}a^{5}-\frac{73\!\cdots\!35}{12\!\cdots\!73}a^{4}-\frac{18\!\cdots\!55}{37\!\cdots\!19}a^{3}+\frac{65\!\cdots\!58}{37\!\cdots\!19}a^{2}+\frac{65\!\cdots\!42}{12\!\cdots\!73}a-\frac{23\!\cdots\!89}{12\!\cdots\!73}$, $\frac{25\!\cdots\!29}{90\!\cdots\!17}a^{35}-\frac{20\!\cdots\!30}{30\!\cdots\!39}a^{34}-\frac{92\!\cdots\!81}{30\!\cdots\!39}a^{33}+\frac{33\!\cdots\!26}{30\!\cdots\!39}a^{32}+\frac{18\!\cdots\!64}{30\!\cdots\!39}a^{31}-\frac{12\!\cdots\!58}{10\!\cdots\!13}a^{30}+\frac{61\!\cdots\!48}{30\!\cdots\!39}a^{29}+\frac{17\!\cdots\!55}{30\!\cdots\!39}a^{28}-\frac{20\!\cdots\!13}{11\!\cdots\!57}a^{27}-\frac{78\!\cdots\!78}{90\!\cdots\!17}a^{26}+\frac{87\!\cdots\!69}{10\!\cdots\!13}a^{25}-\frac{29\!\cdots\!04}{30\!\cdots\!39}a^{24}-\frac{77\!\cdots\!74}{30\!\cdots\!39}a^{23}+\frac{12\!\cdots\!43}{30\!\cdots\!39}a^{22}+\frac{10\!\cdots\!03}{10\!\cdots\!13}a^{21}+\frac{34\!\cdots\!83}{30\!\cdots\!39}a^{20}-\frac{94\!\cdots\!85}{30\!\cdots\!39}a^{19}-\frac{98\!\cdots\!68}{33\!\cdots\!71}a^{18}+\frac{51\!\cdots\!15}{90\!\cdots\!17}a^{17}+\frac{26\!\cdots\!32}{30\!\cdots\!39}a^{16}-\frac{55\!\cdots\!70}{30\!\cdots\!39}a^{15}-\frac{37\!\cdots\!32}{30\!\cdots\!39}a^{14}-\frac{26\!\cdots\!29}{33\!\cdots\!71}a^{13}+\frac{13\!\cdots\!36}{10\!\cdots\!13}a^{12}+\frac{13\!\cdots\!94}{10\!\cdots\!13}a^{11}-\frac{85\!\cdots\!58}{11\!\cdots\!57}a^{10}-\frac{59\!\cdots\!87}{37\!\cdots\!19}a^{9}+\frac{12\!\cdots\!50}{33\!\cdots\!71}a^{8}-\frac{16\!\cdots\!00}{11\!\cdots\!57}a^{7}-\frac{76\!\cdots\!39}{11\!\cdots\!57}a^{6}+\frac{55\!\cdots\!34}{11\!\cdots\!57}a^{5}-\frac{30\!\cdots\!04}{41\!\cdots\!91}a^{4}-\frac{27\!\cdots\!51}{37\!\cdots\!19}a^{3}+\frac{12\!\cdots\!92}{37\!\cdots\!19}a^{2}+\frac{14\!\cdots\!39}{41\!\cdots\!91}a-\frac{15\!\cdots\!47}{41\!\cdots\!91}$, $\frac{74\!\cdots\!44}{90\!\cdots\!17}a^{35}-\frac{69\!\cdots\!67}{33\!\cdots\!71}a^{34}-\frac{28\!\cdots\!90}{33\!\cdots\!71}a^{33}+\frac{99\!\cdots\!84}{30\!\cdots\!39}a^{32}+\frac{32\!\cdots\!25}{30\!\cdots\!39}a^{31}-\frac{11\!\cdots\!94}{33\!\cdots\!71}a^{30}+\frac{19\!\cdots\!54}{30\!\cdots\!39}a^{29}+\frac{46\!\cdots\!24}{30\!\cdots\!39}a^{28}-\frac{18\!\cdots\!71}{33\!\cdots\!71}a^{27}-\frac{12\!\cdots\!05}{90\!\cdots\!17}a^{26}+\frac{74\!\cdots\!58}{30\!\cdots\!39}a^{25}-\frac{33\!\cdots\!97}{10\!\cdots\!13}a^{24}-\frac{19\!\cdots\!42}{30\!\cdots\!39}a^{23}+\frac{37\!\cdots\!88}{30\!\cdots\!39}a^{22}+\frac{26\!\cdots\!29}{10\!\cdots\!13}a^{21}-\frac{12\!\cdots\!61}{30\!\cdots\!39}a^{20}-\frac{26\!\cdots\!78}{30\!\cdots\!39}a^{19}-\frac{23\!\cdots\!49}{33\!\cdots\!71}a^{18}+\frac{15\!\cdots\!10}{90\!\cdots\!17}a^{17}+\frac{65\!\cdots\!26}{30\!\cdots\!39}a^{16}-\frac{77\!\cdots\!41}{10\!\cdots\!13}a^{15}-\frac{10\!\cdots\!87}{30\!\cdots\!39}a^{14}-\frac{17\!\cdots\!74}{10\!\cdots\!13}a^{13}+\frac{40\!\cdots\!30}{10\!\cdots\!13}a^{12}+\frac{29\!\cdots\!35}{10\!\cdots\!13}a^{11}-\frac{26\!\cdots\!63}{11\!\cdots\!57}a^{10}-\frac{99\!\cdots\!32}{33\!\cdots\!71}a^{9}+\frac{25\!\cdots\!08}{33\!\cdots\!71}a^{8}-\frac{39\!\cdots\!50}{11\!\cdots\!57}a^{7}-\frac{17\!\cdots\!49}{12\!\cdots\!73}a^{6}+\frac{13\!\cdots\!15}{11\!\cdots\!57}a^{5}-\frac{33\!\cdots\!71}{37\!\cdots\!19}a^{4}-\frac{58\!\cdots\!58}{37\!\cdots\!19}a^{3}+\frac{23\!\cdots\!38}{37\!\cdots\!19}a^{2}+\frac{34\!\cdots\!93}{41\!\cdots\!91}a-\frac{12\!\cdots\!27}{12\!\cdots\!73}$, $\frac{65\!\cdots\!44}{90\!\cdots\!17}a^{35}-\frac{31\!\cdots\!19}{30\!\cdots\!39}a^{34}-\frac{87\!\cdots\!76}{10\!\cdots\!13}a^{33}+\frac{55\!\cdots\!32}{30\!\cdots\!39}a^{32}+\frac{11\!\cdots\!42}{30\!\cdots\!39}a^{31}-\frac{25\!\cdots\!69}{10\!\cdots\!13}a^{30}+\frac{62\!\cdots\!82}{30\!\cdots\!39}a^{29}+\frac{52\!\cdots\!01}{30\!\cdots\!39}a^{28}-\frac{24\!\cdots\!19}{10\!\cdots\!13}a^{27}-\frac{57\!\cdots\!32}{90\!\cdots\!17}a^{26}+\frac{45\!\cdots\!36}{30\!\cdots\!39}a^{25}+\frac{31\!\cdots\!58}{33\!\cdots\!71}a^{24}-\frac{21\!\cdots\!15}{30\!\cdots\!39}a^{23}-\frac{26\!\cdots\!85}{30\!\cdots\!39}a^{22}+\frac{12\!\cdots\!86}{33\!\cdots\!71}a^{21}+\frac{11\!\cdots\!48}{30\!\cdots\!39}a^{20}-\frac{22\!\cdots\!64}{30\!\cdots\!39}a^{19}-\frac{16\!\cdots\!79}{10\!\cdots\!13}a^{18}+\frac{22\!\cdots\!65}{90\!\cdots\!17}a^{17}+\frac{39\!\cdots\!22}{10\!\cdots\!13}a^{16}+\frac{29\!\cdots\!93}{10\!\cdots\!13}a^{15}-\frac{12\!\cdots\!96}{30\!\cdots\!39}a^{14}-\frac{64\!\cdots\!78}{10\!\cdots\!13}a^{13}+\frac{91\!\cdots\!76}{10\!\cdots\!13}a^{12}+\frac{76\!\cdots\!49}{10\!\cdots\!13}a^{11}+\frac{43\!\cdots\!59}{11\!\cdots\!57}a^{10}-\frac{15\!\cdots\!58}{33\!\cdots\!71}a^{9}-\frac{32\!\cdots\!95}{33\!\cdots\!71}a^{8}+\frac{13\!\cdots\!53}{37\!\cdots\!19}a^{7}-\frac{27\!\cdots\!67}{12\!\cdots\!73}a^{6}+\frac{32\!\cdots\!79}{11\!\cdots\!57}a^{5}+\frac{16\!\cdots\!62}{37\!\cdots\!19}a^{4}-\frac{46\!\cdots\!03}{37\!\cdots\!19}a^{3}-\frac{19\!\cdots\!77}{37\!\cdots\!19}a^{2}+\frac{74\!\cdots\!80}{13\!\cdots\!97}a-\frac{18\!\cdots\!02}{12\!\cdots\!73}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 39375341234339.234 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 39375341234339.234 \cdot 72}{18\cdot\sqrt{11349174172096312401159270887667863929976078528910955905024}}\cr\approx \mathstrut & 0.344381506676596 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - 3*x^35 - 9*x^34 + 45*x^33 - 6*x^32 - 423*x^31 + 987*x^30 + 1500*x^29 - 7605*x^28 + 1541*x^27 + 30849*x^26 - 54360*x^25 - 60048*x^24 + 185232*x^23 + 256266*x^22 - 152940*x^21 - 1073577*x^20 - 336708*x^19 + 2425303*x^18 + 1698282*x^17 - 2128815*x^16 - 3681504*x^15 - 275778*x^14 + 5895882*x^13 + 1320516*x^12 - 4471362*x^11 + 1316007*x^10 + 878499*x^9 - 806031*x^8 + 4374*x^7 + 235467*x^6 - 78003*x^5 - 16038*x^4 + 16767*x^3 - 2187*x^2 - 2187*x + 729)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - 3*x^35 - 9*x^34 + 45*x^33 - 6*x^32 - 423*x^31 + 987*x^30 + 1500*x^29 - 7605*x^28 + 1541*x^27 + 30849*x^26 - 54360*x^25 - 60048*x^24 + 185232*x^23 + 256266*x^22 - 152940*x^21 - 1073577*x^20 - 336708*x^19 + 2425303*x^18 + 1698282*x^17 - 2128815*x^16 - 3681504*x^15 - 275778*x^14 + 5895882*x^13 + 1320516*x^12 - 4471362*x^11 + 1316007*x^10 + 878499*x^9 - 806031*x^8 + 4374*x^7 + 235467*x^6 - 78003*x^5 - 16038*x^4 + 16767*x^3 - 2187*x^2 - 2187*x + 729, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - 3*x^35 - 9*x^34 + 45*x^33 - 6*x^32 - 423*x^31 + 987*x^30 + 1500*x^29 - 7605*x^28 + 1541*x^27 + 30849*x^26 - 54360*x^25 - 60048*x^24 + 185232*x^23 + 256266*x^22 - 152940*x^21 - 1073577*x^20 - 336708*x^19 + 2425303*x^18 + 1698282*x^17 - 2128815*x^16 - 3681504*x^15 - 275778*x^14 + 5895882*x^13 + 1320516*x^12 - 4471362*x^11 + 1316007*x^10 + 878499*x^9 - 806031*x^8 + 4374*x^7 + 235467*x^6 - 78003*x^5 - 16038*x^4 + 16767*x^3 - 2187*x^2 - 2187*x + 729);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 - 9*x^34 + 45*x^33 - 6*x^32 - 423*x^31 + 987*x^30 + 1500*x^29 - 7605*x^28 + 1541*x^27 + 30849*x^26 - 54360*x^25 - 60048*x^24 + 185232*x^23 + 256266*x^22 - 152940*x^21 - 1073577*x^20 - 336708*x^19 + 2425303*x^18 + 1698282*x^17 - 2128815*x^16 - 3681504*x^15 - 275778*x^14 + 5895882*x^13 + 1320516*x^12 - 4471362*x^11 + 1316007*x^10 + 878499*x^9 - 806031*x^8 + 4374*x^7 + 235467*x^6 - 78003*x^5 - 16038*x^4 + 16767*x^3 - 2187*x^2 - 2187*x + 729);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times A_4\times D_6$ (as 36T334):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 288
The 48 conjugacy class representatives for $C_2\times A_4\times D_6$
Character table for $C_2\times A_4\times D_6$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.3.756.1, \(\Q(\zeta_{9})^+\), 6.6.1397493.1, 6.0.465831.1, 6.0.1714608.1, \(\Q(\zeta_{9})\), 9.9.314987206464.1, 12.0.1952986685049.1, 18.0.297650820707983690149888.2, 18.18.106532502890415150525236563968.1, 18.0.35510834296805050175078854656.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 siblings: deg 36, deg 36, deg 36, deg 36, deg 36, deg 36, deg 36, deg 36, deg 36, some data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{6}$ R ${\href{/padicField/11.6.0.1}{6} }^{6}$ ${\href{/padicField/13.6.0.1}{6} }^{6}$ ${\href{/padicField/17.6.0.1}{6} }^{6}$ ${\href{/padicField/19.2.0.1}{2} }^{16}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.6.0.1}{6} }^{6}$ ${\href{/padicField/29.6.0.1}{6} }^{6}$ ${\href{/padicField/31.6.0.1}{6} }^{6}$ ${\href{/padicField/37.6.0.1}{6} }^{4}{,}\,{\href{/padicField/37.3.0.1}{3} }^{4}$ ${\href{/padicField/41.6.0.1}{6} }^{6}$ ${\href{/padicField/43.3.0.1}{3} }^{12}$ ${\href{/padicField/47.6.0.1}{6} }^{6}$ ${\href{/padicField/53.2.0.1}{2} }^{18}$ ${\href{/padicField/59.6.0.1}{6} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.18.12.1$x^{18} + 10 x^{16} + 12 x^{15} + 28 x^{14} + 100 x^{13} + 92 x^{12} + 224 x^{11} + 640 x^{10} + 352 x^{9} + 736 x^{8} + 1760 x^{7} + 688 x^{6} + 1024 x^{5} + 1760 x^{4} + 448 x^{3} + 448 x^{2} + 320 x + 64$$3$$6$$12$$S_3 \times C_3$$[\ ]_{3}^{6}$
2.18.12.1$x^{18} + 10 x^{16} + 12 x^{15} + 28 x^{14} + 100 x^{13} + 92 x^{12} + 224 x^{11} + 640 x^{10} + 352 x^{9} + 736 x^{8} + 1760 x^{7} + 688 x^{6} + 1024 x^{5} + 1760 x^{4} + 448 x^{3} + 448 x^{2} + 320 x + 64$$3$$6$$12$$S_3 \times C_3$$[\ ]_{3}^{6}$
\(3\) Copy content Toggle raw display Deg $18$$18$$1$$31$
Deg $18$$18$$1$$31$
\(7\) Copy content Toggle raw display 7.6.0.1$x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
7.6.0.1$x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
7.12.6.1$x^{12} + 44 x^{10} + 10 x^{9} + 786 x^{8} + 22 x^{7} + 6899 x^{6} - 3434 x^{5} + 31050 x^{4} - 28440 x^{3} + 84557 x^{2} - 48082 x + 107648$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
7.12.6.1$x^{12} + 44 x^{10} + 10 x^{9} + 786 x^{8} + 22 x^{7} + 6899 x^{6} - 3434 x^{5} + 31050 x^{4} - 28440 x^{3} + 84557 x^{2} - 48082 x + 107648$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(71\) Copy content Toggle raw display 71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.4.2.1$x^{4} + 138 x^{3} + 4917 x^{2} + 10764 x + 342127$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
71.4.2.1$x^{4} + 138 x^{3} + 4917 x^{2} + 10764 x + 342127$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
71.4.2.1$x^{4} + 138 x^{3} + 4917 x^{2} + 10764 x + 342127$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$